1
|
Scaravilli A, Gabusi I, Mari G, Battocchio M, Bosticardo S, Schiavi S, Bender B, Kessler C, Brais B, La Piana R, van de Warrenburg BP, Cosottini M, Timmann D, Daducci A, Schüle R, Synofzik M, Santorelli FM, Cocozza S. An MRI evaluation of white matter involvement in paradigmatic forms of spastic ataxia: results from the multi-center PROSPAX study. J Neurol 2024; 271:5468-5477. [PMID: 38880819 PMCID: PMC11319608 DOI: 10.1007/s00415-024-12505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) and Spastic Paraplegia Type 7 (SPG7) are paradigmatic spastic ataxias (SPAX) with suggested white matter (WM) involvement. Aim of this work was to thoroughly disentangle the degree of WM involvement in these conditions, evaluating both macrostructure and microstructure via the analysis of diffusion MRI (dMRI) data. MATERIAL AND METHODS In this multi-center prospective study, ARSACS and SPG7 patients and Healthy Controls (HC) were enrolled, all undergoing a standardized dMRI protocol and a clinimetrics evaluation including the Scale for the Assessment and Rating of Ataxia (SARA). Differences in terms of WM volume or global microstructural WM metrics were probed, as well as the possible occurrence of a spatially defined microstructural WM involvement via voxel-wise analyses, and its correlation with patients' clinical status. RESULTS Data of 37 ARSACS (M/F = 21/16; 33.4 ± 12.4 years), 37 SPG7 (M/F = 24/13; 55.7 ± 10.7 years), and 29 HC (M/F = 13/16; 42.1 ± 17.2 years) were analyzed. While in SPG7, only a mild mean microstructural damage was found compared to HC, ARSACS patients present a severe WM involvement, with a reduced global volume (p < 0.001), an alteration of all microstructural metrics (all with p < 0.001), without a spatially defined pattern of damage but with a prominent involvement of commissural fibers. Finally, in ARSACS, a correlation between microstructural damage and SARA scores was found (p = 0.004). CONCLUSION In ARSACS, but not SPG7 patients, we observed a complex and multi-faced involvement of brain WM, with a clinically meaningful widespread loss of axonal and dendritic integrity, secondary demyelination and, overall, a reduction in cellularity and volume.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Ilaria Gabusi
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona, Verona, Italy
| | - Gaia Mari
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona, Verona, Italy
| | - Matteo Battocchio
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona, Verona, Italy
| | - Sara Bosticardo
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona, Verona, Italy
| | - Simona Schiavi
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona, Verona, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Christoph Kessler
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Diagnostic Radiology, McGill University, Montreal, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirco Cosottini
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Alessandro Daducci
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona, Verona, Italy
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital and Faculty of Medicine, Heidelberg, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
2
|
Tremblay M, Girard-Côté L, Brais B, Gagnon C. Documenting manifestations and impacts of autosomal recessive spastic ataxia of Charlevoix-Saguenay to develop patient-reported outcome. Orphanet J Rare Dis 2022; 17:369. [PMID: 36183078 PMCID: PMC9526980 DOI: 10.1186/s13023-022-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autosomal recessive cerebellar ataxias (ARCA) are a group of rare inherited disorders characterized by degeneration or abnormal development of the cerebellum. Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is one of the most prevalent in Europe. OBJECTIVES The aim of this study is to provide a better understanding of the manifestations and impacts of ARSACS. METHODS A systematic review of the literature was conducted, followed by a qualitative study using semistructured interviews and discussion groups to obtain the experience of people affected. RESULTS According to the PROMIS framework, the results show manifestations and impacts in three components of health: physical, mental, and social. Fatigue and struggles with balance and dexterity are the physical manifestations of the disease most often cited by participants. Negative affects such as frustration and depression are among the mental health impacts with some loss in cognitive abilities. Social health is the least documented component; nonetheless, people with the disease report significant impacts in terms of social relationships, activities and work. CONCLUSIONS These findings shed new light on the experience of people with recessive ataxia and identify key aspects to assess to improve their overall health.
Collapse
Affiliation(s)
- Marjolaine Tremblay
- Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada. .,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, 2230 de l'Hôpital cp 1200, Jonquière, QC, G7X 7X2, Canada.
| | - Laura Girard-Côté
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, 2230 de l'Hôpital cp 1200, Jonquière, QC, G7X 7X2, Canada.,Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada
| | - Bernard Brais
- McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada.,Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Gagnon
- Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, 2230 de l'Hôpital cp 1200, Jonquière, QC, G7X 7X2, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, 3001, 12e Avenue Nord, aile 9, porte 6, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
3
|
Ashrafi MR, Mohammadi P, Tavasoli AR, Heidari M, Hosseinpour S, Rasulinejad M, Rohani M, Akbari MG, Malamiri RA, Badv RS, Fathi D, Dehnavi AZ, Savad S, Rabbani A, Synofzik M, Mahdieh N, Rezaei Z. Clinical and Molecular Findings of Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay: an Iranian Case Series Expanding the Genetic and Neuroimaging Spectra. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01430-3. [PMID: 35731353 DOI: 10.1007/s12311-022-01430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is now increasingly identified from all countries over the world, possibly rendering it one of the most common autosomal recessive ataxias. Here, we selected patients harboring SACS variants, the causative gene for ARSACS, in a large cohort of 137 patients with early-onset ataxia recruited from May 2019 to May 2021 and were referred to the ataxia clinic. Genetic studies were performed for 111 out of 137 patients (81%) which led to a diagnostic rate of 72.9% (81 out of 111 cases). Ten patients with the molecular diagnosis of ARSACS were identified. We investigated the phenotypic and imaging spectra of all confirmed patients with ARSACS. We also estimated the frequency of ARSACS in this cohort and described their clinical and genetic findings including seven novel variants as well as novel neuroimaging findings. While the classic clinical triad of ARSACS is progressive cerebellar ataxia, spasticity, and sensorimotor polyneuropathy, it is not a constant feature in all patients. Sensorimotor axonal-demyelinating neuropathy was detected in all of our patients, but spasticity and extensor plantar reflex were absent in 50% (5/10). In all patients, brain magnetic resonance imaging (MRI) showed symmetric linear hypointensities in the pons (pontine stripes) and anterior superior cerebellar atrophy as well as a hyperintense rim around the thalami (thalamic rim). Although infratentorial arachnoid cyst has been reported in ARSACS earlier, we report anterior temporal arachnoid cyst in two patients for the first time, indicating that arachnoid cyst may be an associated imaging feature of ARSACS. We also extended molecular spectrum of ARSACS by presenting 8 pathogenic and one variant of unknown significance (VUS) sequence variants, which 7 of them have not been reported previously. MetaDome server confirmed that the identified VUS variant was in the intolerant regions of sacsin protein encoded by SACS.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics Center, Growth and Development Research Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Morteza Heidari
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Neurology, Vali-E-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinejad
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Ghahvechi Akbari
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Division of Pediatric Neurology, Department of Pediatrics, Golestan Medical, Educational and Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Fathi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Savad
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rabbani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics Center, Growth and Development Research Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Rezaei
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Bagaria J, Bagyinszky E, An SSA. Genetics of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) and Role of Sacsin in Neurodegeneration. Int J Mol Sci 2022; 23:552. [PMID: 35008978 PMCID: PMC8745260 DOI: 10.3390/ijms23010552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
5
|
Xiromerisiou G, Dadouli K, Marogianni C, Provatas A, Ntellas P, Rikos D, Stathis P, Georgouli D, Loules G, Zamanakou M, Hadjigeorgiou GM. A novel homozygous SACS mutation identified by whole exome sequencing-genotype phenotype correlations of all published cases. J Mol Neurosci 2019; 70:131-141. [PMID: 31701440 DOI: 10.1007/s12031-019-01410-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
ARSACS is an autosomal recessive disorder characterized by ataxia, spasticity, and polyneuropathy. A plethora of worldwide distributed mutations have been described so far. Here, we report two brothers, born to non-consanguineous parents, presenting with cerebellar ataxia and peripheral neuropathy. Whole-exome sequencing revealed the presence of a novel homozygous variant in the SACS gene. The variant was confirmed by Sanger sequencing and found at heterozygous state in both parents. This is the first reported mutation in this gene, in Greek population. This case report further highlights the growing trend of identifying genetic diseases previously restricted to single, ethnically isolated regions in many different ethnic groups worldwide. Additionally, we performed a systematic review of all published cases with SACs mutations. ARSACS seems to be an important cause of ataxia and many different types of mutations have been identified, mainly located in exon 10. We evaluated the mutation pathogenicity in all previously reported cases to investigate possible phenotype-genotype correlations. We managed to find a correlation between the pathogenicity of mutations, severity of the phenotype, and age of onset of ARSACS. Greater mutation numbers in different populations will be important and mutation-specific functional studies will be essential to identify the pathogenicity of the various ARSACS variants.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Katerina Dadouli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Chrysoula Marogianni
- Department of Neurology, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Antonios Provatas
- Department of Neurology, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Panagiotis Ntellas
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Dimitrios Rikos
- Department of Neurology, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Pantelis Stathis
- Department of Neurology, Mediterraneo Hospital, Glyfada, Athens, Greece
| | - Despina Georgouli
- Department of Neurology, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | | | | | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Kuchay RAH, Mir YR, Zeng X, Hassan A, Musarrat J, Parwez I, Kernstock C, Traschütz A, Synofzik M. ARSACS as a Worldwide Disease: Novel SACS Mutations Identified in a Consanguineous Family from the Remote Tribal Jammu and Kashmir Region in India. THE CEREBELLUM 2019; 18:807-812. [DOI: 10.1007/s12311-019-01028-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Cerebellar Ataxia in Children: A Clinical and MRI Approach to the Differential Diagnosis. Top Magn Reson Imaging 2018; 27:275-302. [PMID: 30086112 DOI: 10.1097/rmr.0000000000000175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The cerebellum has long been recognized as a fundamental structure in motor coordination. Structural cerebellar abnormalities and diseases involving the cerebellum are relatively common in children. The not always specific clinical presentation of ataxia, incoordination, and balance impairment can often be a challenge to attain a precise diagnosis. Continuous advances in genetic research and moreover the constant development in neuroimaging modalities, particularly in the field of magnetic resonance imaging, have promoted a better understanding of cerebellar diseases and led to several modifications in their classification in recent years. Thorough clinical and neuroimaging investigation is recommended for proper diagnosis. This review outlines an update of causes of cerebellar disorders that present clinically with ataxia in the pediatric population. These conditions were classified in 2 major groups, namely genetic malformations and acquired or disruptive disorders recognizable by neuroimaging and subsequently according to their features during the prenatal and postnatal periods.
Collapse
|
8
|
Incecik F, Hergüner OM, Bisgin A. Autosomal-Recessive Spastic Ataxia of Charlevoix-Saguenay: A Turkish Child. J Pediatr Neurosci 2018; 13:355-357. [PMID: 30271475 PMCID: PMC6144602 DOI: 10.4103/jpn.jpn_8_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations of the SACS gene, characterized by late-infantile-onset spastic ataxia and other neurological features. ARSACS has a high prevalence in northeastern Quebec, Canada. Recently, several ARSACS cases have been reported from outside Canada. We report typical clinical and neuroimaging features in a Turkish child, which confirmed genetic diagnosis of ARSACS.
Collapse
Affiliation(s)
- Faruk Incecik
- Division of Child Neurology, Department of Pediatrics, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ozlem M Hergüner
- Division of Child Neurology, Department of Pediatrics, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Atil Bisgin
- Department of Pediatrics, Medical Genetics, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
9
|
|
10
|
Arslan EA, Göçmen R, Oğuz KK, Konuşkan GD, Serdaroğlu E, Topaloğlu H, Topçu M. Childhood hereditary ataxias: experience from a tertiary referral university hospital in Turkey. Acta Neurol Belg 2017; 117:857-865. [PMID: 28456889 DOI: 10.1007/s13760-017-0786-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Hereditary ataxias are a group of genetic disorders that are progressive and heterogeneous. The purpose of this study was to develop a practical and time-efficient approach to diagnosing childhood hereditary ataxias by analyzing characteristics and final diagnosis at a tertiary referral clinic for pediatric neurology. 196 patients admitted to the pediatric neurology department were included. The medical records were examined for demographic features, neurological, laboratory, electrophysiological, cranial imaging, and pathological findings, and for genetic studies. Patients were divided into two groups based on whether a final diagnosis was made. The undiagnosed and diagnosed groups consisted of 157 (81.1%) and 39 (19.9%) patients, respectively. The two groups differed in terms of levels of history of consanguineous marriage and mental and motor development before diagnosis, absence of deep tendon reflexes, and the presence of polyneuropathic changes detected by electromyelography (EMG), abnormal visual evoked potentials (VEPs), electroretinography (ERG), and muscle biopsy. To the best of our knowledge, this is the first study involving a large spectrum of diseases related to autosomal recessive ataxias in childhood in Turkey. One out of five patients with hereditary childhood ataxias can be diagnosed with clinical and laboratory and electrodiagnostic examination, especially with the help of imaging facilities, while genetic analysis is not possible for every child. Cranial magnetic resonance imaging followed by EMG provides the most important clues for the diagnosis of hereditary childhood ataxias.
Collapse
|
11
|
Ali Z, Klar J, Jameel M, Khan K, Fatima A, Raininko R, Baig S, Dahl N. Novel SACS mutations associated with intellectual disability, epilepsy and widespread supratentorial abnormalities. J Neurol Sci 2016; 371:105-111. [PMID: 27871429 DOI: 10.1016/j.jns.2016.10.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022]
Abstract
We describe eight subjects from two consanguineous families segregating with autosomal recessive childhood onset spastic ataxia, peripheral neuropathy and intellectual disability. The degree of intellectual disability varied from mild to severe and all four affected individuals in one family developed aggressive behavior and epilepsy. Using exome sequencing, we identified two novel truncating mutations (c.2656C>T (p.Gln886*)) and (c.4756_4760delAATCA (p.Asn1586Tyrfs*3)) in the SACS gene responsible for autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). MRI revealed typical cerebellar and pontine changes associated with ARSACS as well as multiple supratentorial changes in both families as likely contributing factors to the cognitive symptoms. Intellectual disability and behavioral abnormalities have been reported in some cases of ARSACS but are not a part of the characteristic triad of symptoms that includes cerebellar ataxia, spasticity and peripheral neuropathy. Our combined findings bring further knowledge to the phenotypic spectrum, neurodegenerative changes and genetic variability associated with the SACS gene of clinical and diagnostic importance.
Collapse
Affiliation(s)
- Zafar Ali
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, 38000 Faisalabad, Pakistan; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden.
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden.
| | - Mohammad Jameel
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, 38000 Faisalabad, Pakistan.
| | - Kamal Khan
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, 38000 Faisalabad, Pakistan.
| | - Ambrin Fatima
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, 38000 Faisalabad, Pakistan.
| | - Raili Raininko
- Department of Radiology, Uppsala University, 751 85 Uppsala, Sweden.
| | - Shahid Baig
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, 38000 Faisalabad, Pakistan.
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 08 Uppsala, Sweden.
| |
Collapse
|
12
|
Talbott JF, Nout-Lomas YS, Wendland MF, Mukherjee P, Huie JR, Hess CP, Mabray MC, Bresnahan JC, Beattie MS. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats. J Neurotrauma 2016; 33:929-42. [PMID: 26483094 DOI: 10.1089/neu.2015.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in magnetic resonance imaging (MRI)-derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury.
Collapse
Affiliation(s)
- Jason F Talbott
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Yvette S Nout-Lomas
- 2 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Michael F Wendland
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - J Russell Huie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Christopher P Hess
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Marc C Mabray
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Jacqueline C Bresnahan
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Michael S Beattie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| |
Collapse
|
13
|
Abstract
Ataxia is a disorder of balance and coordination resulted from dysfunctions involving cerebellum and its afferent and efferent connections. While a variety of disorders can cause secondary ataxias, the list of genetic causes of ataxias is growing longer. Genetic abnormalities may involve mitochondrial dysfunction, oxidative stress, abnormal mechanisms of DNA repair, possible protein misfolding, and abnormalities in cytoskeletal proteins. Few ataxias are fully treatable while hope for efficacious gene therapy and pharmacotherapy is emerging. A discussion of the ataxias is presented here with brief mention of acquired ataxias, and a greater focus on inherited ataxias.
Collapse
Affiliation(s)
- Umar Akbar
- Department of Neurology, Center for Movement Disorders and Neurorestoration College of Medicine, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, L3-100, Gainesville, FL 32611, USA
| | - Tetsuo Ashizawa
- Department of Neurology, Center for Movement Disorders and Neurorestoration College of Medicine, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, L3-100, Gainesville, FL 32611, USA.
| |
Collapse
|
14
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Larivière R, Gaudet R, Gentil BJ, Girard M, Conte TC, Minotti S, Leclerc-Desaulniers K, Gehring K, McKinney RA, Shoubridge EA, McPherson PS, Durham HD, Brais B. Sacs knockout mice present pathophysiological defects underlying autosomal recessive spastic ataxia of Charlevoix-Saguenay. Hum Mol Genet 2014; 24:727-39. [PMID: 25260547 DOI: 10.1093/hmg/ddu491] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 170 SACS mutations have been reported worldwide and are thought to cause loss of function of sacsin, a poorly characterized and massive 520 kDa protein. To establish an animal model and to examine the pathophysiological basis of ARSACS, we generated Sacs knockout (Sacs(-/-)) mice. Null animals displayed an abnormal gait with progressive motor, cerebellar and peripheral nerve dysfunctions highly reminiscent of ARSACS. These clinical features were accompanied by an early onset, progressive loss of cerebellar Purkinje cells followed by spinal motor neuron loss and peripheral neuropathy. Importantly, loss of sacsin function resulted in abnormal accumulation of non-phosphorylated neurofilament (NF) bundles in the somatodendritic regions of vulnerable neuronal populations, a phenotype also observed in an ARSACS brain. Moreover, motor neurons cultured from Sacs(-/-) embryos exhibited a similar NF rearrangement with significant reduction in mitochondrial motility and elongated mitochondria. The data points to alterations in the NF cytoskeleton and defects in mitochondrial dynamics as the underlying pathophysiological basis of ARSACS.
Collapse
Affiliation(s)
- Roxanne Larivière
- Department of Neurology and Neurosurgery, Laboratory of Neurogenetics of Motion and
| | - Rébecca Gaudet
- Department of Neurology and Neurosurgery, Laboratory of Neurogenetics of Motion and
| | - Benoit J Gentil
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | | | - Sandra Minotti
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | | | - Kalle Gehring
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry and
| | - R Anne McKinney
- Department of Pharmacology, McGill University, Montreal, QC, Canada H3G 0B1
| | - Eric A Shoubridge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Laboratory of Neurogenetics of Motion and
| |
Collapse
|