1
|
Zhu FY, Sun YF, Yin XP, Wang TD, Zhang Y, Xing LH, Xue LY, Wang JN. Use of Radiomics Models in Preoperative Grading of Cerebral Gliomas and Comparison with Three-dimensional Arterial Spin Labelling. Clin Oncol (R Coll Radiol) 2023; 35:726-735. [PMID: 37598093 DOI: 10.1016/j.clon.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
AIMS To build machine learning-based radiomics models to discriminate between high- (HGGs) and low-grade gliomas (LGGs) and to compare the effectiveness of three-dimensional arterial spin labelling (3D-ASL) to evaluate which is a better method. MATERIALS AND METHODS We retrospectively analysed the magnetic resonance imaging T1WI-enhanced images of 105 patients with gliomas that were pathologically confirmed in our hospital. We divided the patients into a training group and a verification group at a ratio of 8:2; 200 patients from the Brain Tumour Segmentation Challenge 2020 were selected as the test group for image segmentation, feature extraction and screening. We constructed models using multilayer perceptron (MLP), support vector machine, random forest and logistic regression and evaluated their predictive performance. We obtained the mean maximum relative cerebral blood flow (rCBFmax) value from 3D-ASL of 105 patients from the hospital to evaluate its efficacy in discriminating between HGGs and LGGs. RESULTS In machine learning, the MLP classifier model exhibited the best performance in discriminating between HGGs and LGGs; the areas under the curve obtained by MLP and rCBFmax were 0.968 versus 0.815 (verification group) and 0.981 versus 0.815 (test group), respectively. The machine learning-based MLP classifier model performed better in discriminating between HGGs and LGGs than 3D-ASL. CONCLUSION In our study, we found that machine learning-based radiomics models and 3D-ASL were valuable in discriminating between HGGs and LGGs and between them, the machine learning-based MLP model had better diagnostic performance.
Collapse
Affiliation(s)
- F-Y Zhu
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Y-F Sun
- School of Electronic Information Engineering, Hebei University, Baoding, China
| | - X-P Yin
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - T-D Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Y Zhang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - L-H Xing
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - L-Y Xue
- School of Quality and Technical Supervision, Hebei University, Baoding, China.
| | - J-N Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China.
| |
Collapse
|
2
|
Nakajo K, Uda T, Kawashima T, Terakawa Y, Ishibashi K, Tsuyuguchi N, Tanoue Y, Nagahama A, Uda H, Koh S, Sasaki T, Ohata K, Kanemura Y, Goto T. Maximum 11C-methionine PET uptake as a prognostic imaging biomarker for newly diagnosed and untreated astrocytic glioma. Sci Rep 2022; 12:546. [PMID: 35017570 PMCID: PMC8752605 DOI: 10.1038/s41598-021-04216-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
This study aimed whether the uptake of amino tracer positron emission tomography (PET) can be used as an additional imaging biomarker to estimate the prognosis of glioma. Participants comprised 56 adult patients with newly diagnosed and untreated World Health Organization (WHO) grade II-IV astrocytic glioma who underwent surgical excision and were evaluated by 11C-methionine PET prior to the surgical excision at Osaka City University Hospital from July 2011 to March 2018. Clinical and imaging studies were retrospectively reviewed based on medical records at our institution. Preoperative Karnofsky Performance Status (KPS) only influenced progression-free survival (hazard ratio [HR] 0.20; 95% confidence interval [CI] 0.10-0.41, p < 0.0001), whereas histology (anaplastic astrocytoma: HR 5.30, 95% CI 1.23-22.8, p = 0.025; glioblastoma: HR 11.52, 95% CI 2.27-58.47, p = 0.0032), preoperative KPS ≥ 80 (HR 0.23, 95% CI 0.09-0.62, p = 0.004), maximum lesion-to-contralateral normal brain tissue (LN max) ≥ 4.03 (HR 0.24, 95% CI 0.08-0.71, p = 0.01), and isocitrate dehydrogenase (IDH) status (HR 14.06, 95% CI 1.81-109.2, p = 0.011) were factors influencing overall survival (OS) in multivariate Cox regression. OS was shorter in patients with LN max ≥ 4.03 (29.3 months) than in patients with LN max < 4.03 (not reached; p = 0.03). OS differed significantly between patients with IDH mutant/LN max < 4.03 and patients with IDH mutant/LN max ≥ 4.03. LN max using 11C-methionine PET may be used in prognostic markers for newly identified and untreated WHO grade II-IV astrocytic glioma.
Collapse
Affiliation(s)
- Kosuke Nakajo
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Takehiro Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Toshiyuki Kawashima
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuzo Terakawa
- Department of Neurosurgery, Hokkaido Ohno Memorial Hospital, Hokkaido, Japan
| | - Kenichi Ishibashi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Department of Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Naohiro Tsuyuguchi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Department of Neurosurgery, Kinki University Graduate School of Medicine, Osaka, Japan
| | - Yuta Tanoue
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Atsufumi Nagahama
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroshi Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Saya Koh
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tsuyoshi Sasaki
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kenji Ohata
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yonehiro Kanemura
- Departments of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takeo Goto
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
3
|
Abstract
This article reviews recent advances in the use of standard and advanced imaging techniques for diagnosis and treatment of central nervous system (CNS) tumors, including glioma and brain metastasis. Following the recent transition from a histology-based approach in classifying CNS tumors to one that integrates histology with the molecular information of tumor, the approaches for imaging CNS tumors have also been adapted to this new framework. Some challenges related to the diagnosis and treatment of CNS tumors, such as differentiating tumor from treatment-related imaging changes, require further progress to implement advanced imaging for clinical use.
Collapse
Affiliation(s)
- Raymond Y Huang
- Department of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Whitney B Pope
- Radiology, Section of Neuroradiology, Brain Tumor Imaging, UCLA Medical Center, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
Dynamic 11C-Methionine PET-CT: Prognostic Factors for Disease Progression and Survival in Patients with Suspected Glioma Recurrence. Cancers (Basel) 2021; 13:cancers13194777. [PMID: 34638262 PMCID: PMC8508090 DOI: 10.3390/cancers13194777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Recurrence after initial treatments is an expected event in glioma patients, particularly for high-grade glioma, with a median progression-free survival of 8–11 weeks. The prognostic evaluation of disease is a crucial step in the planning of therapeutic strategies, in both the primary and recurrence stages of disease. The aim of our retrospective study was to assess the prognostic value of 11C-methionine PET-CT dynamic and semiquantitative parameters in patients with suspected glioma recurrence at MR, in terms of progression-free survival and overall survival. In a population of sixty-seven consecutive patients, both static and kinetic analyses provided parameters (i.e., tumour-to-background ratio and SUVmax associated with time-to-peak, respectively) able to predict both progression-free and overall survival in the whole population and in the high-grade glioma subgroup of patients. Dynamic 11C-methionine PET-CT can be a useful diagnostic tool, in patients with suspicion of glioma recurrence, able to produce significant prognostic indices. Abstract Purpose: The prognostic evaluation of glioma recurrence patients is important in the therapeutic management. We investigated the prognostic value of 11C-methionine PET-CT (MET-PET) dynamic and semiquantitative parameters in patients with suspected glioma recurrence. Methods: Sixty-seven consecutive patients who underwent MET-PET for suspected glioma recurrence at MR were retrospectively included. Twenty-one patients underwent static MET-PET; 46/67 underwent dynamic MET-PET. In all patients, SUVmax, SUVmean and tumour-to-background ratio (T/B) were calculated. From dynamic acquisition, the shape and slope of time-activity curves, time-to-peak and its SUVmax (SUVmaxTTP) were extrapolated. The prognostic value of PET parameters on progression-free (PFS) and overall survival (OS) was evaluated using Kaplan–Meier survival estimates and Cox regression. Results: The overall median follow-up was 19 months from MET-PET. Recurrence patients (38/67) had higher SUVmax (p = 0.001), SUVmean (p = 0.002) and T/B (p < 0.001); deceased patients (16/67) showed higher SUVmax (p = 0.03), SUVmean (p = 0.03) and T/B (p = 0.006). All static parameters were associated with PFS (all p < 0.001); T/B was associated with OS (p = 0.031). Regarding kinetic analyses, recurrence (27/46) and deceased (14/46) patients had higher SUVmaxTTP (p = 0.02, p = 0.01, respectively). SUVmaxTTP was the only dynamic parameter associated with PFS (p = 0.02) and OS (p = 0.006). At univariate analysis, SUVmax, SUVmean, T/B and SUVmaxTTP were predictive for PFS (all p < 0.05); SUVmaxTTP was predictive for OS (p = 0.02). At multivariate analysis, SUVmaxTTP remained significant for PFS (p = 0.03). Conclusion: Semiquantitative parameters and SUVmaxTTP were associated with clinical outcomes in patients with suspected glioma recurrence. Dynamic PET-CT acquisition, with static and kinetic parameters, can be a valuable non-invasive prognostic marker, identifying patients with worse prognosis who require personalised therapy.
Collapse
|
5
|
Belyaev AY, Usachev DY, Pronin IN, Shults EI, Batalov AI. [Anaplastic astrocytoma and anaplastic oligodendroglioma of the brain: current state of the problem]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2021; 85:96-102. [PMID: 34463456 DOI: 10.17116/neiro20218504196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review is devoted to the problem of anaplastic cerebral gliomas. The authors consider classification, neuroimaging of these tumors including comparison of magnetic resonance imaging and positron emission tomography data. Clinical manifestations of anaplastic gliomas, issues of their histological and molecular genetic classification are discussed. Moreover, the authors compare the data of neuroimaging and genetic examinations of tumors. Other issues are multicomponent treatment and prognosis in patients with anaplastic glioma of the brain.
Collapse
Affiliation(s)
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E I Shults
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
6
|
Takei H, Shinoda J, Ikuta S, Maruyama T, Muragaki Y, Kawasaki T, Ikegame Y, Okada M, Ito T, Asano Y, Yokoyama K, Nakayama N, Yano H, Iwama T. Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. J Neurosurg 2020; 133:1010-1019. [PMID: 31419796 DOI: 10.3171/2019.5.jns19780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Positron emission tomography (PET) is important in the noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 WHO classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification). Here, the authors investigated the relationship between uptake of 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) on PET imaging and isocitrate dehydrogenase (IDH) status (wild-type [IDH-wt] or mutant [IDH-mut]) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification. METHODS In total, 105 patients with newly diagnosed cerebral gliomas (6 diffuse astrocytomas [DAs] with IDH-wt, 6 DAs with IDH-mut, 7 anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, 5 GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake value (SUV) of the tumor/mean SUV of normal cortex (T/N) ratios for MET, CHO, and FDG were calculated, and the mean T/N ratios of DA, AA, and GBM with IDH-wt and IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the 3 PET tracers. RESULTS There were significant differences in the mean T/N ratios for all 3 PET tracers between the IDH-wt and IDH-mut groups of all histological classifications (p < 0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all 3 PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all 3 PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p < 0.01). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that in the IDH-mut group for both MET (p = 0.034) and CHO (p = 0.01). However, there was no significant difference in the ratio for FDG. CONCLUSIONS PET imaging using MET, CHO, and FDG was suggested to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.
Collapse
Affiliation(s)
- Hiroaki Takei
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Jun Shinoda
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 2Departments of Clinical Brain Sciences and
| | - Soko Ikuta
- 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- 3Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomohiro Kawasaki
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Yuka Ikegame
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 2Departments of Clinical Brain Sciences and
| | - Makoto Okada
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
| | - Takeshi Ito
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
| | - Yoshitaka Asano
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
- 2Departments of Clinical Brain Sciences and
| | - Kazutoshi Yokoyama
- 1Department of Neurosurgery and Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu
| | - Noriyuki Nakayama
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Hirohito Yano
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| | - Toru Iwama
- 4Neurosurgery, Gifu University Graduate School of Medicine, Gifu; and
| |
Collapse
|
7
|
Pronin IN, Khokhlova EV, Konakova TA, Maryashev SA, Pitskhelauri DI, Batalov AI, Postnov AA. [Positron emission tomography with 11C-methionine in primary brain tumor diagnosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:51-56. [PMID: 32929924 DOI: 10.17116/jnevro202012008151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the variations in 11C-methionine uptake in the intact brain tissue and in glial brain tumors of different types. MATERIAL AND METHODS Forty patients (21 men, 19 women) with gliomas, Grade I-IV, underwent 11C-methionine PET-CT and contrast-enhanced MRI. Standardized uptake value (SUV), tumor-to-normal (T/N) ratios and tumor volume were analyzed. RESULTS The high inter-subject variability was detected in the intact brain tissue (SUV in the frontal lobe (FL) varies from 0.47 to 1.73). Amino acid metabolism was more active in women than in men (FL SUV 1.32±0.22 and 1.05±0.24, respectively). T/N ratio better differentiates gliomas by the degree of anaplasia compared to SUV. Gliomas of Grade III (T/N=2.64±0.98) were significantly different (p<0.05) from those of Grade IV (T/N=3.83±0.75). The lowest level of methionine uptake was detected in diffuse astrocytomas (T/N=1.52±0.57), which was lower than with anaplastic astrocytomas (T/N=2.34±0.77, p<0.05). CONCLUSIONS 11C-methionine PET-CT was informative in the high/low degree of malignancy differentiation (T/N 1.66±0.71 for Grade I-II and 3.18±1.06 for Grade III-IV, p<0.05). The method was also useful in separating astrocytomas of Grade II and III. The considerable variation of SUV in the intact brain tissue as well as the difference in uptake between selected areas of the brain were revealed.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - E V Khokhlova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - T A Konakova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - S A Maryashev
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - D I Pitskhelauri
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A I Batalov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A A Postnov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Efficiency of High and Standard b Value Diffusion-Weighted Magnetic Resonance Imaging in Grading of Gliomas. JOURNAL OF ONCOLOGY 2020; 2020:6942406. [PMID: 33005190 PMCID: PMC7509551 DOI: 10.1155/2020/6942406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Background Glioma is the most common fatal malignant tumor of the CNS. Early detection of glioma grades based on diffusion-weighted imaging (DWI) properties is considered one of the most recent noninvasive promising tools in the assessment of glioma grade and could be helpful in monitoring patient prognosis and response to therapy. Aim This study aimed to investigate the accuracy of DWI at both standard and high b values (b = 1000 s/mm2 and b = 3000 s/mm2) to distinguish high-grade glioma (HGG) from low-grade glioma (LGG) in clinical practice based on histopathological results. Materials and Methods Twenty-three patients with glioma had DWI at l.5 T MR using two different b values (b = 1000 s/mm2 and b = 3000 s/mm2) at Al-Shifa Medical Complex after obtaining ethical and administrative approvals, and data were collected from March 2019 to March 2020. Minimum, maximum, and mean of apparent diffusion coefficient (ADC) values were measured through drawing region of interest (ROI) on a solid part at ADC maps. Data were analyzed by using the MedCalc analysis program, version 19.0.4, receiver operating characteristic (ROC) curve analysis was done, and optimal cutoff values for grading gliomas were determined. Sensitivity and specificity were also calculated. Results The obtained results showed the ADCmean, ADCratio, ADCmax, and ADCmin were performed to differentiate between LGG and HGG at both standard and high b values. Moreover, ADC values were inversely proportional to glioma grade, and these differences are more obvious at high b value. Minimum ADC values using standard b value were 1.13 ± 0.17 × 10−3 mm2/s, 0.89 ± 0.85 × 10−3 mm2/s, and 0.82 ± 0.17 × 10−3 mm2/s for grades II, III, and IV, respectively. Concerning high b value, ADCmin values were 0.76 ± 0.07 × 10−3 mm2/s, 0.61 ± 0.01 × 10−3 mm2/s, and 0.48 ± 0.07 × 10−3 mm2/s for grades II, III, and IV, respectively. ADC values were inversely correlated with results of glioma grades, and the correlation was stronger at ADC3000 (r = −0.722, P ≤ 0.001). The ADC3000 achieved the highest diagnostic accuracy with an area under the curve (AUC) of 0.618, 100% sensitivity, 85.7% specificity, and 85.7% accuracy for glioma grading at a cutoff point of ≤0.618 × 10−3 mm2/s. The high b value showed stronger agreement with histopathology compared with standard b value results (k = 0.89 and 0.79), respectively. Conclusion The ADC values decrease with an increase in tumor cellularity. Meanwhile, high b value provides better tissue contrast by reflecting more tissue diffusivity. Therefore, ADC-derived parameters at high b value are more useful in the grading of glioma than those obtained at standard b value. They might be a better surrogate imaging sequence in the preoperative evaluation of gliomas.
Collapse
|
9
|
Bonomi R, John F, Patel S, Barger G, Robinette N, Amit-Yousif AJ, Dominello M, Juhasz C. Multimodal neuroimaging of gliomatosis cerebri: a case series of four patients. Acta Radiol Open 2020; 9:2058460120942789. [PMID: 32913666 PMCID: PMC7444143 DOI: 10.1177/2058460120942789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
In the latest World Health Organization classification of brain tumors, gliomatosis cerebri has been redefined to varying subsets of diffuse gliomas; however, the term is still used to describe gliomas with infiltrative growth into three or more cerebral lobes. These tumors are frequently misdiagnosed and difficult to treat due to their atypical presentation using structural imaging modalities including computed tomography and T1/T2-weighted magnetic resonance imaging (MRI). In this retrospective case series, we compared clinical MRI to amino acid positron emission tomography (PET) to assess the potential value of PET in the assessment of the extent of tumor involvement and in monitoring disease progression. We report the clinical course and serial multimodal imaging findings of four patients. Each patient presented at varying points in disease progression with widespread glioma brain involvement and was evaluated at least once by amino acid PET using alpha-[11C]methyl-L-tryptophan ([11C]-AMT). Increased uptake of [11C]-AMT was detected in a subset of non-enhancing brain lesions and detected tumor invasion before MRI signs of tumor in some regions. Increased uptake of [11C]-AMT was also detected in tumorous regions not detected by perfusion MRI or MR spectroscopy. Metabolic response to treatment was also observed in two patients. Overall, these data are consistent with and expand upon previous reports using other amino acid PET tracers in gliomatosis and show the potential added value of this imaging modality to clinical MRI in the detection and monitoring of these diffusely infiltrative tumors.
Collapse
Affiliation(s)
- Robin Bonomi
- Departments of Pediatrics, Neurology, Radiology, Oncology, Wayne State University, Detroit, MI, USA
| | - Flora John
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | | | | | | | - Csaba Juhasz
- PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
10
|
Rani N, Singh B, Kumar N, Singh P, Hazari PP, Vyas S, Hooda M, Chitkara A, Shekhawat AS, Gupta SK, Radotra BD, Mishra AK. [ 99mTc]-Bis-Methionine-DTPA Single-Photon Emission Computed Tomography Impacting Glioma Management: A Sensitive Indicator for Postsurgical/Chemoradiotherapy Response Assessment. Cancer Biother Radiopharm 2020; 36:568-578. [PMID: 32644819 DOI: 10.1089/cbr.2020.3696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The present study evaluated the prognostic value of [99mTc]MDM (bis-methionine-DTPA) follow-up single-photon emission computed tomography (SPECT) imaging for response assessment to chemoradiotherapy in glioma postoperatively. Materials and Methods: One hundred fourteen glioma patients (80 M:34 F) were followed postoperatively by sequential [99mTc]MDM SPECT, dynamic susceptibility contrast-enhanced (DSCE)-MRI, and magnetic resonance spectroscopy (MRS) at baseline, 6, 12, and 22.5 months postchemoradiotherapy. The quantitative imaging results and the clinical outcome were used for response assessment and for the final diagnosis. The quantitative parameter of [99mTc]MDM SPECT were also used for survival analysis. Results: A significantly (p = 0.001) lower target to nontarget (T/NT) ratio was observed in responders than in nonresponders. The sensitivity and specificity of [99mTc]MDM-SPECT for identifying tumor recurrence from radiation necrosis at a cutoff ratio of 1.90 were estimated at 97.9% and 92%. Whereas, the sensitivity and specificity of DSCE-MRI with the normalized cerebral blood volume (nCBV) cutoff of 3.32 for this differentiation was found to be 84.6% and 93.0%. MRS intensity ratios of Cho/NAA and Cho/Cr provided comparatively lower sensitivity of 81.0% and 85.3% and specificity of 73.0% and 73.7%. T/NT ratios correlated with nCBV (r = 0.775, p < 0.001) and to a moderate extent with Cho/NAA ratios (r = 0.467, p = 0.001). [99mTc]MDM SPECT and DSCE-MRI provided comparable results for predicting response assessment to chemoradiotherapy. There was a final diagnosis in 72 patients, of which 47 cases were tumor recurrence and 25 were radiation necrosis. The Kaplan-Meier analysis indicated that patients with T/NT ratio <1.9 showed prolonged survival (53.8 months) as compared (37.2 months) with those who demonstrated T/NT ratio >1.9 (p = 0.0001). Conclusion: Thus, this low-cost SPECT technique in combination with DSCE-MRI can be used accurately for mapping the disease activity, response assessment, and survival in glioma. [99mTc]MDM SPECT and DSCE-MRI had the same diagnostic efficacy to detect recurrent/residual tumor and radiation necrosis while MRS was inferior to both the techniques.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | | | | | - Paramjeet Singh
- Department of Radio-Diagnosis and Imaging, PGIMER, Chandigarh, India
| | - Puja P Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Science, DRDO, New Delhi, India
| | - Sameer Vyas
- Department of Radio-Diagnosis and Imaging, PGIMER, Chandigarh, India
| | - Monika Hooda
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - Ajay Chitkara
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | | | - Sunil K Gupta
- Department of Neurosurgery, PGIMER, Chandigarh, India
| | | | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Science, DRDO, New Delhi, India
| |
Collapse
|
11
|
Park YW, Choi YS, Ahn SS, Chang JH, Kim SH, Lee SK. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors. Korean J Radiol 2020; 20:1381-1389. [PMID: 31464116 PMCID: PMC6715562 DOI: 10.3348/kjr.2018.0814] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/21/2019] [Indexed: 12/28/2022] Open
Abstract
Objective To assess whether radiomics features derived from multiparametric MRI can predict the tumor grade of lower-grade gliomas (LGGs; World Health Organization grade II and grade III) and the nonenhancing LGG subgroup. Materials and Methods Two-hundred four patients with LGGs from our institutional cohort were allocated to training (n = 136) and test (n = 68) sets. Postcontrast T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery images were analyzed to extract 250 radiomics features. Various machine learning classifiers were trained using the radiomics features to predict the glioma grade. The trained classifiers were internally validated on the institutional test set and externally validated on a separate cohort (n = 99) from The Cancer Genome Atlas (TCGA). Classifier performance was assessed by determining the area under the curve (AUC) from receiver operating characteristic curve analysis. An identical process was performed in the nonenhancing LGG subgroup (institutional training set, n = 73; institutional test set, n = 37; and TCGA cohort, n = 37) to predict the glioma grade. Results The performance of the best classifier was good in the internal validation set (AUC, 0.85) and fair in the external validation set (AUC, 0.72) to predict the LGG grade. For the nonenhancing LGG subgroup, the performance of the best classifier was good in the internal validation set (AUC, 0.82), but poor in the external validation set (AUC, 0.68). Conclusion Radiomics feature-based classifiers may be useful to predict LGG grades. However, radiomics classifiers may have a limited value when applied to the nonenhancing LGG subgroup in a TCGA cohort.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology, Ewha Womans University College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Seong Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Koo Lee
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Quartuccio N, Laudicella R, Vento A, Pignata S, Mattoli MV, Filice R, Comis AD, Arnone A, Baldari S, Cabria M, Cistaro A. The Additional Value of 18F-FDG PET and MRI in Patients with Glioma: A Review of the Literature from 2015 to 2020. Diagnostics (Basel) 2020; 10:diagnostics10060357. [PMID: 32486075 PMCID: PMC7345880 DOI: 10.3390/diagnostics10060357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
AIM Beyond brain computed tomography (CT) scan, Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) hold paramount importance in neuro-oncology. The aim of this narrative review is to discuss the literature from 2015 to 2020, showing advantages or complementary information of fluorine-18 fluorodeoxyglucose (18F-FDG) PET imaging to the anatomical and functional data offered by MRI in patients with glioma. METHODS A comprehensive Pubmed/MEDLINE literature search was performed to retrieve original studies, with a minimum of 10 glioma patients, published from 2015 until the end of April 2020, on the use of 18F-FDG PET in conjunction with MRI. RESULTS Twenty-two articles were selected. Combined use of the two modalities improves the accuracy in predicting prognosis, planning treatments, and evaluating recurrence. CONCLUSION According to the recent literature, 18F-FDG PET provides different and complementary information to MRI and may enhance performance in the whole management of gliomas. Therefore, integrated PET/MRI may be particularly useful in gliomas, since it could provide accurate morphological and metabolic information in one-shoot examination and improve the diagnostic value compared to each of procedures.
Collapse
Affiliation(s)
- Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (N.Q.); (A.A.)
- Committee of AIMN Pediatric Study Group, 20159 Milan, Italy
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
- AIMN -Italian Association of Nuclear Medicine- Young Members Working Group, 20159 Milan, Italy
| | - Antonio Vento
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Salvatore Pignata
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Maria Vittoria Mattoli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy;
| | - Rossella Filice
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Alessio Danilo Comis
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Annachiara Arnone
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (N.Q.); (A.A.)
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (A.V.); (S.P.); (R.F.); (A.D.C.); (S.B.)
| | - Manlio Cabria
- Nuclear Medicine Department, Ente Ospedaliero Ospedali Galliera, Italy, Mura delle Cappuccine, 14, 16128 Genova, Italy;
| | - Angelina Cistaro
- Nuclear Medicine Department, Ente Ospedaliero Ospedali Galliera, Italy, Mura delle Cappuccine, 14, 16128 Genova, Italy;
- Committee of AIMN Neuroimaging Study Group, 20159 Milan, Italy
- Coordinator of AIMN Paediatric Study Group, 20159 Milan, Italy
- Correspondence: ; Tel.: +39-22254881
| |
Collapse
|
13
|
Liu X, Tian W, Kolar B, Johnson MD, Milano MT, Jiang H, Lin S, Li D, Mohile NA, Li YM, Walter KA, Ekholm S, Wang HZ. The correlation of fractional anisotropy parameters with Ki-67 index, and the clinical implication in grading of non-enhancing gliomas and neuronal-glial tumors. Magn Reson Imaging 2019; 65:129-135. [PMID: 31644925 DOI: 10.1016/j.mri.2019.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the correlation between the FA parameters and Ki-67 labeling index, and their diagnostic performance in grading supratentorial non-enhancing gliomas and neuronal-glial tumors (GNGT). METHODS This institutional review board-approved, Health Insurance Portability and Accountability (HIPAA) compliant retrospective study enrolled 35 patients, including 19 with low grade GNGT and 16 with high grade GNGT. The mean FA, maximal FA and mean maximal FA values derived from diffusion tensor imaging were measured. The correlation between the FA parameters and the Ki-67 labeling index was assessed by Spearman rank test. The receiver operating characteristic curve analysis and multivariate logistic regression analysis were performed to detect the optimal imaging parameters in grading GNGT. RESULTS The three FA parameters of low grade GNGT were significantly lower than the high grade GNGT (p < 0.001). The mean FA, maximal FA and mean maximal FA had significant positive correlation with Ki-67 labeling index (p = 0.001, p < 0.001, p < 0.001 respectively). The maximal FA showed a higher sensitivity and specificity in grading of non-enhancing GNGT with specificity of 78.9%, sensitivity of 100.0%, respectively. CONCLUSIONS The FA parameters correlated with Ki-67 labeling index, and were useful surrogates in preoperative grading supratentorial non-enhancing GNGT.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA.
| | - Wei Tian
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Balasubramanya Kolar
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Mahlon D Johnson
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Haihui Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Dongmei Li
- Clinical and Translational Research and Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Nimish A Mohile
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yan M Li
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kevin A Walter
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Sven Ekholm
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
14
|
Zhang Q, Gao X, Wei G, Qiu C, Qu H, Zhou X. Prognostic Value of MTV, SUVmax and the T/N Ratio of PET/CT in Patients with Glioma: A Systematic Review and Meta-Analysis. J Cancer 2019; 10:1707-1716. [PMID: 31205526 PMCID: PMC6548003 DOI: 10.7150/jca.28605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background: In the past decade, positron emission tomography/computed tomography (PET/CT) has become an important imaging tool for clinical assessment of tumor patients. Our meta-analysis aimed to compare the predictive value of PET/CT parameters regard to overall survival (OS) and progression-free survival (PFS) outcomes in glioma. Methods: Relevant articles were systematically searched in PMC, PubMed, EMBASE and WEB of science. Studies involving the prognostic roles of PET/CT parameters with OS and PFS in glioma patients were evaluated. The impact of metabolic tumor volume (MTV), maximal standard uptake value (SUVmax), and the ratio of uptake in tumor to normal (T/N ratio) on survival was measured by calculating combined hazard ratios (HRs) and 95% confidence intervals (CIs). Results: A total of 32 articles with 1715 patients were included. The combined HRs of higher MTV, higher SUVmax and higher T/N ratio for OS were 1.14 (95% CI: 0.98-1.32, P heterogeneity<0.001), 1.69 (95% CI: 1.18-2.41, P heterogeneity<0.001) and 1.68 (95% CI: 1.40-2.01, P heterogeneity< 0.001), respectively. Regarding PFS, the combined HRs were 1.04 (95% CI: 0.97-1.11, P heterogeneity=0.002) with higher MTV, 1.45 (95% CI: 1.11-1.90, P heterogeneity<0.001) with higher SUVmax and 2.07 (95% CI: 1.45-2.95, P heterogeneity<0.001) with higher T/N ratio. Results remained similar in the sub-group analyses. Conclusion: PET/CT parameters T/N ratio may be a significant prognostic factor in patients with glioma. Evidence of SUVmax and MTV needed more large-scale studies performed to validate. PET/CT scan could be a promising technique to provide prognostic information for these patients.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xian Gao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guohua Wei
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cheng Qiu
- Department of Neurosurgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, P.R. China
| | - Hongyi Qu
- Department of Neurosurgery, Xinghua People's Hospital, Xinghua 225700, Jiangsu, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
15
|
Abstract
PET holds potential to provide additional information about tumour metabolic processes, which could aid brain tumour differential diagnosis, grading, molecular subtyping and/or the distinction of therapy effects from disease recurrence. This review discusses PET techniques currently in use for untreated and treated glioma characterization and aims to critically assess the evidence for different tracers ([F]Fluorodeoxyglucose, choline and amino acid tracers) in this context.
Collapse
|
16
|
Kanai Y, Miyake Y, Shimosegawa E, Hatazawa J. Radiosynthesis of 11C-phenytoin Using a DEGDEE Solvent for Clinical PET Studies. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2018; 6:149-154. [PMID: 29998148 PMCID: PMC6038967 DOI: 10.22038/aojnmb.2018.10846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s): Phenytoin is an antiepileptic drug that is used worldwide. The whole-body pharmacokinetics of this drug have been extensively studied using 11C-phenytoin in small animals. However, because of the limited production amounts that are presently available, clinical 11C-phenytoin PET studies to examine the pharmacokinetics of phenytoin in humans have not yet been performed. We aimed to establish a new synthesis method to produce large amounts of 11C-phenytoin to conduct human studies. Methods: [11C] methane was produced using an in-house cyclotron by the 14N (p, α) 11C nuclear reaction of 5 % of hydrogen containing 95 % of nitrogen gas. About 30 GBq of 11C-methane was then transferred to a homogenization cell containing Fe2O3 powder mixed with Fe granules heated at 320 0C to yield 11C-phosgene. Xylene, 1,4-dioxane, and diethylene glycol diethyl ether (DEGDEE) were investigated as possible reaction solvents. Results: The ratio of 11C-phenytoin radioactivity to the total 11C radioactivity in the reaction vessel (reaction efficiency) was 7.5% for xylene, 11% for 1,4-dioxane, and 37% for DEGDEE. The synthesis time was within 45 min from the end of bombardment until obtaining the final product. The radioactivity produced was more than 4.1 GBq in 10 mL of saline at the end of synthesis. The specific activity of the product ranged from 1.7 to 2.2 GBq/μmol. The quality of the [11C] phenytoin injection passed all criteria required for clinical use. Conclusion: The use of DEGDEE as a solvent enabled the production of a large amount of 11C-phenytoin sufficient to enable PET studies examining the human pharmacokinetics of phenytoin.
Collapse
Affiliation(s)
- Yasukazu Kanai
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Tracer Kinetics and Nuclear Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinori Miyake
- Department of Tracer Kinetics and Nuclear Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Tracer Kinetics and Nuclear Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Tracer Kinetics and Nuclear Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Näslund O, Smits A, Förander P, Laesser M, Bartek J, Gempt J, Liljegren A, Daxberg EL, Jakola AS. Amino acid tracers in PET imaging of diffuse low-grade gliomas: a systematic review of preoperative applications. Acta Neurochir (Wien) 2018; 160:1451-1460. [PMID: 29797098 PMCID: PMC5995993 DOI: 10.1007/s00701-018-3563-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) imaging using amino acid tracers has in recent years become widely used in the diagnosis and prediction of disease course in diffuse low-grade gliomas (LGG). However, implications of preoperative PET for treatment and prognosis in this patient group have not been systematically studied. The aim of this systematic review was to evaluate the preoperative diagnostic and prognostic value of amino acid PET in suspected diffuse LGG. Medline, Cochrane Library, and Embase databases were systematically searched using keywords "PET," "low-grade glioma," and "amino acids tracers" with their respective synonyms. Out of 2137 eligible studies, 28 met the inclusion criteria. Increased amino acid uptake (lesion/brain) was consistently reported among included studies; in 25-92% of subsequently histopathology-verified LGG, in 83-100% of histopathology-verified HGG, and also in some non-neoplastic lesions. No consistent results were found in studies reporting hot spot areas on PET in MRI-suspected LGG. Thus, the diagnostic value of amino acid PET imaging in suspected LGG has proven difficult to interpret, showing clear overlap and inconsistencies among reported results. Similarly, the results regarding the prognostic value of PET in suspected LGG and the correlation between uptake ratios and the molecular tumor status of LGG were conflicting. This systematic review illustrates the difficulties with prognostic studies presenting data on group-level without adjustment for established clinical prognostic factors, leading to a loss of additional prognostic information. We conclude that the prognostic value of PET is limited to analysis of histological subgroups of LGG and is probably strongest when using kinetic analysis of dynamic FET uptake parameters.
Collapse
Affiliation(s)
- Olivia Näslund
- Sahlgrenska Academy, Medicinaregatan 3, 41390, Gothenburg, Sweden.
| | - Anja Smits
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Petter Förander
- Department of Clinical Neuroscience and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Laesser
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jiri Bartek
- Department of Clinical Neuroscience and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ann Liljegren
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva-Lotte Daxberg
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
- Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
18
|
Kim YI, Kim Y, Lee JY, Jang SJ. Prognostic Value of the Metabolic and Volumetric Parameters of 11C-Methionine Positron-Emission Tomography for Gliomas: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1629-1634. [PMID: 29954817 DOI: 10.3174/ajnr.a5707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several studies have demonstrated that 11C-methionine positron-emission tomography provides information on prognosis. PURPOSE We performed a systematic review and meta-analysis of the prognostic value of the metabolic and volumetric parameters of 11C-methionine-PET for gliomas. DATA SOURCES A systematic search was performed using the following combination of keywords: "methionine," "PET," "glioma," and "prognosis." STUDY SELECTION The inclusion criteria were the use of 11C-methionine-PET as an imaging tool, studies limited to gliomas, studies including metabolic parameters (tumor-to-normal ratio) and/or volumetric parameters (metabolic tumor volume), and studies reporting survival data. The electronic search first identified 181 records, and 14 studies were selected. DATA ANALYSIS Event-free survival and overall survival were the outcome measures of interest. The effect of the tumor-to-normal ratio and metabolic tumor volume on survival was determined by the effect size of the hazard ratio. Hazard ratios were extracted directly from each study when provided or determined by analyzing the Kaplan-Meier curves. DATA SYNTHESIS The combined hazard ratios of the tumor-to-normal ratio for event-free survival was 1.74 with no significance and that of the tumor-to-normal ratio for overall survival was 2.02 with significance. The combined hazard ratio of the metabolic tumor volume for event-free survival was 2.72 with significance and that of the metabolic tumor volume for overall survival was 3.50 with significance. LIMITATIONS The studies selected were all retrospective, and there were only 4 studies involving the metabolic tumor volume. CONCLUSIONS The present meta-analysis of 11C-methionine-PET suggests that the tumor-to-normal ratio for overall survival and the metabolic tumor volume for event-free survival and overall survival are significant prognostic factors for patients with gliomas.
Collapse
Affiliation(s)
- Y-I Kim
- From the Department of Nuclear Medicine (Y.-i.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Y Kim
- Veterans Health Service Medical Center (Y.K.), Seoul, Republic of Korea
| | - J Y Lee
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - S J Jang
- Department of Nuclear Medicine (Y.-i.K., J.Y.L., S.J.J.), CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
19
|
Brendle C, Hempel JM, Schittenhelm J, Skardelly M, Reischl G, Bender B, Ernemann U, la Fougère C, Klose U. Glioma grading by dynamic susceptibility contrast perfusion and 11C-methionine positron emission tomography using different regions of interest. Neuroradiology 2018; 60:381-389. [PMID: 29464269 DOI: 10.1007/s00234-018-1993-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/06/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE The use of dynamic susceptibility contrast (DSC) perfusion and 11C-methionine positron emission tomography (MET-PET) for glioma grading is currently not standardized. The purpose of this study was to identify regions of interest (ROIs) that enable the best performance and clinical applicability in both methods, as well as to evaluate the complementarity of DSC perfusion and MET-PET in spatial hotspot definition. METHODS In 41 patient PET/MRI datasets, different ROIs were drawn: in T2-hyperintense tumour, in T2-hyperintense tumour and adjacent oedema and in tumour areas with contrast enhancement, altered perfusion or pathological radiotracer uptake. The performance of DSC perfusion and MET-PET using the different ROIs to distinguish high- and low-grade gliomas was assessed. The spatial overlap of hotspots identified by DSC perfusion and MET-PET was assessed visually. RESULTS ROIs in T2 fluid attenuated inversion recovery (FLAIR) sequence-hyperintense tumour revealed the most significant differences between high- and low-grade gliomas and reached the highest diagnostic performance in both DSC perfusion (p = 0.046; area under the curve = 0.74) and MET-PET (p = 0.007; area under the curve = 0.80). The combination of methods yielded an area under the curve of 0.80. Hotspots were completely overlapped in one half of the patients, partially overlapped in one third of the patients and present in only one method in approximately 20% of the patients. CONCLUSIONS For multi-parametric examinations with DSC perfusion and MET-PET, we recommend an ROI definition based on T2-hyperintense tumour. DSC perfusion and MET-PET contain complementary information concerning the spatial hotspot definition.
Collapse
Affiliation(s)
- Cornelia Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Johann-Martin Hempel
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Jens Schittenhelm
- Neuropathology, Department of Pathology and Neuropathology, Eberhard Karls University, Liebermeistersstraße 8, 72076, Tuebingen, Germany
| | - Marco Skardelly
- University Hospital for Neurosurgery, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Gerald Reischl
- Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ulrike Ernemann
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Christian la Fougère
- Nuclear Nedicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University, Otfried-Mueller-Straße 14, 72076, Tuebingen, Germany
| | - Uwe Klose
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
20
|
Poetsch N, Woehrer A, Gesperger J, Furtner J, Haug AR, Wilhelm D, Widhalm G, Karanikas G, Weber M, Rausch I, Mitterhauser M, Wadsak W, Hacker M, Preusser M, Traub-Weidinger T. Visual and semiquantitative 11C-methionine PET: an independent prognostic factor for survival of newly diagnosed and treatment-naïve gliomas. Neuro Oncol 2018; 20:411-419. [PMID: 29016947 PMCID: PMC5817953 DOI: 10.1093/neuonc/nox177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Few data exist regarding the prognostic value of L-[S-methyl-11C]methionine (MET) PET for treatment-naïve gliomas. Methods A total of 160 glioma patients (89 men, 71 women; mean age: 45, range 18-84 y) underwent a MET PET prior to any therapy. The PET scans were evaluated visually and semiquantitatively by tumor-to-background (T/N) ratio thresholds chosen by analysis of receiver operating characteristics. Additionally, isocitrate dehydrogenase 1-R132H (IDH1-R132H) immunohistochemistry was performed. Survival analysis was done using Kaplan-Meier estimates and the Cox proportional hazards model. Results Significantly shorter mean survival times (7.2 vs 8.6 y; P = 0.024) were seen in patients with amino acid avid gliomas (n = 137) compared with visually negative tumors (n = 33) in MET PET. T/N ratio thresholds of 2.1 and 3.5 were significantly associated with survival (10.3 vs 7 vs 4.3 y; P < 0.001). Mean survival differed significantly using the median T/N ratio of 2.4 as cutoff, independent of histopathology (P < 0.01; mean survival: 10.2 ± 0.8 y vs 5.5 ± 0.6 y). In the subgroup of 142 glioma patients characterized by IDH1-R132H status, METT/N ratio demonstrated a significant prognostic impact in IDH1-R132H wildtype astrocytomas and glioblastoma (P = 0.001). Additionally, multivariate testing revealed semiquantitative MET PET as an independent prognostic parameter for treatment-naïve glioma patients without (P = 0.031) and with IDH1-R132H characterization of gliomas (P = 0.024; odds ratio 1.57). Conclusion This retrospective analysis demonstrates the value of MET PET as a prognostic parameter on survival in treatment-naïve glioma patients.
Collapse
Affiliation(s)
- Nina Poetsch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dorothee Wilhelm
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute of Applied Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Chiang GC, Kovanlikaya I, Choi C, Ramakrishna R, Magge R, Shungu DC. Magnetic Resonance Spectroscopy, Positron Emission Tomography and Radiogenomics-Relevance to Glioma. Front Neurol 2018; 9:33. [PMID: 29459844 PMCID: PMC5807339 DOI: 10.3389/fneur.2018.00033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Advances in metabolic imaging techniques have allowed for more precise characterization of gliomas, particularly as it relates to tumor recurrence or pseudoprogression. Furthermore, the emerging field of radiogenomics where radiographic features are systemically correlated with molecular markers has the potential to achieve the holy grail of neuro-oncologic neuro-radiology, namely molecular diagnosis without requiring tissue specimens. In this section, we will review the utility of metabolic imaging and discuss the current state of the art related to the radiogenomics of glioblastoma.
Collapse
Affiliation(s)
- Gloria C Chiang
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Ilhami Kovanlikaya
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Changho Choi
- Radiology, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
22
|
Falk Delgado A, Falk Delgado A. Discrimination between primary low-grade and high-grade glioma with 11C-methionine PET: a bivariate diagnostic test accuracy meta-analysis. Br J Radiol 2018; 91:20170426. [PMID: 29206062 PMCID: PMC5965775 DOI: 10.1259/bjr.20170426] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To perform a meta-analysis evaluating the diagnostic accuracy of 11C-methionine (MET) positron emission tomography (PET) to discriminate between primary low-grade glioma (LGG) and high-grade glioma (HGG). METHODS A systematic database search was performed by a librarian in relevant databases with the latest search on 07 November 2016. Hits were assessed for inclusion independently by two authors. Individual patient data on relative MET uptake was extracted on patients examined pre-operatively with MET PET and subsequent neuropathological diagnosis of astrocytoma or oligodendroglioma. Individual patient data were analysed for diagnostic accuracy using a bivariate diagnostic random-effects meta-analysis model with restricted maximum likelihood estimation method. Bivariate meta-regression and subgroup analyses assessed study heterogeneity and validity. This study is registered with PROSPERO, number CRD42016050747. RESULTS Out of 1828 hits, 13 studies comprising of 241 individuals were included in the quantitative and qualitative analysis. MET PET had an area under the bivariate summary receiver operating characteristics curve of 0.78 to discriminate between LGG and HGG and a summary sensitivity of 0.80 with 95% confidence interval (CI) (0.66-0.88) and a summary false positive rate of 0.28, 95% CI (0.19-0.38). Heterogeneity was described by; bias in patient inclusion, study quality, and ratio method. Optimal cutoff for relative MET uptake was 2.21. CONCLUSION MET PET had a moderately high diagnostic accuracy for the discrimination between primary LGG and HGG. Advances in knowledge: MET PET can be used as a clinical tool for the non-invasive discrimination between LGG and HGG with a moderately high accuracy at cut-off 2.21.
Collapse
|
23
|
Kanoto M, Kirii K, Hiraka T, Toyoguchi Y, Sugai Y, Matsuda K, Sakurada K, Sonoda Y, Hatazawa J, Hosoya T. Correlation between hypoxic area in primary brain tumors and WHO grade: differentiation from malignancy using 18F-fluoromisonidazole positron emission tomography. Acta Radiol 2018; 59:229-235. [PMID: 28534419 DOI: 10.1177/0284185117711474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background 18F-fluoromisonidazole positron emission tomography (FMISO-PET) has been used for identification of hypoxic areas in tumors, and since hypoxia causes hypoxia-inducible factor-1 and enhancement of tumor growth, identifying the hypoxic area in the tumor tissue is important. Purpose To evaluate the usefulness of FMISO-PET in the grading of primary brain tumors. Material and Methods FMISO-PET was performed preoperatively on 41 consecutive patients with pathologically confirmed brain tumor. A neuroradiologist retrospectively measured both maximum standardized uptake value (SUVmax) and mean SUV (SUVmean) in the tumor and normal cerebellar parenchyma. Maximum tumor/normal control ratio (T/Nmax) and mean tumor/normal control ratio (T/Nmean) were calculated and analyzed. Results There was a positive correlation between World Health Organization (WHO) grade and both T/Nmax and T/Nmean (r = 0.731 and 0.713, respectively). When all cases were divided into benign (WHO grade II) and malignant groups (III and IV), there were significant differences between the two groups in both T/Nmax and T/Nmean ( P < 0.001). If the cutoff value was defined as T/Nmax = 1.25 and T/Nmean = 1.23, T/Nmax had a sensitivity of 90.0% and a specificity of 90.9% while T/Nmean had a sensitivity of 93.3% and a specificity of 90.9% in differentiating the benign group from the malignant group. Conclusion Both T/Nmax and T/Nmean in FMISO-PET have a positive correlation with primary brain tumor grading, making FMISO-PET useful in diagnosing the malignancy of primary brain tumors.
Collapse
Affiliation(s)
- Masafumi Kanoto
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kazukuni Kirii
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshitada Hiraka
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuuki Toyoguchi
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yukio Sugai
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kenichiro Matsuda
- Department of Neurosurgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kaori Sakurada
- Department of Neurosurgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takaaki Hosoya
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
24
|
Deuschl C, Kirchner J, Poeppel TD, Schaarschmidt B, Kebir S, El Hindy N, Hense J, Quick HH, Glas M, Herrmann K, Umutlu L, Moenninghoff C, Radbruch A, Forsting M, Schlamann M. 11C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging 2017; 45:593-601. [PMID: 29282517 DOI: 10.1007/s00259-017-3916-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid 11C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. METHODS Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid 11C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid 11C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. RESULTS Hybrid 11C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for 11C-MET PET (96.77% and 73.68%), and for hybrid 11C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid 11C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing 11C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). CONCLUSION This feasibility study showed that hybrid PET/MRI might strengthen RANO classification by adding metabolic information to conventional MRI information. Future studies should evaluate the clinical utility of the combined use of 11C-MET PET/MRI in larger patient cohorts.
Collapse
Affiliation(s)
- C Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany.
| | - J Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - T D Poeppel
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - B Schaarschmidt
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - S Kebir
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany
| | - N El Hindy
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - J Hense
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - H H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - M Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany
| | - K Herrmann
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - L Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - C Moenninghoff
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - A Radbruch
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - M Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - M Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
25
|
Papp L, Pötsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, Mitterhauser M, Kiesel B, Wadsak W, Beyer T, Hacker M, Traub-Weidinger T. Glioma Survival Prediction with Combined Analysis of In Vivo 11C-MET PET Features, Ex Vivo Features, and Patient Features by Supervised Machine Learning. J Nucl Med 2017; 59:892-899. [DOI: 10.2967/jnumed.117.202267] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
|
26
|
Deuschl C, Goericke S, Grueneisen J, Sawicki LM, Goebel J, El Hindy N, Wrede K, Binse I, Poeppel T, Quick H, Forsting M, Hense J, Umutlu L, Schlamann M. Simultaneous 11C-Methionine Positron Emission Tomography/Magnetic Resonance Imaging of Suspected Primary Brain Tumors. PLoS One 2016; 11:e0167596. [PMID: 27907162 PMCID: PMC5132315 DOI: 10.1371/journal.pone.0167596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Introduction The objective of this study was to assess the diagnostic value of integrated 11C- methionine PET/MRI for suspected primary brain tumors, in comparison to MRI alone. Material and Methods Forty-eight consecutive patients with suspected primary brain tumor were prospectively enrolled for an integrated 11C-methionine PET/MRI. Two neuro-radiologists separately evaluated the MRI alone and the integrated PET/MRI data sets regarding most likely diagnosis and diagnostic confidence on a 5-point scale. Reference standard was histopathology or follow-up imaging. Results Fifty-one suspicious lesions were detected: 16 high-grade glioma and 25 low-grade glioma. Ten non-malignant cerebral lesions were described by the reference standard. MRI alone and integrated PET/MRI each correctly classified 42 of the 51 lesions (82.4%) as neoplastic lesions (WHO grade II, III and IV) or non-malignant lesions (infectious and neoplastic lesions). Diagnostic confidence for all lesions, low-grade astrocytoma and high-grade astrocytoma (3.7 vs. 4.2, 3,1 vs. 3.8, 4.0 vs. 4,7) were significantly (p < 0.05) better with integrated PET/MRI than in MRI alone. Conclusions The present study demonstrates the high potential of integrated 11C-methionine-PET/MRI for the assessment of suspected primary brain tumors. Although integrated methionine PET/MRI does not lead to an improvement of correct diagnoses, diagnostic confidence is significantly improved.
Collapse
Affiliation(s)
- Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Sophia Goericke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Lino Morris Sawicki
- Institute of Diagnostic and Interventional Radiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Juliane Goebel
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Nicolai El Hindy
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Ina Binse
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Thorsten Poeppel
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Harald Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Joerg Hense
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Marc Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Department of Neuroradiology, University Hospital Giessen, Gießen, Germany
| |
Collapse
|