1
|
Lockard CA, Hooijmans MT, Zhou X, Coolbaugh C, Damon BM. The impact of diffusion tensor imaging tractography settings on muscle fascicle architecture and diffusion parameter estimates: Tract length, completion, and curvature are most sensitive to tractography settings. NMR IN BIOMEDICINE 2024; 37:e5205. [PMID: 38967274 DOI: 10.1002/nbm.5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Diffusion-tensor (DT)-MRI tractography provides information about properties relevant to muscle health and function, including estimates of architectural properties such as fascicle length, pennation angle, and curvature and diffusion properties such as mean diffusivity (MD) and fractional anisotropy (FA). Tractography settings, including integration algorithms, thresholds for early tract termination, and tract smoothing approaches, impact the accuracy of the muscle property estimates. However, muscle DT-MRI tractography is performed using a variety of these settings, complicating comparisons between different studies. The effects of different tractography settings on muscle architecture estimates have not been fully explored, and optimized settings for muscle tractography have not yet been determined. We examined the influence of integration algorithm and termination check settings combined with a range of step sizes, termination criteria, and smoothing polynomial orders on tract characteristics, completion/reason for termination, and goodness of fit between fiber tracts and smoothing polynomials using 3-T DT-MR images of the lower leg muscles of seven healthy adults. We found that tract length and completion were highly sensitive to strict FA and intersegment angle thresholds (25%-69% reduction in complete fiber tracts from lowest to highest minimum FA threshold and 11%-36% reduction from highest to lowest intersegment angle threshold). Higher order polynomials (third and fourth order vs. second order) better fit the muscle fiber trajectories, but curvature estimates were highly sensitive to smoothing polynomial order (3.9-6.6 m-1 increase for second- vs. fourth-order fitting polynomials). Step size impacted curvature estimates, albeit to a lesser degree. Integration algorithm had little impact, and mean pennation angle, and tract-based FA and MD, were relatively insensitive to all parameters. The results demonstrate which muscle diffusion measures and architectural estimates are most sensitive to varying tractography settings and support the need for consistent reporting of tractography details to aid interpretation and comparison of results between studies.
Collapse
Affiliation(s)
- Carly A Lockard
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, USA
| | - Melissa T Hooijmans
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, USA
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xingyu Zhou
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Crystal Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bruce M Damon
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Azor AM, Sharp DJ, Jolly AE, Bourke NJ, Hellyer PJ. Automation and standardization of subject-specific region-of-interest segmentation for investigation of diffusion imaging in clinical populations. PLoS One 2022; 17:e0268233. [PMID: 36480567 PMCID: PMC9731501 DOI: 10.1371/journal.pone.0268233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Diffusion weighted imaging (DWI) is key in clinical neuroimaging studies. In recent years, DWI has undergone rapid evolution and increasing applications. Diffusion magnetic resonance imaging (dMRI) is widely used to analyse group-level differences in white matter (WM), but suffers from limitations that can be particularly impactful in clinical groups where 1) structural abnormalities may increase erroneous inter-subject registration and 2) subtle differences in WM microstructure between individuals can be missed. It also lacks standardization protocols for analyses at the subject level. Region of Interest (ROI) analyses in native diffusion space can help overcome these challenges, with manual segmentation still used as the gold standard. However, robust automated approaches for the analysis of ROI-extracted native diffusion characteristics are limited. Subject-Specific Diffusion Segmentation (SSDS) is an automated pipeline that uses pre-existing imaging analysis methods to carry out WM investigations in native diffusion space, while overcoming the need to interpolate diffusion images and using an intermediate T1 image to limit registration errors and guide segmentation. SSDS is validated in a cohort of healthy subjects scanned three times to derive test-retest reliability measures and compared to other methods, namely manual segmentation and tract-based spatial statistics as an example of group-level method. The performance of the pipeline is further tested in a clinical population of patients with traumatic brain injury and structural abnormalities. Mean FA values obtained from SSDS showed high test-retest and were similar to FA values estimated from the manual segmentation of the same ROIs (p-value > 0.1). The average dice similarity coefficients (DSCs) comparing results from SSDS and manual segmentations was 0.8 ± 0.1. Case studies of TBI patients showed robustness to the presence of significant structural abnormalities, indicating its potential clinical application in the identification and diagnosis of WM abnormalities. Further recommendation is given regarding the tracts used with SSDS.
Collapse
Affiliation(s)
- Adriana M. Azor
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
- Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
- The Royal British Legion, Centre for Blast Injury Studies, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail: (AMA); (DJS)
| | - David J. Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
- Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London, London, United Kingdom
- * E-mail: (AMA); (DJS)
| | - Amy E. Jolly
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Niall J. Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Hammersmith Hospital, London, United Kingdom
| | - Peter J. Hellyer
- Centre for Neuroimaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Dell Ducas K, Senra Filho ACDS, Silva PHR, Secchinato KF, Leoni RF, Santos AC. Functional and structural brain connectivity in congenital deafness. Brain Struct Funct 2021; 226:1323-1333. [PMID: 33740108 DOI: 10.1007/s00429-021-02243-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Several studies have been carried out to verify neural plasticity and the language process in deaf individuals. However, further investigations regarding the intrinsic brain organization on functional and structural neural networks derived from congenital deafness are still an open question. The objective of this study was to investigate the main differences in brain organization manifested in congenitally deaf individuals, concerning the resting-state functional patterns, and white matter structuring. Functional and diffusion magnetic resonance imaging modalities were acquired from 18 congenitally deaf individuals and 18 age-sex-matched hearing controls. Compared to the hearing group, the deaf individuals presented higher functional connectivity among the posterior cingulate cortex node of the default mode network with visual and motor networks, lower functional connectivity between salience networks, language networks, and prominence of functional connectivity changes in the right hemisphere, mostly in the frontoparietal and temporal lobes. In terms of structural connectivity, we found changes mainly in the occipital and parietal lobes, involving both classical sign language support regions as well as concentrated networks for focus activity, attention, and cognitive filtering. Our findings demonstrated that the congenital deaf individuals who learned sign language developed significant brain functional and structural reorganization, which provides prominent support for large-scale brain networks associated with attention decision-making, environmental monitoring based on the movement of objects, and on the motor and visual controls.
Collapse
Affiliation(s)
- Karolyne Dell Ducas
- Department of Medical Clinics, FMRP, University of Sao Paulo, Ribeirão Preto, Brazil.
| | - Antonio Carlos da S Senra Filho
- Department of Computing and Mathematics, FFCLRP, University of Sao Paulo, Ribeirão Preto, Brazil.,Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | - Antonio Carlos Santos
- Department of Medical Clinics, FMRP, University of Sao Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Miller JV, Andre Q, Timmers I, Simons L, Rasic N, Lebel C, Noel M. Subclinical post-traumatic stress symptomology and brain structure in youth with chronic headaches. NEUROIMAGE-CLINICAL 2021; 30:102627. [PMID: 33812302 PMCID: PMC8053811 DOI: 10.1016/j.nicl.2021.102627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/17/2023]
Abstract
ACEs and PTSS did not significantly differ between patients and healthy controls. Patients demonstrated greater corticolimbic connectivity compared to controls. Greater PTSS and less corticolimbic connectivity increased headache frequency. Less corticolimbic connectivity may indicate greater disease progression. Patients may be more vulnerable to the effects of PTSS compared to controls.
Background/aims Post-traumatic stress symptoms (PTSS) and chronic pain often co-occur at high rates in youth. PTSS may alter brain structure thereby contributing to headache chronicity. This study examined whether PTSS and altered limbic circuitry were associated with headache frequency in youth. Methods Thirty youth aged 10–18 years with chronic headaches and 30 age- and sex-matched controls underwent a 3T MRI scan. Volumes of the hippocampus and amygdala were obtained from T1-weighted images. Mean fractional anisotropy (FA, an index of white matter structure) axial and radial diffusivity values of the cingulum and uncinate fasciculus were extracted from diffusion-weighted images. Youth reported on their headaches daily, for one-month, and self-reported pubertal status, emotion regulation, adverse childhood experiences (ACEs) and PTSS using validated measures. Volumes of the hippocampus and amygdala and diffusivity values of the cingulum and uncinate were compared between patients and controls. Hierarchical linear regressions were used to examine the association between PTSS, subcortical volumes and/or diffusivity values and headache frequency. Results Mean FA values of the cingulum were higher in patients compared to controls (P = 0.02, Cohen’s d = 0.69). Greater PTSS (P = 0.04), smaller amygdala volumes (P = 0.01) and lower FA of the cingulum (P = 0.04) were associated with greater headache frequency, after accounting for age, puberty, pain duration, emotion regulation, and ACEs (Adjusted R2 ≥ 0.15). Headache frequency was associated with increases in radial diffusivity (P = 0.002, Adjusted R2 = 0.59), as opposed to axial diffusivity (n.s.). Conclusions PTSS, smaller amygdalar volume, and poorer cingulum structural connectivity were associated with headache frequency in youth, and may underlie headache chronicity.
Collapse
Affiliation(s)
- Jillian Vinall Miller
- Anesthesiology, Perioperative & Pain Medicine, University of Calgary, Calgary, AB, Canada; Vi Riddell Children's Pain & Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada; Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
| | - Quinn Andre
- Medicine, University of Alberta, Edmonton, AB, Canada
| | - Inge Timmers
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Laura Simons
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Nivez Rasic
- Anesthesiology, Perioperative & Pain Medicine, University of Calgary, Calgary, AB, Canada; Vi Riddell Children's Pain & Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada; Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Catherine Lebel
- Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Radiology, University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Vi Riddell Children's Pain & Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada; Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Psychology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Brain-wide structural and functional disruption in mice with oligodendrocyte-specific Nf1 deletion is rescued by inhibition of nitric oxide synthase. Proc Natl Acad Sci U S A 2020; 117:22506-22513. [PMID: 32839340 PMCID: PMC7486714 DOI: 10.1073/pnas.2008391117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study assessed the effects of myelin decompaction on motor behavior and brain-wide structural and functional connectivity, and the effect of nitric oxide synthase inhibition by N-nitro-l-arginine methyl ester (L-NAME) on these imaging measures. We report that inducible oligodendrocyte-specific inactivation of the Nf1 gene, which causes myelin decompaction, results in reduced initial motor coordination. Using diffusion-based magnetic resonance imaging (MRI), we show reduced myelin integrity, and using functional MRI, we show reduced functional connectivity in awake passive mice. L-NAME administration results in rescue of the pathology at the mesoscopic level, as measured using imaging procedures that can be directly applied to humans to study treatment efficacy in clinical trials. Neurofibromin gene (NF1) mutation causes neurofibromatosis type 1 (NF1), a disorder in which brain white matter deficits identified by neuroimaging are common, yet of unknown cellular etiology. In mice, Nf1 loss in adult oligodendrocytes causes myelin decompaction and increases oligodendrocyte nitric oxide (NO) levels. Nitric oxide synthase (NOS) inhibitors rescue this pathology. Whether oligodendrocyte pathology is sufficient to affect brain-wide structure and account for NF1 imaging findings is unknown. Here we show that Nf1 gene inactivation in adult oligodendrocytes (Plp-Nf1fl/+ mice) results in a motor coordination deficit. Magnetic resonance imaging in awake mice showed that fractional anisotropy is reduced in Plp-Nf1fl/+ corpus callosum and that interhemispheric functional connectivity in the motor cortex is also reduced, consistent with disrupted myelin integrity. Furthermore, NOS-specific inhibition rescued both measures. These results suggest that oligodendrocyte defects account for aspects of brain dysfunction in NF1 that can be identified by neuroimaging and ameliorated by NOS inhibition.
Collapse
|
6
|
Andre QR, McMorris CA, Kar P, Ritter C, Gibbard WB, Tortorelli C, Lebel C. Different brain profiles in children with prenatal alcohol exposure with or without early adverse exposures. Hum Brain Mapp 2020; 41:4375-4385. [PMID: 32659051 PMCID: PMC7502833 DOI: 10.1002/hbm.25130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can alter brain development and impact mental health outcomes, and often occurs in conjunction with postnatal adversity (e.g., maltreatment). However, it is unclear how postnatal adverse exposures may moderate mental health and brain outcomes in children with PAE. T1‐weighted and diffusion magnetic resonance imaging were obtained from 66 participants aged 7–16 years. Twenty‐one participants had PAE and adverse postnatal exposures (PAE+), 12 had PAE without adverse postnatal exposures (PAE−), and 33 were age‐ and gender‐matched controls unexposed to either prenatal alcohol or postnatal adversity. Internalizing and externalizing mental health symptoms were assessed using the Behavioral Assessment System for Children II, Parent‐Rating Scale. ANCOVAs were used to compare mental health symptoms, limbic and prefrontal cortical volumes, and diffusion parameters of cortico‐limbic white matter tracts between groups, and to assess brain‐mental health relationships. Both PAE groups had worse externalizing behavior (higher scores) than controls. The PAE− group had lower fractional anisotropy (FA) in the bilateral cingulum and left uncinate fasciculus, and smaller volumes in the left anterior cingulate cortex than controls and the PAE+ group. The PAE− group also had higher mean diffusivity (MD) in the left uncinate than the PAE+ group, and smaller right anterior cingulate and superior frontal gyrus volumes than controls. These findings show different brain structure and mental health symptom profiles in children with PAE with and without postnatal adversity, highlighting the need to consider adverse postnatal exposures in individuals with PAE.
Collapse
Affiliation(s)
- Quinn R Andre
- Medical Science, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Carly A McMorris
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,School & Applied Child Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Preeti Kar
- Medical Science, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Chantel Ritter
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,School & Applied Child Psychology, University of Calgary, Calgary, Alberta, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, Alberta, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Andre QR, Geeraert BL, Lebel C. Brain structure and internalizing and externalizing behavior in typically developing children and adolescents. Brain Struct Funct 2019; 225:1369-1378. [PMID: 31701264 DOI: 10.1007/s00429-019-01973-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/17/2019] [Indexed: 01/09/2023]
Abstract
Mental health problems often emerge in adolescence and are associated with reduced gray matter thickness or volume in the prefrontal cortex (PFC) and limbic system and reduced fractional anisotropy (FA) and increased mean diffusivity (MD) of white matter linking these regions. However, few studies have investigated whether internalizing and externalizing behavior are associated with brain structure in children and adolescents without mental health disorders, which is important for understanding the progression of symptoms. 67 T1-weighted and diffusion tensor imaging datasets were obtained from 48 typically developing participants aged 6-16 years (37M/30F; 19 participants had two visits). Volume was calculated in the prefrontal and limbic structures, and diffusion parameters were assessed in limbic white matter. Linear mixed effects models were used to compute associations between brain structure and internalizing and externalizing behavior, assessed using the Behavioral Assessment System for Children (BASC-2) Parent Rating Scale. Internalizing behavior was positively associated with MD of the bilateral cingulum. Gender interactions were found in the cingulum, with stronger positive relationships between MD and internalizing behavior in females. Externalizing behavior was negatively associated with FA of the left cingulum, and the left uncinate fasciculus showed an age-behavior interaction. No relationships between behavior and brain volumes survived multiple comparison correction. These results show altered limbic white matter FA and MD related to sub-clinical internalizing and externalizing behavior and further our understanding of neurological markers that may underlie risk for future mental health disorders.
Collapse
Affiliation(s)
- Quinn R Andre
- Medical Science Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bryce L Geeraert
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
8
|
Maximov II, Thönneßen H, Konrad K, Amort L, Neuner I, Shah NJ. Statistical Instability of TBSS Analysis Based on DTI Fitting Algorithm. J Neuroimaging 2015; 25:883-91. [PMID: 25682721 DOI: 10.1111/jon.12215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/02/2014] [Accepted: 12/10/2014] [Indexed: 11/28/2022] Open
Abstract
Voxel-based DTI analysis is an important approach in the comparison of subject groups by detecting and localizing gray and white matter changes in the brain. One of the principal problems for intersubject comparison is the absence of a "gold standard" processing pipeline. As a result, contradictory results may be obtained from identical data using different data processing pipelines, for example, in the data normalization or smoothing procedures. Tract-based spatial statistics (TBSS) shows potential to overcome this problem by automatic detection of white matter changes and decreasing variation in the performed analysis. However, skeleton projection approaches, such as TBSS, critically depend on the accuracy of the diffusion scalar metric estimations. In this work, we demonstrate that the agreement and reliability of TBSS results depend on the applied DTI data processing algorithm. Statistical tests have been performed using two in vivo measured datasets and compared with different implementations of the least squares algorithm. As a result, we recommend repeating TBSS analysis using different fitting algorithms, in particular, using on iteratively-assessed robust estimators, as accurate and more reliable approach in voxel-based analysis, particularly, for TBSS. Repeating TBSS analysis allows one to detect and localize suspicious regions in white matter which were estimated as the regions with significant difference. Finally, we did not find a favorite fitting algorithm (or class of them) which can be marked as more reliable for group comparison.
Collapse
Affiliation(s)
- Ivan I Maximov
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Heike Thönneßen
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, RWTH Aachen University, 52074, Aachen, Germany
| | - Kerstin Konrad
- Department of Child and Adolescent Psychiatry and Psychotherapy, RWTH Aachen University, 52074, Aachen, Germany.,Institute of Neuroscience and Medicine-3, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,JARA-BRAIN-Translational Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Laura Amort
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074, Aachen, Germany.,JARA-BRAIN-Translational Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074, Aachen, Germany.,JARA-BRAIN-Translational Medicine, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
9
|
Dudink J, Pieterman K, Leemans A, Kleinnijenhuis M, van Cappellen van Walsum AM, Hoebeek FE. Recent advancements in diffusion MRI for investigating cortical development after preterm birth-potential and pitfalls. Front Hum Neurosci 2015; 8:1066. [PMID: 25653607 PMCID: PMC4301014 DOI: 10.3389/fnhum.2014.01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
Preterm infants are born during a critical period of brain maturation, in which even subtle events can result in substantial behavioral, motor and cognitive deficits, as well as psychiatric diseases. Recent evidence shows that the main source for these devastating disabilities is not necessarily white matter (WM) damage but could also be disruptions of cortical microstructure. Animal studies showed how moderate hypoxic-ischemic conditions did not result in significant neuronal loss in the developing brain, but did cause significantly impaired dendritic growth and synapse formation alongside a disturbed development of neuronal connectivity as measured using diffusion magnetic resonance imaging (dMRI). When using more advanced acquisition settings such as high-angular resolution diffusion imaging (HARDI), more advanced reconstruction methods can be applied to investigate the cortical microstructure with higher levels of detail. Recent advances in dMRI acquisition and analysis have great potential to contribute to a better understanding of neuronal connectivity impairment in preterm birth. We will review the current understanding of abnormal preterm cortical development, novel approaches in dMRI, and the pitfalls in scanning vulnerable preterm infants.
Collapse
Affiliation(s)
- J Dudink
- Department of Neonatology, Pediatric Intensive Care and Pediatric Radiology, Erasmus Medical Center - Sophia Children's Hospital Rotterdam, Netherlands
| | - K Pieterman
- Department of Neonatology, Pediatric Intensive Care and Pediatric Radiology, Erasmus Medical Center - Sophia Children's Hospital Rotterdam, Netherlands
| | - A Leemans
- Image Sciences Institute, University Medical Center Utrecht Utrecht, Netherlands
| | - M Kleinnijenhuis
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford Oxford, UK
| | - A M van Cappellen van Walsum
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - F E Hoebeek
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
10
|
Pieterman K, Plaisier A, Govaert P, Leemans A, Lequin MH, Dudink J. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review. Pediatr Radiol 2015; 45:1372-81. [PMID: 25820411 PMCID: PMC4526590 DOI: 10.1007/s00247-015-3307-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. MATERIALS AND METHODS We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. RESULTS We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. CONCLUSION Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center - Sophia, dr. Molewaterplein 60, 3015, GJ, Rotterdam, The Netherlands,
| | - Annemarie Plaisier
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Govaert
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Pediatrics, Koningin Paola Children’s Hospital, Antwerp, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H. Lequin
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Dudink
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|