1
|
Abstract
Many patients under treatment for mood disorders, in particular patients with bipolar mood disorders, experience episodes of mood switching from one state to another. Various hypotheses have been proposed to explain the mechanism of mood switching, spontaneously or induced by drug treatment. Animal models have also been used to test the role of psychotropic drugs in the switching of mood states. We examine the possible relationship between the pharmacology of psychotropic drugs and their reported incidents of induced mood switching, with reference to the various hypotheses of mechanisms of mood switching.
Collapse
|
2
|
Magnotta VA, Xu J, Fiedorowicz JG, Williams A, Shaffer J, Christensen G, Long JD, Taylor E, Sathyaputri L, Richards JG, Harmata G, Wemmie J. Metabolic abnormalities in the basal ganglia and cerebellum in bipolar disorder: A multi-modal MR study. J Affect Disord 2022; 301:390-399. [PMID: 35031333 PMCID: PMC8828710 DOI: 10.1016/j.jad.2022.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
AIMS Bipolar type I disorder (BD) is characterized by severe mood swings and occurs in about 1% of the population. The mechanisms underlying the disorder remain unknown. Prior studies have suggested abnormalities in brain metabolism using 1H and 31P magnetic resonance spectroscopy (MRS). Supporting altered metabolism, in previous studies we found T1ρ relaxation times in the cerebellum were elevated in participants with BD. In addition, T1ρ relaxation times in the basal ganglia were lower in participants with BD experiencing depressed mood. Based on these findings, this study sought to probe brain metabolism with a focus of extending these assessments to the cerebellum. METHODS This study collected data from 64 participants with Bipolar type I disorder (BD) and 42 controls. Subjects were scanned at both 3T (anatomical, functional, and T1ρ imaging data) and 7T (31P and 1H spectroscopy). Regions of interest defined by the 1H MRS data were used to explore metabolic and functional changes in the cerebellar vermis and putamen. RESULTS Elevated concentrations of n-Acetyl-l-aspartate (NAA), glutamate, glutathione, taurine, and creatine were found in the cerebellar vermis along with decreased intra-cellular pH. Similar trends were observed in the right putamen for glutamate, creatine, and pH. We also observed a relationship between T1ρ relaxation times and mood in the putamen. We did not observe a significant effect of medications on these measures. LIMITATIONS The study was cross sectional in design and employed a naturalistic approach for assessing the impact of medications on the results. CONCLUSION This study supports prior findings of reduced pH in mitochondrial dysfunction in BD while also showing that these differences extend to the cerebellum.
Collapse
Affiliation(s)
- Vincent A Magnotta
- Department of Radiology, The University of Iowa, United States; Department of Psychiatry, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States.
| | - Jia Xu
- Department of Radiology, The University of Iowa, United States
| | | | | | - Joseph Shaffer
- Department of Radiology, The University of Iowa, United States; College of Biosciences, Kansas City University, United States
| | - Gary Christensen
- Department of Electrical and Computer Engineering, The University of Iowa, United States; Department of Radiation Oncology, The University of Iowa, United States
| | - Jeffrey D Long
- Department of Psychiatry, The University of Iowa, United States; Department of Biostatistics, The University of Iowa, United States
| | - Eric Taylor
- Department of Molecular Physiology and Biophysics, The University of Iowa, United States
| | | | | | - Gail Harmata
- Department of Psychiatry, The University of Iowa, United States
| | - John Wemmie
- Department of Psychiatry, The University of Iowa, United States; Department of Molecular Physiology and Biophysics, The University of Iowa, United States; Department of Neurosurgery, The University of Iowa, United States
| |
Collapse
|
3
|
Simonetti A, Saxena K, Koukopoulos AE, Janiri D, Lijffijt M, Swann AC, Kotzalidis GD, Sani G. Amygdala structure and function in paediatric bipolar disorder and high-risk youth: A systematic review of magnetic resonance imaging findings. World J Biol Psychiatry 2022; 23:103-126. [PMID: 34165050 DOI: 10.1080/15622975.2021.1935317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Converging evidence from structural and functional magnetic resonance imaging (MRI) studies points to amygdala alteration as crucial in the development of paediatric bipolar disorder (pBP). The high number of recent studies prompted us to comprehensively evaluate findings. We aimed to systematically review structural and functional MRI studies investigating the amygdala in patients with pBP and in youth at high-risk (HR) for developing pBP. METHODS We searched PubMed from any time to 25 September 2020 using: 'amygdala AND (MRI OR magnetic resonance imaging) AND bipolar AND (pediatr* OR child OR children OR childhood OR adolescent OR adolescents OR adolescence OR young OR familial OR at-risk OR sibling* OR offspring OR high risk)'. In this review, we adhered to the PRISMA statement. RESULTS Amygdala hyperactivity to emotional stimuli is the most commonly reported finding in youth with pBP and HR compared to healthy peers (HC), whereas findings from structural MRI studies are inconsistent. CONCLUSIONS Hyperactivation of the amygdala might be an endophenotype of pBP.
Collapse
Affiliation(s)
- Alessio Simonetti
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Department of Psychiatry, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.,Centro Lucio Bini, Rome, Italy
| | - Kirti Saxena
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Department of Psychiatry, Texas Children's Hospital, Houston, TX, USA
| | - Alexia E Koukopoulos
- Centro Lucio Bini, Rome, Italy.,Azienda Ospedaliera Universitaria Policlinico Umberto I, Sapienza School of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Delfina Janiri
- Centro Lucio Bini, Rome, Italy.,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marijn Lijffijt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Alan C Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Georgios D Kotzalidis
- Centro Lucio Bini, Rome, Italy.,NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Gabriele Sani
- Department of Psychiatry, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.,Institute of Psychiatry, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
4
|
Sonmez AI, Lewis CP, Port JD, Cabello-Arreola A, Blacker CJ, Seewoo BJ, McKean AJ, Leffler JM, Frye MA, Croarkin PE. Glutamatergic Correlates of Bipolar Symptoms in Adolescents. J Child Adolesc Psychopharmacol 2020; 30:599-605. [PMID: 33179961 PMCID: PMC7757593 DOI: 10.1089/cap.2020.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: Prior studies demonstrate elevated cortical glutamate (Glu) in patients with bipolar disorder (BD). Studies assessing neurochemistry in early stages of bipolar illness before the emergence of manic symptoms are lacking. This study aimed to examine neurochemical correlates measured by proton magnetic resonance spectroscopy (1H-MRS) and a dimensional measure of bipolarity in a sample of depressed adolescents. Methods: Adolescent participants (aged 13-21 years) underwent a semistructured diagnostic interview and clinical assessment, which included the General Behavior Inventory Parent Version (P-GBI), a 73-item, parent-rated assessment of symptoms and behaviors. 1H-MRS scans of a left dorsolateral prefrontal cortex (L-DLPFC) voxel (8 cm3) were collected using a two-dimensional J-averaged sequence to assess N-acetylaspartate (NAA), Glu, Glx (glutamate + glutamine), and NAA/Glx concentrations. We used generalized linear models to assess the relationships between P-GBI scores and metabolite levels in L-DLPFC. Results: Thirty-six participants (17 healthy controls, 19 depressed) underwent 1H-MRS scans and clinical evaluation with the P-GBI. There was a significant negative relationship between P-GBI score and L-DLPFC NAA/Glx in the whole sample. However, the magnitude of the effect was small and statistical significance was lost after correcting for multiple comparisons. Conclusions: These preliminary results suggest that NAA/Glx may have utility as a marker of bipolar traits in healthy and depressed adolescents. If replicated, 1H-MRS measures of glutamatergic metabolism anomalies might have a role in identifying depressed adolescents at risk for mixed symptom presentations or BD. Identifying bipolarity in the early stages of the disease would have a significant impact on treatment planning and prognosis. Further longitudinal studies should examine neurochemical correlates of mood state during the developmental emergence of BD.
Collapse
Affiliation(s)
- A. Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Charles P. Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - John D. Port
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Caren J. Blacker
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Bhedita J. Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, Australia
| | - Alastair J. McKean
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jarrod M. Leffler
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Address correspondence to: Paul E. Croarkin, DO, MSCS, Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Nery FG, Weber WA, Blom TJ, Welge J, Patino LR, Strawn JR, Chu WJ, Adler CM, Komoroski RA, Strakowski SM, DelBello MP. Longitudinal proton spectroscopy study of the prefrontal cortex in youth at risk for bipolar disorder before and after their first mood episode. Bipolar Disord 2019; 21:330-341. [PMID: 30864200 DOI: 10.1111/bdi.12770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate neurochemical abnormalities in the left and right ventrolateral prefrontal cortex (VLPFC) and anterior cingulate cortex (ACC) of youth at risk for bipolar disorder using proton magnetic resonance spectroscopy before and after their first mood episode. METHODS Children and adolescents offspring of parents with bipolar I disorder (at-risk group, n = 117) and matched healthy controls (HC group, n = 61) were recruited at the University of Cincinnati. At-risk subjects had no lifetime major mood and psychotic disorders at baseline, and were followed up every 4 months to monitor for development of a major depressive, manic, hypomanic, or mixed mood episode. Levels of N-acetyl-aspartate (NAA), phosphocreatine plus creatine (PCr + Cr), choline-containing compounds, myo-inositol, and glutamate were determined using LCModel and corrected for partial volume effects. RESULTS There were no baseline differences in metabolite levels for any of the brain regions between at-risk and HC youth. Nineteen at-risk subjects developed a first mood episode during follow-up. Survival analyses showed that baseline PCr + Cr levels in the left VLPFC significantly predicted a mood episode during follow-up in the at-risk group (HR: 0.47, 95% CI: 0.27-0.82, P = 0.008). There were no longitudinal changes in metabolites levels in the VLPFC and ACC before and after a mood episode in at-risk subjects. CONCLUSIONS We found no evidence for abnormal proton spectroscopy metabolite levels in the VLPFC and ACC of at-risk youth, prior and after the development of their first mood episode. Preliminary findings of association between baseline PCr + Cr levels in the left VLPFC and risk to develop a mood episode warrant further investigation.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Wade A Weber
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX
| | - Thomas J Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jeffrey Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Luis R Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Wen-Jang Chu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Richard A Komoroski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Stephen M Strakowski
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
6
|
Huber RS, Kondo DG, Shi XF, Prescot AP, Clark E, Renshaw PF, Yurgelun-Todd DA. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder. J Affect Disord 2018; 225:71-78. [PMID: 28800423 DOI: 10.1016/j.jad.2017.07.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy (1H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. METHODS Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. RESULTS Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p < .001) and GABA (p < .01) in the ACC in bipolar youth, such that as WCST performance increased, both NAA and GABA levels increased. LIMITATIONS Small sample size and lack of control for medications. CONCLUSIONS These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions.
Collapse
Affiliation(s)
- Rebekah S Huber
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States.
| | - Douglas G Kondo
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, United States
| | - Xian-Feng Shi
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States
| | - Andrew P Prescot
- University of Utah School of Medicine, Department of Radiology, Salt Lake City, UT, United States
| | - Elaine Clark
- University of Utah, Department of Educational Psychology, Salt Lake City, UT, United States
| | - Perry F Renshaw
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, United States
| | - Deborah A Yurgelun-Todd
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Mohamed RE, Aboelsafa AA. Multivoxel proton magnetic resonance spectroscopy detects thalamic neurochemical metabolic changes in patients with major depressive disorder. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Kim Y, Santos R, Gage FH, Marchetto MC. Molecular Mechanisms of Bipolar Disorder: Progress Made and Future Challenges. Front Cell Neurosci 2017; 11:30. [PMID: 28261061 PMCID: PMC5306135 DOI: 10.3389/fncel.2017.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized by mood oscillations, with episodes of mania and depression. The impact of BD on patients can be devastating, with up to 15% of patients committing suicide. This disorder is associated with psychiatric and medical comorbidities and patients with a high risk of drug abuse, metabolic and endocrine disorders and vascular disease. Current knowledge of the pathophysiology and molecular mechanisms causing BD is still modest. With no clear biological markers available, early diagnosis is a great challenge to clinicians without previous knowledge of the longitudinal progress of illness. Moreover, despite recommendations from evidence-based guidelines, polypharmacy is still common in clinical treatment of BD, reflecting the gap between research and clinical practice. A major challenge in BD is the development of effective drugs with low toxicity for the patients. In this review article, we focus on the progress made and future challenges we face in determining the pathophysiology and molecular pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic neurotransmission; which may lead to the development of new drugs.
Collapse
Affiliation(s)
- Yeni Kim
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Department of Child and Adolescent Psychiatry, National Center for Mental HealthSeoul, South Korea
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Ecole Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Paris, France
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| |
Collapse
|
9
|
Shi XF, Forrest LN, Kuykendall MD, Prescot AP, Sung YH, Huber RS, Hellem TL, Jeong EK, Renshaw PF, Kondo DG. Anterior cingulate cortex choline levels in female adolescents with unipolar versus bipolar depression: a potential new tool for diagnosis. J Affect Disord 2014; 167:25-9. [PMID: 25082110 PMCID: PMC4699311 DOI: 10.1016/j.jad.2014.05.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Delayed diagnosis in bipolar disorder (BD) due to misdiagnosis as major depressive disorder (MDD) is a significant public health concern. Thus, identification of relevant diagnostic biomarkers is a critical unmet need, particularly early in the course of illness. The anterior cingulate cortex (ACC) is thought to play an important role in mood disorder pathophysiology. Case-control studies utilizing proton-1 magnetic resonance spectroscopy ((1)H-MRS) have found increased total choline levels in several brain regions in MDD. However, there are no published (1)H-MRS reports directly comparing adolescents with MDD and BD. We hypothesized that ACC choline levels would be increased in adolescents with unipolar versus bipolar depression. METHODS We studied depressed adolescents with MDD (n=28; mean age 17.0±2.1 years) and BD (n=9; 17.3±3.1 years). A Siemens Verio 3-Tesla clinical MRI system was used to acquire scans, using a single-voxel PRESS sequence. The voxel (18.75 cm(3)) was positioned on the ACC in the midsagittal plane. To remove potential gender effects, only female adolescent participants were included. Data were analyzed using the ANOVA and post-hoc Tukey tests. RESULTS A significantly increased ACC choline/creatine ratio was observed in participants with MDD (mean=0.253±0.021) compared to BD (mean=0.219±0.020) (p=0.0002). There were no significant differences in the other (1)H-MRS metabolites. LIMITATIONS Cross sectional design, single gender sample, limited sample size. CONCLUSIONS The present findings suggest that ACC total choline may have the potential to serve as a diagnostic biomarker in adolescent mood disorders.
Collapse
Affiliation(s)
- Xian-Feng Shi
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA; Department of Psychiatry, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| | - Lauren N. Forrest
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
| | - M. Danielle Kuykendall
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
| | - Andrew P. Prescot
- Department of Radiology, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Young-Hoon Sung
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA,Department of Psychiatry, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Rebekah S. Huber
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
| | - Tracy L. Hellem
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Perry F. Renshaw
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA,Department of Psychiatry, University of Utah, School of Medicine, Salt Lake City, UT, USA,VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Douglas G. Kondo
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA,Department of Psychiatry, University of Utah, School of Medicine, Salt Lake City, UT, USA,VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|