1
|
Calixto C, Taymourtash A, Karimi D, Snoussi H, Velasco-Annis C, Jaimes C, Gholipour A. Advances in Fetal Brain Imaging. Magn Reson Imaging Clin N Am 2024; 32:459-478. [PMID: 38944434 PMCID: PMC11216711 DOI: 10.1016/j.mric.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Over the last 20 years, there have been remarkable developments in fetal brain MR imaging analysis methods. This article delves into the specifics of structural imaging, diffusion imaging, functional MR imaging, and spectroscopy, highlighting the latest advancements in motion correction, fetal brain development atlases, and the challenges and innovations. Furthermore, this article explores the clinical applications of these advanced imaging techniques in comprehending and diagnosing fetal brain development and abnormalities.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Athena Taymourtash
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Spitalgasse 23, Wien 1090, Austria
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Haykel Snoussi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Camilo Jaimes
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02215, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
2
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
3
|
Amodeo I, Borzani I, Raffaeli G, Persico N, Amelio GS, Gulden S, Colnaghi M, Villamor E, Mosca F, Cavallaro G. The role of magnetic resonance imaging in the diagnosis and prognostic evaluation of fetuses with congenital diaphragmatic hernia. Eur J Pediatr 2022; 181:3243-3257. [PMID: 35794403 PMCID: PMC9395465 DOI: 10.1007/s00431-022-04540-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
UNLABELLED In recent years, magnetic resonance imaging (MRI) has largely increased our knowledge and predictive accuracy of congenital diaphragmatic hernia (CDH) in the fetus. Thanks to its technical advantages, better anatomical definition, and superiority in fetal lung volume estimation, fetal MRI has been demonstrated to be superior to 2D and 3D ultrasound alone in CDH diagnosis and outcome prediction. This is of crucial importance for prenatal counseling, risk stratification, and decision-making approach. Furthermore, several quantitative and qualitative parameters can be evaluated simultaneously, which have been associated with survival, postnatal course severity, and long-term morbidity. CONCLUSION Fetal MRI will further strengthen its role in the near future, but it is necessary to reach a consensus on indications, methodology, and data interpretation. In addition, it is required data integration from different imaging modalities and clinical courses, especially for predicting postnatal pulmonary hypertension. This would lead to a comprehensive prognostic assessment. WHAT IS KNOWN • MRI plays a key role in evaluating the fetal lung in patients with CDH. • Prognostic assessment of CDH is challenging, and advanced imaging is crucial for a complete prenatal assessment and counseling. WHAT IS NEW • Fetal MRI has strengthened its role over ultrasound due to its technical advantages, better anatomical definition, superior fetal lung volume estimation, and outcome prediction. • Imaging and clinical data integration is the most desirable strategy and may provide new MRI applications and future research opportunities.
Collapse
Affiliation(s)
- Ilaria Amodeo
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Irene Borzani
- grid.414818.00000 0004 1757 8749Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Genny Raffaeli
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Nicola Persico
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy ,grid.414818.00000 0004 1757 8749Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Simeone Amelio
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Silvia Gulden
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Mariarosa Colnaghi
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Eduardo Villamor
- grid.412966.e0000 0004 0480 1382Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, University of Maastricht, MUMC+), Maastricht, the Netherlands
| | - Fabio Mosca
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122, Milan, Italy.
| |
Collapse
|
4
|
Aertsen M, Diogo MC, Dymarkowski S, Deprest J, Prayer D. Fetal MRI for dummies: what the fetal medicine specialist should know about acquisitions and sequences. Prenat Diagn 2019; 40:6-17. [PMID: 31618472 DOI: 10.1002/pd.5579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Fetal MRI is an increasingly used tool in the field of prenatal diagnosis. While US remains the first line screening tool, as an adjuvant imaging tool, MRI has been proven to increase diagnostic accuracy and change patient counseling. Further, there are instances when US may not be sufficient for diagnosis. As a multidisciplinary field, it is important that every person involved in the referral, diagnosis, counseling and treatment of the patients is familiar with the basic principles, indications and findings of fetal MRI. The purpose of the current paper is to equip radiologists and non-radiologists with basic MRI principles and essential topics in patient preparation and provide illustrative examples of when fetal MRI may be used. This aims to aid the referring clinician in better selecting and improve patient counseling prior to arrival in the radiology department and, ultimately, patient care.
Collapse
Affiliation(s)
- Michael Aertsen
- Department of Imaging and Pathology, Clinical Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Mariana C Diogo
- Department of Image Guided Therapy, University Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Steven Dymarkowski
- Department of Imaging and Pathology, Clinical Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Academic Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| | - Daniela Prayer
- Department of Image Guided Therapy, University Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Lei H, Montessuit S, Herzig S, Martinou JC. Feasibility of neurochemically profiling mouse embryonic brain and its development in utero using 1 H MRS at 14.1 T. NMR IN BIOMEDICINE 2019; 32:e4163. [PMID: 31424145 DOI: 10.1002/nbm.4163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
We aimed to evaluate the feasibility of neurochemical profiling of embryonic mouse brain developments in utero and to seek potential in vivo evidence of an energy shift in a mitochondrial pyruvate carrier 1 (MPC1) deficient mouse model. C57BL/6 embryonic mouse brains were studied in utero by anatomical MRI and short echo localized proton (1 H) MRS at 14.1 T. Two embryonic stages were studied, the energy shift (e.g., embryonic day 12.5-13, E12.5-13) and close to the birth (E17.5-18). In addition, embryonic brains devoid of MPC1 were studied at E12.5-13. The MRI provided sufficient anatomical contrasts for visualization of embryonic brain. Localized 1 H MRS offered abundant metabolites through the embryonic development from E12.5 and close to the birth, e.g., E17.5 and beyond. The abundant neurochemical information at E12.5 provided metabolic status and processes relating to cellular development at this stage, i.e., the energy shift from glycolysis to oxidative phosphorylation, evidenced by accumulation of lactate in E12.5-13 embryonic brain devoid of MPC1. The further evolution of the neurochemical profile of embryonic brains at E17.5-18 is consistent with cellular and metabolic processes towards the birth. Localized 1 H MRS study of embryonic brain development in utero is feasible, and longitudinal neurochemical profiling of embryonic brains offers valuable insight into early brain development.
Collapse
Affiliation(s)
- Hongxia Lei
- Faculty of Medicine, University of Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), EcolePolytechnique Fédérale de Lausanne, Switzerland
| | | | | | | |
Collapse
|
6
|
Jarvis DA, Griffiths PD. Current state of MRI of the fetal brain in utero. J Magn Reson Imaging 2018; 49:632-646. [PMID: 30353990 DOI: 10.1002/jmri.26316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022] Open
Abstract
In this article we provide an overview of fetal brain development, describe the range of more common fetal neuropathology, and discuss the relevance of in utero MR (iuMR). Although ultrasonography remains the mainstay of fetal brain imaging, iuMR imaging is both feasible and safe, but presents several challenges. We discuss those challenges, the techniques employed to overcome them, and new approaches that may extend the clinical applicability of fetal iuMR. Level of Evidence: Technical Efficacy Stage. J. Magn. Reson. Imaging 2019;49:632-646.
Collapse
Affiliation(s)
- Deborah A Jarvis
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Paul D Griffiths
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Cichocka M, Bereś A. From fetus to older age: A review of brain metabolic changes across the lifespan. Ageing Res Rev 2018; 46:60-73. [PMID: 29864489 DOI: 10.1016/j.arr.2018.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/26/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The knowledge of metabolic changes across the lifespan is poorly understood. Thus we systematically reviewed the available literature to determine the changes in brain biochemical composition from fetus to older age and tried to explain them in the context of neural, cognitive, and behavioural changes. METHODS The search identified 1262 articles regarding proton magnetic resonance spectroscopy (1H MRS) examinations through December 2017. The following data was extracted: age range of the subjects, number of subjects studied, brain regions studied, MRS sequence used, echo time, MR system, method of statistical analysis, metabolites analyzed, significant differences in metabolites concentrations with age as well as the way of presentation of the results. RESULTS 82 studies that described brain metabolite changes with age were identified. Reports on metabolic changes related to healthy aging were analyzed and discussed among six basic age groups: fetuses, infants, children, adolescents, adults, and the elderly as well as between groups and during the whole lifetime. DISCUSSION The results presented in the reviewed papers provide evidence that normal aging is associated with a number of metabolic changes characteristic for every period of life. Therefore, it can be concluded that the age matching is essential for comparative studies of disease states using 1H MRS.
Collapse
|
8
|
Robinson AJ, Ederies MA. Fetal neuroimaging: an update on technical advances and clinical findings. Pediatr Radiol 2018; 48:471-485. [PMID: 29550864 DOI: 10.1007/s00247-017-3965-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 10/17/2022]
Abstract
This paper is based on a literature review from 2011 to 2016. The paper is divided into two main sections. The first section relates to technical advances in fetal imaging techniques, including fetal motion compensation, imaging at 3.0 T, 3-D T2-weighted MRI, susceptibility-weighted imaging, computed tomography, morphometric analysis, diffusion tensor imaging, spectroscopy and fetal behavioral assessment. The second section relates to clinical updates, including cerebral lamination, migrational anomalies, midline anomalies, neural tube defects, posterior fossa anomalies, sulcation/gyration and hypoxic-ischemic insults.
Collapse
Affiliation(s)
- Ashley J Robinson
- Sidra Medical and Research Center, Qatar Foundation, Education City North, Al Luqta Street, Doha, 26999, Qatar. .,Clinical Radiology, Weill-Cornell Medical College, New York, NY, USA.
| | - M Ashraf Ederies
- Sidra Medical and Research Center, Qatar Foundation, Education City North, Al Luqta Street, Doha, 26999, Qatar.,Clinical Radiology, Weill-Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Urbanik A, Cichocka M, Kozub J, Karcz P, Herman-Sucharska I. Evaluation of changes in biochemical composition of fetal brain between 18th and 40th gestational week in proton magnetic resonance spectroscopy. J Matern Fetal Neonatal Med 2018; 32:2493-2499. [DOI: 10.1080/14767058.2018.1439009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Monika Cichocka
- Department of Radiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Justyna Kozub
- Department of Radiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Paulina Karcz
- Department of Electroradiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| | - Izabela Herman-Sucharska
- Department of Electroradiology, Collegium Medicum of the Jagiellonian University, Kraków, Poland
| |
Collapse
|
10
|
Evangelou IE, du Plessis AJ, Vezina G, Noeske R, Limperopoulos C. Elucidating Metabolic Maturation in the Healthy Fetal Brain Using 1H-MR Spectroscopy. AJNR Am J Neuroradiol 2016; 37:360-6. [PMID: 26405083 DOI: 10.3174/ajnr.a4512] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/21/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE (1)H-MRS provides a noninvasive way to study fetal brain maturation at the biochemical level. The purpose of this study was to characterize in vivo metabolic maturation in the healthy fetal brain during the second and third trimester using (1)H-MRS. MATERIALS AND METHODS Healthy pregnant volunteers between 18 and 40 weeks gestational age underwent single voxel (1)H-MRS. MR spectra were retrospectively corrected for motion-induced artifacts and quantified using LCModel. Linear regression was used to examine the relationship between absolute metabolite concentrations and ratios of total NAA, Cr, and Cho to total Cho and total Cr and gestational age. RESULTS Two hundred four spectra were acquired from 129 pregnant women at mean gestational age of 30.63 ± 6 weeks. Total Cho remained relatively stable across the gestational age (r(2) = 0.04, P = .01). Both total Cr (r(2) = 0.60, P < .0001) as well as total NAA and total NAA to total Cho (r(2) = 0.58, P < .0001) increased significantly between 18 and 40 weeks, whereas total NAA to total Cr exhibited a slower increase (r(2) = 0.12, P < .0001). Total Cr to total Cho also increased (r(2) = 0.53, P < .0001), whereas total Cho to total Cr decreased (r(2) = 0.52, P < .0001) with gestational age. The cohort was also stratified into those that underwent MRS in the second and third trimesters and analyzed separately. CONCLUSIONS We characterized metabolic changes in the normal fetal brain during the second and third trimesters of pregnancy and derived normative metabolic indices. These reference values can be used to study metabolic maturation of the fetal brain in vivo.
Collapse
Affiliation(s)
- I E Evangelou
- From the Divisions of Diagnostic Imaging and Radiology (I.E.E., G.V., C.L.) Departments of Pediatrics (I.E.E. A.J.D.P., G.V., C.L.) Radiology (I.E.E., G.V.), The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - A J du Plessis
- Fetal and Transitional Medicine (A.J.D.P., C.L.), Children's National Medical Center, Washington, DC Departments of Pediatrics (I.E.E. A.J.D.P., G.V., C.L.)
| | - G Vezina
- From the Divisions of Diagnostic Imaging and Radiology (I.E.E., G.V., C.L.) Departments of Pediatrics (I.E.E. A.J.D.P., G.V., C.L.) Radiology (I.E.E., G.V.), The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - R Noeske
- Applied Science Laboratory, GE Healthcare, Berlin, Germany (R.N.)
| | - C Limperopoulos
- From the Divisions of Diagnostic Imaging and Radiology (I.E.E., G.V., C.L.) Fetal and Transitional Medicine (A.J.D.P., C.L.), Children's National Medical Center, Washington, DC Departments of Pediatrics (I.E.E. A.J.D.P., G.V., C.L.)
| |
Collapse
|
11
|
Jakab A, Pogledic I, Schwartz E, Gruber G, Mitter C, Brugger PC, Langs G, Schöpf V, Kasprian G, Prayer D. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology. Semin Ultrasound CT MR 2015; 36:465-75. [DOI: 10.1053/j.sult.2015.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Shetty AN, Gabr RE, Rendon DA, Cassady CI, Mehollin-Ray AR, Lee W. Improving spectral quality in fetal brain magnetic resonance spectroscopy using constructive averaging. Prenat Diagn 2015; 35:1294-300. [PMID: 26348874 DOI: 10.1002/pd.4689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/28/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE A common source of loss in signal-to-noise ratio (SNR) in fetal brain magnetic resonance spectroscopy (MRS) is from fetal movement and temporal magnetic field drift. We investigated the feasibility of using constructive averaging strategies for improving the spectral quality and recovering the SNR loss from these effects. MATERIALS AND METHODS Eight fetuses, between 20 3/7 and 38 2/7 weeks' gestation, were scanned with MRS at 1.5 T. Single-voxel point-resolved spectroscopy of the fetal brain with TE = 144 ms (in one case additional TE = 288 ms) was performed in a dynamic mode, and individual spectra of 128 acquisitions were saved. With constructive averaging strategy individual acquisitions were corrected for phase variations and frequency drift before averaging. Constructively averaged spectra were compared to those using conventional averaging to evaluate differences in spectral quality and SNR. RESULTS The definition of key metabolite peaks was qualitatively improved using constructive averaging, including the doublet structure of lactate in one case. Constructive averaging was associated with SNR increases, ranging from 11% to 40%, and the SNR further improved in one case when outliers from severe motion were rejected before averaging. CONCLUSION Our results demonstrate the feasibility of using constructive averaging for improving SNR in fetal MRS, which is likely to improve the characterization of fetal brain metabolites.
Collapse
Affiliation(s)
- Anil N Shetty
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Fetal Center, Houston, TX, USA
| | - Refaat E Gabr
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center, Houston, TX, USA
| | - David A Rendon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Cassady
- Texas Children's Fetal Center, Houston, TX, USA.,Department of Radiology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Amy R Mehollin-Ray
- Texas Children's Fetal Center, Houston, TX, USA.,Department of Radiology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Wesley Lee
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Fetal Center, Houston, TX, USA
| |
Collapse
|
13
|
Abstract
Fetal magnetic resonance imaging (MRI) is currently offered in a limited number of centers but is predominantly used for suspected fetal central nervous system abnormalities. This article concentrates on the role of the different imaging sequences and their value to clinical practice. It also discusses the future of fetal MRI.
Collapse
Affiliation(s)
- Elspeth Whitby
- Academic Unit of Reproductive and Developmental Medicine, Sheffield, UK.
| | - Peter Wright
- Medical Imaging and Medical Physics, Radiology, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
14
|
Abstract
CLINICAL/METHODICAL ISSUE Evaluation of the normal and pathological fetal brain. STANDARD RADIOLOGICAL METHODS Magnetic resonance imaging (MRI). METHODICAL INNOVATIONS Advanced MRI of the fetal brain. PERFORMANCE Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. ACHIEVEMENTS Serving as standard methods in the future. PRACTICAL RECOMMENDATIONS Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities.
Collapse
|
15
|
Asenbaum U, Brugger PC, Woitek R, Furtner J, Prayer D. [Indications and technique of fetal magnetic resonance imaging]. Radiologe 2013; 53:109-15. [PMID: 23340683 DOI: 10.1007/s00117-012-2397-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CLINICAL/METHODICAL ISSUE Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. STANDARD RADIOLOGICAL METHODS Ultrasound and magnetic resonance imaging (MRI). METHODICAL INNOVATIONS Technique for prenatal fetal examination. PERFORMANCE Fetal MRI is an established supplementary technique to prenatal ultrasound. ACHIEVEMENTS Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. PRACTICAL RECOMMENDATIONS Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination.
Collapse
Affiliation(s)
- U Asenbaum
- Abteilung für Neuroradiologie und Muskuloskelettale Radiologie, Universitätsklinik für Radiodiagnostik, Medizinische Universität Wien, Österreich.
| | | | | | | | | |
Collapse
|