1
|
Camargo A, Wang Z. Hypo- and hyper-perfusion in MCI and AD identified by different ASL MRI sequences. Brain Imaging Behav 2023; 17:306-319. [PMID: 36973476 PMCID: PMC10198885 DOI: 10.1007/s11682-023-00764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Arterial spin labeling (ASL) perfusion MRI has been increasingly used in Alzheimer's Disease (AD) research. However, ASL MRI sequences differ greatly in terms of arterial blood signal preparations and data acquisition strategies, both leading to a large difference of signal-to-noise ratio (SNR). It is of great translational importance to compare the several widely used ASL MRI sequences regarding sensitivity of ASL measured cerebral blood flow (CBF) for detecting the between-group difference across the AD continuum. To this end, this study compared three ASL MRI sequences in AD research, including the 2D Pulsed ASL (PASL), 3D Background Suppressed (BS) PASL, and 3D BS Pseudo-Continuous ASL (PCASL). We used data from 100 healthy and cognitively normal elderly control (NC) subjects, 75 patients with mild cognitive impairment (MCI), and 57 Alzheimer's disease (AD) subjects from the AD neuroimaging initiative (ADNI). Both cross-sectional perfusion difference and perfusion versus clinical assessment correlations were examined. The major findings included: 3D PCASL sequence identified stronger patient versus control CBF/rCBF differences than 2D PASL and 3D PASL; MCI showed reduced CBF and CBF redistribution; CBF in orbito-frontal cortex presents a new U-shape change pattern from normal aging to MCI and to AD; 3D PCASL identified a negative rCBF to memory correlation while 2D PASL showed a positive correlation.
Collapse
Affiliation(s)
- Aldo Camargo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, HSF III Room 1173, 670 W Baltimore St, Baltimore, MD, 21201, USA
| | - Ze Wang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, HSF III Room 1173, 670 W Baltimore St, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Swinford CG, Risacher SL, Wu YC, Apostolova LG, Gao S, Bice PJ, Saykin AJ. Altered cerebral blood flow in older adults with Alzheimer's disease: a systematic review. Brain Imaging Behav 2023; 17:223-256. [PMID: 36484922 PMCID: PMC10117447 DOI: 10.1007/s11682-022-00750-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
The prevalence of Alzheimer's disease is projected to reach 13 million in the U.S. by 2050. Although major efforts have been made to avoid this outcome, so far there are no treatments that can stop or reverse the progressive cognitive decline that defines Alzheimer's disease. The utilization of preventative treatment before significant cognitive decline has occurred may ultimately be the solution, necessitating a reliable biomarker of preclinical/prodromal disease stages to determine which older adults are most at risk. Quantitative cerebral blood flow is a promising potential early biomarker for Alzheimer's disease, but the spatiotemporal patterns of altered cerebral blood flow in Alzheimer's disease are not fully understood. The current systematic review compiles the findings of 81 original studies that compared resting gray matter cerebral blood flow in older adults with mild cognitive impairment or Alzheimer's disease and that of cognitively normal older adults and/or assessed the relationship between cerebral blood flow and objective cognitive function. Individuals with Alzheimer's disease had relatively decreased cerebral blood flow in all brain regions investigated, especially the temporoparietal and posterior cingulate, while individuals with mild cognitive impairment had consistent results of decreased cerebral blood flow in the posterior cingulate but more mixed results in other regions, especially the frontal lobe. Most papers reported a positive correlation between regional cerebral blood flow and cognitive function. This review highlights the need for more studies assessing cerebral blood flow changes both spatially and temporally over the course of Alzheimer's disease, as well as the importance of including potential confounding factors in these analyses.
Collapse
Affiliation(s)
- Cecily G Swinford
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Kobata T, Yamasaki T, Omori K, Ogawa K. [Influence of the Imaging Method on Regional Cerebral Blood Flow Value in Arterial Spin Labeling (ASL): Comparison of Pulsed-ASL with Two-dimensional Acquisition and Pseudo-continuous-ASL with 3D Spiral Acquisition]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:969-977. [PMID: 35922935 DOI: 10.6009/jjrt.2022-1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE The purposes of this study were to compare regional cerebral blood flow (rCBF) images acquired by the pulsed arterial spin labeling with two-dimensional acquisition (PASL-2D) and the pseudo-continuous-ASL with three-dimensional spiral acquisition (pCASL-3D spiral), and to clarify the characteristics of rCBF values in both ASL methods. METHODS PASL-2D and pCASL-3D spiral were performed in five healthy volunteers with no history of brain disease using 3T scanners from two venders in the same center. 3D T1-weighted images and rCBF images were acquired by both ASL methods for a total of 3 sessions: twice at the initial visit (1st and 2nd), and 1 hour and 1 week later. The rCBF images calculated by each MR machine were anatomically standardized using SPM12. The regions of interest (ROIs) were set on the territory of the anterior cerebral artery (ACA), the middle cerebral artery (MCA), and the posterior cerebral artery (PCA). Mean and relative rCBF values were calculated at each arterial territory in each session. Reproducibility for rCBF value in each method was analyzed using Bland-Altman plots, the coefficient of repeatability (CR), and the repeatability index (RI). RESULTS In all sessions, mean values of rCBF were the highest at PCA for PASL-2D and at MCA for pCASL-3D spiral. RIs of pCASL-3D spiral were lower than those of PASL-2D in all arterial territories. CONCLUSION In the PASL-2D and the pCASL-3D spiral, we confirmed the characteristics of the mean and reproducibility of rCBF values in each arterial territory.
Collapse
Affiliation(s)
| | | | - Keigo Omori
- Department of Radiology, Kagawa University Hospital
| | - Kazuo Ogawa
- Department of Radiology, Kagawa University Hospital
| |
Collapse
|
4
|
Nanjappa M, Troalen T, Pfeuffer J, Maréchal B, Hilbert T, Kober T, Schneider FC, Croisille P, Viallon M. Comparison of 2D simultaneous multi-slice and 3D GRASE readout schemes for pseudo-continuous arterial spin labeling of cerebral perfusion at 3 T. MAGMA (NEW YORK, N.Y.) 2020; 34:437-450. [PMID: 33048262 DOI: 10.1007/s10334-020-00888-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In this perfusion magnetic resonance imaging study, the performances of different pseudo-continuous arterial spin labeling (PCASL) sequences were compared: two-dimensional (2D) single-shot readout with simultaneous multislice (SMS), 2D single-shot echo-planar imaging (EPI) and multishot three-dimensional (3D) gradient and spin echo (GRASE) sequences combined with a background-suppression (BS) module. MATERIALS AND METHODS Whole-brain PCASL images were acquired from seven healthy volunteers. The performance of each protocol was evaluated by extracting regional cerebral blood flow (rCBF) measures using an inline morphometric segmentation prototype. Image data postprocessing and subsequent statistical analyses enabled comparisons at the regional and sub-regional levels. RESULTS The main findings were as follows: (i) Mean global CBF obtained across methods was were highly correlated, and these correlations were significantly higher among the same readout sequences. (ii) Temporal signal-to-noise ratio and gray-matter-to-white-matter CBF ratio were found to be equivalent for all 2D variants but lower than those of 3D-GRASE. DISCUSSION Our study demonstrates that the accelerated SMS readout can provide increased acquisition efficiency and/or a higher temporal resolution than conventional 2D and 3D readout sequences. Among all of the methods, 3D-GRASE showed the lowest variability in CBF measurements and thus highest robustness against noise.
Collapse
Affiliation(s)
- Manjunathan Nanjappa
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS, UMR 5520, INSERM U1206, CREATIS, 42023, Saint-Etienne, France.
- Siemens Healthcare SAS, Saint-Denis, France.
| | | | - Josef Pfeuffer
- Siemens Healthcare GmbH, Application Development, Erlangen, Germany
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fabien C Schneider
- Department of Radiology, University Hospital of Saint Etienne, 42055, Saint-Etienne, France
- University of Lyon, UJM-Saint-Etienne, TAPE EA7423, Saint-Etienne, France
| | - Pierre Croisille
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS, UMR 5520, INSERM U1206, CREATIS, 42023, Saint-Etienne, France
- Department of Radiology, University Hospital of Saint Etienne, 42055, Saint-Etienne, France
| | - Magalie Viallon
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS, UMR 5520, INSERM U1206, CREATIS, 42023, Saint-Etienne, France
- Department of Radiology, University Hospital of Saint Etienne, 42055, Saint-Etienne, France
| |
Collapse
|
5
|
Dolui S, Vidorreta M, Wang Z, Nasrallah IM, Alavi A, Wolk DA, Detre JA. Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment. Hum Brain Mapp 2017; 38:5260-5273. [PMID: 28737289 DOI: 10.1002/hbm.23732] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/30/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022] Open
Abstract
We compared three implementations of single-shot arterial spin labeled (ASL) perfusion magnetic resonance imaging: two-dimensional (2D) pulsed ASL (PASL), 2D pseudocontinuous ASL (PCASL), and background-suppressed (BS) 3D PCASL obtained in a cohort of patients with mild cognitive impairment (MCI) and elderly controls. Study subjects also underwent 18 F-fluorodeoxyglucose positron emission tomography (18 F-FDG PET). While BS 3D PCASL showed the lowest (P < 0.001) gray matter-white matter cerebral blood flow (CBF) contrast ratio, it provided the highest (P < 0.001) temporal signal-to-noise ratio. Mean relative CBF estimated using the PCASL methods in posterior cingulate cortex (PCC), precuneus, and hippocampus showed hypoperfusion in the MCI cohort compared to the controls consistent with hypometabolism measured by 18 F-FDG PET. BS 3D PCASL demonstrated the highest discrimination between controls and patients with effect size comparable to that seen with 18 F-FDG PET. 2D PASL did not demonstrate group differentiation with relative CBF in any ROI, whereas 2D PCASL demonstrated significant differences only in PCC and hippocampus. Mean global CBF values did not differ across methods and were highly correlated; however, the correlations were significantly higher (P < 0.001) when either the same labeling (PCASL) or the same acquisition strategy (2D) was used as compared to when both the labeling and readout methods differed. In addition, there were differences in regional distribution of CBF between the three modalities, which can be attributed to differences in sequence parameters. These results demonstrate the superiority of ASL with PCASL and BS 3D readout as a biomarker for regional brain function changes in MCI. Hum Brain Mapp 38:5260-5273, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marta Vidorreta
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ze Wang
- Department of Radiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study. Sci Rep 2017; 7:39471. [PMID: 28045051 PMCID: PMC5206718 DOI: 10.1038/srep39471] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
Age-related cognitive impairment and dementia are an increasing societal burden. Epidemiological studies indicate that lifestyle factors, e.g. physical, cognitive and social activities, correlate with reduced dementia risk; moreover, positive effects on cognition of physical/cognitive training have been found in cognitively unimpaired elders. Less is known about effectiveness and action mechanisms of physical/cognitive training in elders already suffering from Mild Cognitive Impairment (MCI), a population at high risk for dementia. We assessed in 113 MCI subjects aged 65–89 years, the efficacy of combined physical-cognitive training on cognitive decline, Gray Matter (GM) volume loss and Cerebral Blood Flow (CBF) in hippocampus and parahippocampal areas, and on brain-blood-oxygenation-level-dependent (BOLD) activity elicited by a cognitive task, measured by ADAS-Cog scale, Magnetic Resonance Imaging (MRI), Arterial Spin Labeling (ASL) and fMRI, respectively, before and after 7 months of training vs. usual life. Cognitive status significantly decreased in MCI-no training and significantly increased in MCI-training subjects; training increased parahippocampal CBF, but no effect on GM volume loss was evident; BOLD activity increase, indicative of neural efficiency decline, was found only in MCI-no training subjects. These results show that a non pharmacological, multicomponent intervention improves cognitive status and indicators of brain health in MCI subjects.
Collapse
|