1
|
Papapetropoulos S, Gelfand JM, Konno T, Ikeuchi T, Pontius A, Meier A, Foroutan F, Wszolek ZK. Clinical presentation and diagnosis of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia: a literature analysis of case studies. Front Neurol 2024; 15:1320663. [PMID: 38529036 PMCID: PMC10962389 DOI: 10.3389/fneur.2024.1320663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Because adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare, rapidly progressive, debilitating, and ultimately fatal neurodegenerative disease, a rapid and accurate diagnosis is critical. This analysis examined the frequency of initial misdiagnosis of ALSP via comprehensive review of peer-reviewed published cases. Methods Data were extracted from a MEDLINE search via PubMed (January 1, 1980, through March 22, 2022) from eligible published case reports/series for patients with an ALSP diagnosis that had been confirmed by testing for the colony-stimulating factor-1 receptor gene (CSF1R) mutation. Patient demographics, clinical symptoms, brain imaging, and initial diagnosis data were summarized descriptively. Categorical data for patient demographics, symptoms, and brain imaging were stratified by initial diagnosis category to test for differences in initial diagnosis based on each variable. Results Data were extracted from a cohort of 291 patients with ALSP from 93 published case reports and case series. Mean (standard deviation) age of symptom onset was 43.2 (11.6) years. A family history of ALSP was observed in 59.1% of patients. Cognitive impairment (47.1%) and behavioral and psychiatric abnormalities (26.8%) were the most frequently reported initial symptoms. Of 291 total cases, an accurate initial diagnosis of ALSP was made in 72 cases (24.7%) and the most frequent initial misdiagnosis categories were frontotemporal dementia (28 [9.6%]) and multiple sclerosis (21 [7.2%]). Of the 219 cases (75.3%) that were initially mis- or undiagnosed, 206 cases (94.1%) were later confirmed as ALSP by immunohistology, imaging, and/or genetic testing; for the remaining 13 cases, no final diagnosis was reported. Initial diagnosis category varied based on age, family history, geographic region, mode of inheritance, and presenting symptoms of pyramidal or extrapyramidal motor dysfunction, behavioral and psychiatric abnormalities, cognitive impairment, and speech difficulty. Brain imaging abnormalities were common, and initial diagnosis category was significantly associated with white matter hyperintensities, white matter calcifications, and ventricular enlargement. Discussion In this literature analysis, ALSP was frequently misdiagnosed. Improving awareness of this condition and distinguishing it from other conditions with overlapping presenting symptoms is important for timely management of a rapidly progressive disease such as ALSP.
Collapse
Affiliation(s)
| | | | - Takuya Konno
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Andreas Meier
- Vigil Neuroscience, Inc., Watertown, MA, United States
| | - Farid Foroutan
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
2
|
Chelban V, Houlden H. White matter disorders with cerebral calcification in adulthood. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:111-131. [PMID: 39322374 DOI: 10.1016/b978-0-323-99209-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This chapter provides a comprehensive overview of adult-onset leukoencephalopathies with cerebral calcification (CC), emphasizing the importance of age at presentation, systemic clinical features, and neuroimaging patterns for accurate diagnosis. CC is a multifaceted phenomenon associated with various neurologic, developmental, metabolic, and genetic conditions, as well as normal aging. Here, we explore the distinction between primary familial brain calcification (PFBC) and secondary forms, including metabolic and mitochondrial causes. We discuss genetic causes, e.g., SLC20A2, XPR1, PDGFB, PDGFRB, MYORG, NAA60 and JAM2, in the context of autosomal dominant and recessive PFBC and other inherited conditions. The chapter delineates the diagnostic approach involving family history, clinical assessments, and detailed investigations of calcium-phosphate metabolism. Neuroimaging modalities, including computed tomography and magnetic resonance imaging, are crucial for assessing calcification patterns and localizations. Genetic testing, especially next-generation sequencing, plays a pivotal role in providing a final molecular diagnosis. The management of patients with CC encompasses symptomatic treatment and cause-specific approaches, requiring a multidisciplinary care approach. In conclusion, this chapter highlights the complexity of leukoencephalopathies with CC, emphasizing the need for integrated and evolving management to optimize patient care.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurobiology and Medical Genetics Laboratory, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
3
|
Chitu V, Biundo F, Oppong-Asare J, Gökhan Ş, Aguilan JT, Dulski J, Wszolek ZK, Sidoli S, Stanley ER. Prophylactic effect of chronic immunosuppression in a mouse model of CSF-1 receptor-related leukoencephalopathy. Glia 2023; 71:2664-2678. [PMID: 37519044 PMCID: PMC10529087 DOI: 10.1002/glia.24446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jude Oppong-Asare
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Jennifer T. Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Stanley ER, Biundo F, Gökhan Ş, Chitu V. Differential regulation of microglial states by colony stimulating factors. Front Cell Neurosci 2023; 17:1275935. [PMID: 37964794 PMCID: PMC10642290 DOI: 10.3389/fncel.2023.1275935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Recent studies have emphasized the role of microglia in the progression of many neurodegenerative diseases. The colony stimulating factors, CSF-1 (M-CSF), granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF) regulate microglia through different cognate receptors. While the receptors for GM-CSF (GM-CSFR) and G-CSF (G-CSFR) are specific for their ligands, CSF-1 shares its receptor, the CSF-1 receptor-tyrosine kinase (CSF-1R), with interleukin-34 (IL-34). All four cytokines are expressed locally in the CNS. Activation of the CSF-1R in macrophages is anti-inflammatory. In contrast, the actions of GM-CSF and G-CSF elicit different activated states. We here review the roles of each of these cytokines in the CNS and how they contribute to the development of disease in a mouse model of CSF-1R-related leukodystrophy. Understanding their roles in this model may illuminate their contribution to the development or exacerbation of other neurodegenerative diseases.
Collapse
Affiliation(s)
- E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Şölen Gökhan
- Department of Neurology, Albert Einstein College of Medicine, Institute for Brain Disorders and Neural Regeneration, Bronx, NY, United States
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Suthar PP, Jhaveri M, Mafraji M. Case 317: Adult-Onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia. Radiology 2023; 308:e220790. [PMID: 37750775 DOI: 10.1148/radiol.220790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
HISTORY A 44-year-old previously healthy man with a 9-month history of progressive cognitive decline, depression, urinary incontinence, and inability to perform tasks of daily living presented to the emergency department with worsening cognitive and neuropsychiatric symptoms. He had become more distressed, and his family noticed him departing the house without closing doors, leaving water faucets running, and sending his children to school on Sundays. History taken from the patient's wife revealed that his brother had passed away in his late 30s after a slowly progressing functional and cognitive decline over the course of 5 years. No further detailed family history could be obtained. The review of systems was negative; he had no prior medical, psychiatric, or surgical history; and he denied any history of recent travel, camping, hiking, or vaccination. The patient was not taking any dietary supplements, nor was he taking any over-the-counter or prescription medication. Examination revealed vital signs were within normal limits. Neurocognitive assessment revealed a conscious, coherent, and alert patient with impaired memory and concentration. He showed poor attention, depressed mood, and restricted affect. He was unable to spell the word world forward, nor was he able to understand a request to spell it backward. The rest of the physical and neurologic examination revealed no abnormalities. Extensive laboratory work-up was conducted and included the following: toxicology screening; screening for HIV-1, HIV-2, and syphilis treponemal antibodies; COVID-19 polymerase chain reaction; and measurement of B1 and B12 levels. The results of screening were negative. Cerebrospinal fluid (CSF) assays, including CSF oligoclonal bands and CSF flow cytometry, revealed values within normal limits. CT of the brain without intravenous contrast material was performed in the emergency department to rule out acute intracranial abnormality. Multiplanar multisequence MRI of the brain without and with intravenous contrast material was ordered for further assessment. CT images of chest, abdomen, and pelvis were unremarkable (images not shown).
Collapse
Affiliation(s)
- Pokhraj Prakashchandra Suthar
- From the Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 W Congress Pkwy, Chicago, IL 60612
| | - Miral Jhaveri
- From the Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 W Congress Pkwy, Chicago, IL 60612
| | - Mustafa Mafraji
- From the Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 W Congress Pkwy, Chicago, IL 60612
| |
Collapse
|
6
|
Leucoencefalopatie ereditarie e leucodistrofie dell’adulto. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)47096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
7
|
Chitu V, Gökhan Ş, Stanley ER. Modeling CSF-1 receptor deficiency diseases - how close are we? FEBS J 2022; 289:5049-5073. [PMID: 34145972 PMCID: PMC8684558 DOI: 10.1111/febs.16085] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The role of colony-stimulating factor-1 receptor (CSF-1R) in macrophage and organismal development has been extensively studied in mouse. Within the last decade, mutations in the CSF1R have been shown to cause rare diseases of both pediatric (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis, OMIM #618476) and adult (CSF1R-related leukoencephalopathy, OMIM #221820) onset. Here we review the genetics, penetrance, and histopathological features of these diseases and discuss to what extent the animal models of Csf1r deficiency currently available provide systems in which to study the underlying mechanisms involved.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| |
Collapse
|
8
|
Friedberg A, Ramos EM, Yang Z, Bonham LW, Yokoyama JS, Ljubenkov PA, Younes K, Geschwind DH, Miller BL. Case Report: Novel CSF1R Variant in a Patient With Behavioral Variant Frontotemporal Dementia Syndrome With Prodromal Repetitive Scratching Behavior. Front Neurol 2022; 13:909944. [PMID: 35812083 PMCID: PMC9256970 DOI: 10.3389/fneur.2022.909944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
CSF1R-related leukoencephalopathy is an autosomal dominant neurodegenerative disease caused by mutations in the tyrosine kinase domain of the colony stimulating factor 1 receptor (CSF1R). Several studies have found that hematogenic stem cell transplantation is an effective disease modifying therapy however the literature regarding prodromal and early symptoms CSF1R-related leukoencephalopathy is limited. We describe a 63-year-old patient with 4 years of repetitive scratching and skin picking behavior followed by 10 years of progressive behavioral, cognitive, and motor decline in a pattern suggesting behavioral variant of frontotemporal dementia. Brain MRI demonstrated prominent frontal and parietal atrophy accompanied by underlying bilateral patchy white matter hyperintensities sparing the U fibers and cavum septum pellucidum. Whole-exome sequencing revealed a novel, predicted deleterious missense variant in a highly conserved amino acid in the tyrosine kinase domain of CSF1R (p.Gly872Arg). Given this evidence and the characteristic clinical and radiological findings this novel variant was classified as likely pathogenic according to the American College of Medical Genetics standard guidelines. Detailed description of the prodromal scratching and skin picking behavior and possible underlying mechanisms in this case furthers knowledge about early manifestations of CSF1R-related leukoencephalopathy with the hope that early detection and timely administration of disease modifying therapies becomes possible.
Collapse
Affiliation(s)
- Adit Friedberg
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhongan Yang
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Luke W. Bonham
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
| | - Peter A. Ljubenkov
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kyan Younes
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Bruce L. Miller
| |
Collapse
|
9
|
Ferrer I. The Primary Microglial Leukodystrophies: A Review. Int J Mol Sci 2022; 23:ijms23116341. [PMID: 35683020 PMCID: PMC9181167 DOI: 10.3390/ijms23116341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Primary microglial leukodystrophy or leukoencephalopathy are disorders in which a genetic defect linked to microglia causes cerebral white matter damage. Pigmented orthochromatic leukodystrophy, adult-onset orthochromatic leukodystrophy associated with pigmented macrophages, hereditary diffuse leukoencephalopathy with (axonal) spheroids, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) are different terms apparently used to designate the same disease. However, ALSP linked to dominantly inherited mutations in CSF1R (colony stimulating factor receptor 1) cause CSF-1R-related leukoencephalopathy (CRP). Yet, recessive ALSP with ovarian failure linked to AARS2 (alanyl-transfer (t)RNA synthase 2) mutations (LKENP) is a mitochondrial disease and not a primary microglial leukoencephalopathy. Polycystic membranous lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL; Nasu–Hakola disease: NHD) is a systemic disease affecting bones, cerebral white matter, selected grey nuclei, and adipose tissue The disease is caused by mutations of one of the two genes TYROBP or TREM2, identified as PLOSL1 and PLOSL2, respectively. TYROBP associates with receptors expressed in NK cells, B and T lymphocytes, dendritic cells, monocytes, macrophages, and microglia. TREM2 encodes the protein TREM2 (triggering receptor expressed on myeloid cells 2), which forms a receptor signalling complex with TYROBP in macrophages and dendritic cells. Rather than pure microglial leukoencephalopathy, NHD can be considered a multisystemic “immunological” disease.
Collapse
Affiliation(s)
- Isidro Ferrer
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Department of Pathology and Experimental Therapeutics, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, 08907 Barcelona, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
10
|
Maheshwari U, Huang SF, Sridhar S, Keller A. The Interplay Between Brain Vascular Calcification and Microglia. Front Aging Neurosci 2022; 14:848495. [PMID: 35309892 PMCID: PMC8924545 DOI: 10.3389/fnagi.2022.848495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
- *Correspondence: Annika Keller,
| |
Collapse
|
11
|
Mickeviciute GC, Valiuskyte M, Plattén M, Wszolek ZK, Andersen O, Danylaité Karrenbauer V, Ineichen BV, Granberg T. Neuroimaging phenotypes of CSF1R-related leukoencephalopathy: Systematic review, meta-analysis, and imaging recommendations. J Intern Med 2022; 291:269-282. [PMID: 34875121 DOI: 10.1111/joim.13420] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided.
Collapse
Affiliation(s)
- Goda-Camille Mickeviciute
- Department of Physical Medicine and Rehabilitation, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Monika Valiuskyte
- Department of Skin and Venereal Diseases, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Michael Plattén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,School of Chemistry, Biotechnology, and Health, Royal Institute of Technology, Stockholm, Sweden
| | | | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin V Ineichen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Sriram N, Padmanabha H, Chandra SR, Mahale R, Nandeesh B, Bhat MD, Christopher R, Gupta M, Udupi GA, Mailankody P, Mathuranath PS. CSF1R Related Leukoencephalopathy - Rare Childhood Presentation of An Autosomal Dominant Microgliopathy! Ann Indian Acad Neurol 2022; 25:311-314. [PMID: 35693676 PMCID: PMC9175392 DOI: 10.4103/aian.aian_418_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/12/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Sadanandavalli R Chandra
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rohan Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Bevinahalli Nandeesh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Maya D Bhat
- Department of Neurointervention and Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Manisha Gupta
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gautham A Udupi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pooja Mailankody
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pavagada S Mathuranath
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
13
|
Arshad F, Vengalil S, Maskomani S, Kamath SD, Kulanthaivelu K, Mundlamuri RC, Yadav R, Nalini A. Novel CSF1R variant in adult-onset leukoencephalopathy masquerading as frontotemporal dementia: a follow-up study. Neurocase 2021; 27:484-489. [PMID: 34983323 DOI: 10.1080/13554794.2021.2022704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare white matter degenerative disease manifesting as progressive cognitive decline, pyramidal, and extrapyramidal features resulting from mutations in the colony-stimulating factor-1 receptor (CSF1R) gene. We describe a sporadic case of a young man who developed five months history of progressive cognitive decline with predominant neuropsychiatric symptoms, suggestive of frontotemporal dementia. Brain magnetic resonance imaging (MRI) showed bilateral frontotemporal atrophy, high signal intensities in frontal and high parietal deep white matter with persistent diffusion restriction on follow-up imaging. Genetics showed a novel heterozygous mutation in CSF1R gene confirming the diagnosis of ALSP. Being a rare disease, and given its particular adult-onset presentation especially presenile cognitive impairment, it can pose a unique diagnostic challenge. The study highlights the importance of recognizing the disease early and broadens the clinical, genetic, and imaging spectrum of CSF1R gene mutation.
Collapse
Affiliation(s)
- Faheem Arshad
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | | | - Sneha Dayanand Kamath
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | | | | | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
14
|
Tsai PC, Fuh JL, Yang CC, Chang A, Lien LM, Wang PN, Lai KL, Tsai YS, Lee YC, Liao YC. Clinical and genetic characterization of adult-onset leukoencephalopathy caused by CSF1R mutations. Ann Clin Transl Neurol 2021; 8:2121-2131. [PMID: 34652888 PMCID: PMC8607455 DOI: 10.1002/acn3.51467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Objective Mutations in the colony‐stimulating factor 1 receptor gene (CSF1R) were identified as a cause of adult‐onset inherited leukoencephalopathy. The present study aims at investigating the frequency, clinical characteristics, and functional effects of CSF1R mutations in Taiwanese patients with adult‐onset leukoencephalopathy. Methods Mutational analysis of CSF1R was performed in 149 unrelated individuals with leukoencephalopathy by a targeted resequencing panel covering the entire coding regions of CSF1R. In vitro analysis of the CSF1‐induced autophosphorylation activities of mutant CSF1R proteins was conducted to assess the pathogenicity of the CSF1R mutations. Results Among the eight CSF1R variants identified in this study, five mutations led to a loss of CSF1‐induced autophosphorylation of CSF1R proteins. Four mutations (p.K586*, p.G589R, p.R777Q, and p.R782C) located within the tyrosine kinase domain of CSF1R, whereas the p.T79M mutation resided in the immunoglobulin‐like domain. The five patients carrying the CSF1R mutations developed cognitive decline at age 41, 43, 50, 79, and 86 years, respectively. Psychiatric symptoms and behavior changes were observed in four of the five patients. The executive function and processing speed were severely impaired at an early stage, and their cognitive function deteriorated rapidly within 3–4 years. Diffusion‐restricted lesions at the subcortical regions and bilateral corticospinal tracts were found in three patients. Interpretation CSF1R mutations account for 3.5% (5/149) of the adult‐onset leukoencephalopathy in Taiwan. CSF1R mutations outside the tyrosine kinase domain may also disturb the CSF1R function and lead to the clinical phenotype. Molecular functional validation is important to determine the pathogenicity of novel CSF1R variants.
Collapse
Affiliation(s)
- Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Anna Chang
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Li-Ming Lien
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Ayrignac X, Carra-Dallière C, Codjia P, Mouzat K, Castelnovo G, Ellie E, Etcharry-Bouyx F, Belliard S, Marelli C, Portet F, Le Ber I, Durand-Dubief F, Mathey G, Stankoff B, Dorboz I, Drunat S, Boespflug-Tanguy O, Menjot de Champfleur N, Lumbroso S, Mochel F, Labauge P. Evaluation of CSF1R-related adult onset leukoencephalopathy with axonal spheroids and pigmented glia diagnostic criteria. Eur J Neurol 2021; 29:329-334. [PMID: 34541732 DOI: 10.1111/ene.15115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Diagnostic criteria for adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) due to colony-stimulating factor 1 receptor (CSF1R) mutation have recently been proposed. Our objective was to assess their accuracy in an independent multicenter cohort. METHODS We evaluated the sensitivity and specificity of the diagnostic criteria for ALSP (including the "probable" and "possible" definitions) in a national cohort of 22 patients with CSF1R mutation, and 59 patients with an alternative diagnosis of adult onset inherited leukoencephalopathy. RESULTS Overall, the sensitivity of the diagnostic criteria for ALSP was 82%, including nine of 22 patients diagnosed as probable and nine of 22 diagnosed as possible. Twenty of the 59 CSF1R mutation-negative leukoencephalopathies fulfilled the diagnostic criteria, leading to a specificity of 66%. CONCLUSIONS Diagnostic criteria for ALSP have an overall limited sensitivity along with a modest specificity. We suggest that in patients suspected of genetic leukoencephalopathy, a comprehensive magnetic resonance imaging pattern-based approach is warranted, together with white matter gene panel or whole exome sequencing.
Collapse
Affiliation(s)
- Xavier Ayrignac
- Department of Neurology, INM, INSERM, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | | | - Pekes Codjia
- Department of Neurology A, Neurological Hospital, Civil Hospices of Lyon, Bron, France
| | - Kevin Mouzat
- Laboratory of Biochemistry and Molecular Biology, CHU Nimes, University of Montpellier, Nimes, France
| | | | - Emmanuel Ellie
- Department of Neurology, Bayonne Hospital, Bayonne, France
| | | | - Serge Belliard
- Department of Neurology, Pontchaillou University Hospital, CMRR, Rennes, France.,Laboratory of Neuropsychology, INSERM U 1077, Caen, France
| | - Cecilia Marelli
- EPHE, INSERM, MMDN, University of Montpellier, Montpellier, France.,Expert Center for Neurogenetic Diseases, CHU, Montpellier, France
| | - Florence Portet
- University Department of Adult Psychiatry, La Colombière Hospital, Montpellier University Hospital, Montpellier, France
| | - Isabelle Le Ber
- AP-HP, Reference Center for Rare or Early Onset Dementias, Department of Neurology, DMU Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne Université, ICM (Paris Brain Institute), APHP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Guillaume Mathey
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Bruno Stankoff
- Department of Neurology, St. Antoine Hospital, APHP, ICM, Paris, France
| | - Imen Dorboz
- INSERM UMR1141, Sorbonne Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris Diderot University, Paris, France
| | - Severine Drunat
- Department of Genetics, APHP Robert Debré, Paris, France.,INSERM UMR, 1141, NeuroDiderot, University of Paris, Paris, France
| | - Odile Boespflug-Tanguy
- INSERM UMR1141, Sorbonne Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris Diderot University, Paris, France
| | | | - Serge Lumbroso
- Laboratory of Biochemistry and Molecular Biology, CHU Nimes, University of Montpellier, Nimes, France
| | - Fanny Mochel
- Sorbonne University, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,APHP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Pierre Labauge
- Department of Neurology, INM, INSERM, University of Montpellier, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
16
|
Chu M, Wang DX, Cui Y, Kong Y, Liu L, Xie KX, Xia TX, Zhang J, Gao R, Zhou AH, Wang CD, Wu LY. Three novel mutations in Chinese patients with CSF1R-related leukoencephalopathy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1072. [PMID: 34422984 PMCID: PMC8339872 DOI: 10.21037/atm-21-217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
Background CSF1R-related encephalopathy refers to adult-onset leukodystrophy with neuroaxonal spheroids and pigmented glia (ALSP) due to CSF1R mutations, which is a rare autosomal dominant white matter disease including two pathological entities, hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). The aim of this study was to identify additional causative mutations in the CSF1R gene and clarify their pathogenic effects. Methods Whole-exome sequencing was conducted for nine Chinese patients diagnosed with possible ALSP based on clinical and neuroimaging findings from March 2014 to June 2020 at Xuanwu Hospital (Beijing, China). Variant pathogenicity was assessed according to the American College of Medical Genetics and Genomics and Association for Molecular Pathology (ACMG/AMP) Standards and Guidelines. Results Mean ± standard deviation (range) age of disease onset in the nine patients was 39.22±9.63 [25-54] years. Four of the nine patients were male, and four out of nine had a remarkable family history. Seven CSF1R mutations were identified in the nine patients; four (p.G17C, p.R579Q, p.I794T and c.2909_2910insATCA) have been previously reported, while three (p.V613L, p.W821R and c.2442+2_2442+3dupT) were novel. Of the latter, two (p.V613L and p.W821R) were likely pathogenic and 1 (c.2442+2_2442+3dupT) was of uncertain significance according to ACMG/AMP criteria. Conclusions These findings expand the mutational spectrum of ALSP and provide a basis for future investigations on etiologic factors and potential management strategies for this disease.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong-Xin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yue Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ke-Xin Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tian-Xinyu Xia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ai-Hong Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao-Dong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li-Yong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Altered structural and functional connectivity in CSF1R-related leukoencephalopathy. Brain Imaging Behav 2021; 15:1655-1666. [PMID: 32705467 DOI: 10.1007/s11682-020-00360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CSF1R-related leukoencephalopathy is a rare white-matter encephalopathy characterized by motor and neuropsychiatric symptoms due to colony-stimulating factor 1 receptor (CSF1R) gene mutation. Few studies have investigated the intrinsic brain alternations of patients with CSF1R-related leukoencephalopathy. We aim to evaluate the structural and functional changes in those patients. Seven patients with CSF1R-related leukoencephalopathy and 15 age-matched healthy controls (HCs) underwent multimodal magnetic resonance imaging (MRI), including high-resolution T1-weighted imaging, T2-weighted fluid attenuated inversion recovery imaging, diffusion-weighted imaging, diffusion kurtosis imaging (DKI) and resting-state functional MRI. First, to detect structural alterations, the gray matter volumes were compared using voxel-based morphometry analyses. Second, DKI parametric maps were used to evaluate the white matter (WM) connectivity changes. Finally, we constructed a seed-based resting-state functional connectivity matrix based on 90 regions of interest and examined the functional network changes of CSF1R-related leukoencephalopathy. Unlike the HCs, patients with CSF1R-related leukoencephalopathy predominantly had morphological atrophy in the bilateral thalamus and left hippocampus. In addition, the abnormal diffusivity was mainly distributed in the splenium of the corpus callosum, periventricular regions, centrum semiovale, subcortical U-fibers and midline cortex structures. Moreover, the patients had significantly reduced functional connectivity between the bilateral caudate nucleus and their contralateral hippocampus. Therefore, in addition to hyperintensity on the T2-weighted images, CSF1R-related leukoencephalopathy also showed abnormal structural and functional alterations, including subcortical atrophy and reduced functional connectivity, as well as altered diffuse parameters in the WM and subcortical regions. These findings expand our understanding of the potential pathophysiologic mechanism behind this hereditary disease.
Collapse
|
18
|
Tokumaru AM, Saito Y, Murayma S. Diffusion-Weighted Imaging is Key to Diagnosing Specific Diseases. Magn Reson Imaging Clin N Am 2021; 29:163-183. [PMID: 33902901 DOI: 10.1016/j.mric.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article reviews diseases for which persistent signal abnormalities on diffusion-weighted imaging are the key to their diagnosis. Specifically, updated knowledge regarding the neuroimaging patterns of the following diseases is summarized: sporadic Creutzfeldt-Jakob disease, neuronal intranuclear inclusion disease, and hereditary diffuse leukoencephalopathy with axonal spheroids-colony-stimulating factor receptors/adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In addition, their differential diagnoses; clinical manifestations; and pathologic, genetic, and imaging correlates are discussed.
Collapse
Affiliation(s)
- Aya Midori Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Yuko Saito
- Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Shigeo Murayma
- Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka-fu 565-0871, Japan
| |
Collapse
|
19
|
Han J, Sarlus H, Wszolek ZK, Karrenbauer VD, Harris RA. Microglial replacement therapy: a potential therapeutic strategy for incurable CSF1R-related leukoencephalopathy. Acta Neuropathol Commun 2020; 8:217. [PMID: 33287883 PMCID: PMC7720517 DOI: 10.1186/s40478-020-01093-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
CSF1R-related leukoencephalopathy is an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia caused by colony stimulating factor 1 receptor (CSF1R) gene mutations. The disease has a global distribution and currently has no cure. Individuals with CSF1R-related leukoencephalopathy variably present clinical symptoms including cognitive impairment, progressive neuropsychiatric and motor symptoms. CSF1R is predominantly expressed on microglia within the central nervous system (CNS), and thus CSF1R-related leukoencephalopathy is now classified as a CNS primary microgliopathy. This urgent unmet medical need could potentially be addressed by using microglia-based immunotherapies. With the rapid recent progress in the experimental microglial research field, the replacement of an empty microglial niche following microglial depletion through either conditional genetic approaches or pharmacological therapies (CSF1R inhibitors) is being studied. Furthermore, hematopoietic stem cell transplantation offers an emerging means of exchanging dysfunctional microglia with the aim of reducing brain lesions, relieving clinical symptoms and prolonging the life of patients with CSF1R-related leukoencephalopathy. This review article introduces recent advances in microglial biology and CSF1R-related leukoencephalopathy. Potential therapeutic strategies by replacing microglia in order to improve the quality of life of CSF1R-related leukoencephalopathy patients will be presented.
Collapse
|
20
|
Purohit B, Johandi F, Sitoh YY, Ng A, Tham C. Adult-onset diffuse leukoencephalopathy with axonal spheroids and pigmented glia presenting with acute stroke-like symptoms: A rare clinical scenario. Radiol Case Rep 2020; 15:1915-1920. [PMID: 32874384 PMCID: PMC7452016 DOI: 10.1016/j.radcr.2020.07.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022] Open
Abstract
Adult-onset diffuse leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare progressive degenerative white matter disease caused by mutations in the colony-stimulating factor-1 receptor gene. Patients commonly present in the 4th or 5th decade with variable clinical presentations including behavioral changes, dementia, parkinsonism, and motor dysfunctions, eventually leading to death within a few years. Although the disease is typically hereditary, sporadic cases are known to occur. The classic MRI features of ALSP include T2 hyperintensities in the frontal and parietal white matter, scattered foci of restricted diffusion in the white matter, age-advanced cerebral involutional changes, thinning and signal changes in the corpus callosum, absence of infratentorial involvement and lack of enhancement. CT commonly shows tiny calcifications in the corpus callosum and deep white matter. We report a unique case of sporadic ALSP that initially presented as young stroke with acute onset of left-sided hemiparesis and no preceding history of cognitive decline. However, subsequent cognitive and behavioral changes lead to the consideration of an alternative diagnosis. Stroke-like symptoms is a very rare primary presentation of this disease entity. We have highlighted the classic MRI and CT features that helped to guide its diagnosis in our patient and prompted early corroborative genetic testing.
Collapse
Affiliation(s)
- Bela Purohit
- Department of Neuroradiology, National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore, 308433, Singapore
| | | | - Yih Yian Sitoh
- Department of Neuroradiology, National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore, 308433, Singapore
| | - Adeline Ng
- Department of Neurology, National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore, 308433, Singapore
| | - Carol Tham
- Department of Neurology, National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore, 308433, Singapore
- Corresponding author.
| |
Collapse
|
21
|
Onder H, Oguz KK, Soylemezoglu F, Varli K. Deep White Matter Lesions with Persistent Diffusion Restriction on MRI as a Diagnostic Clue: Neuroimaging of a Turkish Family with Hereditary Diffuse Leukoencephalopathy with Spheroids and Literature Review. Ann Indian Acad Neurol 2020; 23:280-288. [PMID: 32606513 PMCID: PMC7313596 DOI: 10.4103/aian.aian_474_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Hereditary diffuse leukoencephalopathy with spheroids (HDLS), first described in 1984 is a rare disorder. Generally, it presents at adulthood with dementia, motor impairment, extrapyramidal abnormalities, and epilepsy. Definitive diagnosis is made by brain biopsy. Neuroimaging studies have revealed confluent white matter lesions predominantly in the frontal lobes, corpus callosum, and corticospinal tracts on conventional magnetic resonance imaging. Only a few reports showed diffusion restriction in the cerebral white matter; furthermore, rarer reports emphasized persistent foci of diffusion restriction as a diagnostic imaging marker. Objective: Herein, we have aimed to illustrate the first biopsy-proven Turkish HDLS pedigree consisting of 18 persons in 3 generations which contained 4 affected individuals. Materials and Methods: Four individuals in the pedigree of HDLS [two affected patients (patient III-1 and patient III-2) and two unaffected individuals (patient II-4 and patient III-5)] were investigated with conventional MRI and Diffusion-weighted imaging (DWI) using 1.5 Tesla (T) scanner. All four individuals were evaluated via neurological examinations and Mini-Mental State Examination. Brain biopsy study was performed on patient III-2. Finally, an extensive literature review involving pathology investigations and neuroimaging studies of HDLS patients was conducted. Results: DWIs of two investigated patients showed deep white matter lesions with persistent diffusion restriction. Computed tomography imaging showed punctate mineralization in the lesions. Biopsy specimens of patient III-2 demonstrated axonal spheroids which were typical for HDLS. Conclusions: Via the presentation of our pedigree and literature review, we suggest HDSL as a first-line differential diagnosis in patients with undiagnosed adult-onset familial leukoencephalopathy, in particular, those with MRI lesions of frontal white matter and centrum semiovale associated with foci of diffusion restriction and mineralization. Finally, we think that the persistence of the diffusion restriction in deep white matter lesions should be kept in mind as a crucial neuroimaging sign for HDLS.
Collapse
Affiliation(s)
- Halil Onder
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kader Karli Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kubilay Varli
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
22
|
Mangeat G, Ouellette R, Wabartha M, De Leener B, Plattén M, Danylaité Karrenbauer V, Warntjes M, Stikov N, Mainero C, Cohen‐Adad J, Granberg T. Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis. J Neuroimaging 2020; 30:674-682. [DOI: 10.1111/jon.12725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Gabriel Mangeat
- NeuroPoly Lab, Institute of Biomedical Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Russell Ouellette
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
| | - Maxime Wabartha
- NeuroPoly Lab, Institute of Biomedical Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Benjamin De Leener
- Department of Computer Sciences and Software Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Michael Plattén
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biochemistry and Health Royal Institute of Technology Stockholm Sweden
| | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neurology Karolinska University Hospital Stockholm Sweden
| | - Marcel Warntjes
- Center for Medical Imaging Science and Visualization CMIV Linköping Sweden
- SyntheticMR Linköping Sweden
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering Polytechnique Montreal Montreal Quebec Canada
- Montreal Heart Institute Montreal Quebec Canada
| | - Caterina Mainero
- Department of Radiology Athinoula A. Martinos Center for Biomedical Imaging, MGH Charlestown MA
- Harvard Medical School Boston MA
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical Engineering Polytechnique Montreal Montreal Quebec Canada
- and Functional Neuroimaging Unit, CRIUGM Université de Montréal Montreal Quebec Canada
| | - Tobias Granberg
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
23
|
Yokote A, Ouma S, Takahashi K, Hara F, Yoshida K, Tsuboi Y. [A case of hereditary diffuse leukoencephalopathy with spheroids and pigmented glia presenting with long-term mild psychiatric symptoms]. Rinsho Shinkeigaku 2020; 60:420-424. [PMID: 32435043 DOI: 10.5692/clinicalneurol.60.cn-001370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 64-year-old woman visited our hospital with early-onset dementia and progressive gait disturbance. She had demonstrated a mild communication disorder at the age of ~40 years; however, her psychiatric symptoms at that time were mild and were not accompanied by social problems. At the age of 59, she presented with memory loss, visual hallucinations, and delusions. Over the following five years she developed gait difficulties that gradually deteriorated and suffered frequent falls. On admission, neurological examinations revealed severe pyramidal and extrapyramidal signs of akinetic mutism. MRI of the brain showed cerebral atrophy, enlarged lateral ventricles, thinning of the corpus callosum, and leukoencephalopathy in the frontal-parietal lobes. Additionally, CT revealed a small spotty calcification in the frontal subcortical white matter. Genetic analysis revealed a single-base substitution (c.2330G>A/p.R777Q) in exon 18 of the colony stimulating factor 1 receptor (CSF1R) gene, encoding the CSF1R protein. She was diagnosed with hereditary diffuse leukoencephalopathy with spheroids (HDLS). HDLS is included in the differential diagnosis of early-onset dementia and should be considered in patients with mild personality change and abnormal behavior in the early course of the illness.
Collapse
Affiliation(s)
- Akira Yokote
- Department of Neurology, Fukuoka University School of Medicine.,Department of Neurology, Fukuseikai Minami Hospital
| | - Shinji Ouma
- Department of Neurology, Fukuoka University School of Medicine
| | | | | | - Kunihiro Yoshida
- Department of Brain Disease Research, Shinshu University School of Medicine
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University School of Medicine
| |
Collapse
|
24
|
Resende LL, de Paiva ARB, Kok F, da Costa Leite C, Lucato LT. Adult Leukodystrophies: A Step-by-Step Diagnostic Approach. Radiographics 2020; 39:153-168. [PMID: 30620693 DOI: 10.1148/rg.2019180081] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukodystrophies usually affect children, but in the last several decades, many instances of adult leukodystrophies have been reported in the medical literature. Because the clinical manifestation of these diseases can be nonspecific, MRI can help with establishing a diagnosis. A step-by-step approach to assist in the diagnosis of adult leukodystrophies is proposed in this article. The first step is to identify symmetric white matter involvement, which is more commonly observed in these patients. The next step is to fit the symmetric white matter involvement into one of the proposed patterns. However, a patient may present with more than one pattern of white matter involvement. Thus, the third step is to evaluate for five distinct characteristics-including enhancement, lesions with signal intensity similar to that of cerebrospinal fluid, susceptibility-weighted MRI signal intensity abnormalities, abnormal peaks at MR spectroscopy, and spinal cord involvement-to further narrow the differential diagnosis. ©RSNA, 2019.
Collapse
Affiliation(s)
- Lucas Lopes Resende
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Anderson Rodrigues Brandão de Paiva
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Fernando Kok
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Claudia da Costa Leite
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| | - Leandro Tavares Lucato
- From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.)
| |
Collapse
|
25
|
Tian WT, Zhan FX, Liu Q, Luan XH, Zhang C, Shang L, Zhang BY, Pan SJ, Miao F, Hu J, Zhong P, Liu SH, Zhu ZY, Zhou HY, Sun S, Liu XL, Huang XJ, Jiang JW, Ma JF, Wang Y, Chen SF, Tang HD, Chen SD, Cao L. Clinicopathologic characterization and abnormal autophagy of CSF1R-related leukoencephalopathy. Transl Neurodegener 2019; 8:32. [PMID: 31827782 PMCID: PMC6886209 DOI: 10.1186/s40035-019-0171-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Background CSF1R-related leukoencephalopathy, also known as hereditary diffuse leukoencephalopathy with spheroids (HDLS), is a rare white-matter encephalopathy characterized by motor and neuropsychiatric symptoms due to colony-stimulating factor 1 receptor (CSF1R) gene mutation. Few of CSF1R mutations have been functionally testified and the pathogenesis remains unknown. Methods In order to investigate clinical and pathological characteristics of patients with CSF1R-related leukoencephalopathy and explore the potential impact of CSF1R mutations, we analyzed clinical manifestations of 15 patients from 10 unrelated families and performed brain biopsy in 2 cases. Next generation sequencing was conducted for 10 probands to confirm the diagnosis. Sanger sequencing, segregation analysis and phenotypic reevaluation were utilized to substantiate findings. Functional examination of identified mutations was further explored. Results Clinical and neuroimaging characteristics were summarized. The average age at onset was 35.9 ± 6.4 years (range 24–46 years old). Younger age of onset was observed in female than male (34.2 vs. 39.2 years). The most common initial symptoms were speech dysfunction, cognitive decline and parkinsonian symptoms. One patient also had marked peripheral neuropathy. Brain biopsy of two cases showed typical pathological changes, including myelin loss, axonal spheroids, phosphorylated neurofilament and activated macrophages. Electron microscopy disclosed increased mitochondrial vacuolation and disorganized neurofilaments in ballooned axons. A total of 7 pathogenic variants (4 novel, 3 documented) were identified with autophosphorylation deficiency, among which c.2342C > T remained partial function of autophosphorylation. Western blotting disclosed the significantly lower level of c.2026C > T (p.R676*) than wild type. The level of microtubule associated protein 1 light chain 3-II (LC3-II), a classical marker of autophagy, was significantly lower in mutants expressed cells than wild type group by western blotting and immunofluorescence staining. Conclusions Our findings support the loss-of-function and haploinsufficiency hypothesis in pathogenesis. Autophagy abnormality may play a role in the disease. Repairing or promoting the phosphorylation level of mutant CSF1R may shed light on therapeutic targets in the future. However, whether peripheral polyneuropathy potentially belongs to CSF1R-related spectrum deserves further study with longer follow-up and more patients enrolled. Trial registration ChiCTR, ChiCTR1800015295. Registered 21 March 2018. Electronic supplementary material The online version of this article (10.1186/s40035-019-0171-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wo-Tu Tian
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Fei-Xia Zhan
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Qing Liu
- 2Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100032 China
| | - Xing-Hua Luan
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Chao Zhang
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,3Anhui University of Science and Technology School of Medicine, Huainan, 232001 Anhui Province China
| | - Liang Shang
- 2Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100032 China
| | - Ben-Yan Zhang
- 4Department of Pathology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Si-Jian Pan
- 5Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Fei Miao
- 6Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jiong Hu
- 7Department of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ping Zhong
- 8Suzhou Municipal Hospital, Suzhou, 234000 Anhui Province China
| | - Shi-Hua Liu
- 8Suzhou Municipal Hospital, Suzhou, 234000 Anhui Province China
| | - Ze-Yu Zhu
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hai-Yan Zhou
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Suya Sun
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Li Liu
- 9Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406 China
| | - Xiao-Jun Huang
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jing-Wen Jiang
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jian-Fang Ma
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ying Wang
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Shu-Fen Chen
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hui-Dong Tang
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Sheng-Di Chen
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Cao
- 1Department of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
26
|
Leng C, Lu L, Wang G, Zhang Y, Xu Y, Lin X, Shen N, Xu X, Qun S, Sun M, Ge W. A novel dominant-negative mutation of the CSF1R gene causes adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. Am J Transl Res 2019; 11:6093-6101. [PMID: 31632577 PMCID: PMC6789214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare autosomal dominant disorder that is caused by mutations in the colony-stimulating factor 1 receptor (CSF1R) gene. Functional haplo-insufficiency of the CSF1R gene has been considered for the underlying genetic mechanisms. A novel mutation of CSF1R and its effects on CSF1R expression or clinical characteristics were explored in an ALSP family. Clinical data and imaging data were collected from the family members with ALSP. Peripheral blood samples were collected for DNA and RNA extraction. Whole-exome sequencing and quantitative PCR were used to identify mutations and to determine the expression of CSF1R. The family had a history of a dominant hereditary pattern. Patients in this family presented motor symptoms, emotional abnormality, or memory impairment at onset. MRI findings showed high hyperintensity signals of T2-weighted imaging in the white matter and atrophy of the corpus callosum. NOTCH3 gene sequencing ruled out the diagnosis of CADASIL. Whole-exome sequencing identified a novel splice-site mutation (c.2319+1C>A) in intron 16 of the CSF1R gene. CSF1R mRNA was significantly decreased (~15%) in the peripheral blood samples of affected patients, which was much lower than the expected 50%. Our findings not only supported the pathological implication of this splice-site mutation but also demonstrated for the first time a dominant-negative effect on CSF1R expression. This report extends the genetic spectrum of ALSP with CSF1R mutations and provides evidence for the clinical heterogeneity of ALSP.
Collapse
Affiliation(s)
- Cuihua Leng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou City, Jiangsu, China
- Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou City, Jiangsu, China
| | - Likui Lu
- Institute of Fetal Medicine, The First Affiliated Hospital of Soochow UniversitySuzhou City, Jiangsu, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei City, Anhui, China
| | - Yingying Zhang
- Institute of Fetal Medicine, The First Affiliated Hospital of Soochow UniversitySuzhou City, Jiangsu, China
| | - Yan Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou City, Jiangsu, China
| | - Xiaoqian Lin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou City, Jiangsu, China
| | - Nana Shen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou City, Jiangsu, China
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou City, Jiangsu, China
| | - Sen Qun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei City, Anhui, China
| | - Miao Sun
- Institute of Fetal Medicine, The First Affiliated Hospital of Soochow UniversitySuzhou City, Jiangsu, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou City, Jiangsu, China
| |
Collapse
|
27
|
A novel CSF-1R mutation in a family with hereditary diffuse leukoencephalopathy with axonal spheroids misdiagnosed as hydrocephalus. Neurogenetics 2019; 20:155-160. [PMID: 31093799 PMCID: PMC6647879 DOI: 10.1007/s10048-019-00579-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/13/2019] [Indexed: 01/08/2023]
Abstract
Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is a rare autosomal dominant disease caused by mutations in the colony stimulating factor 1 receptor (CSF1R) gene that often results in cognitive impairment, psychiatric disorders, motor dysfunction and seizure. We report familial cases of a novel CSF1R mutation causing HDLS similar to hydrocephalus. The patients initially presented with a gait disturbance and then developed progressive cognitive decline, urinary incontinence, epileptic seizures and became bedridden as the disease progressed. A brain magnetic resonance imaging (MRI) scan revealed striking ventricular enlargement and diffuse brain atrophy with frontotemporal predominance, which was later accompanied by white matter changes. Genetic testing in this family showed a novel c.2552T>C (p.L851P) mutation in exon 19 of the CSF1R gene. However, three gene carriers in the family remained clinically asymptomatic. Because of its heterogeneous clinical phenotypes, HDLS patients are often misdiagnosed with other diseases. This is the first genetically proven HDLS case resembling hydrocephalus, and the clinical symptoms of HDLS may be related to the specific genetic mutation.
Collapse
|
28
|
Guo L, Bertola DR, Takanohashi A, Saito A, Segawa Y, Yokota T, Ishibashi S, Nishida Y, Yamamoto GL, Franco JFDS, Honjo RS, Kim CA, Musso CM, Timmons M, Pizzino A, Taft RJ, Lajoie B, Knight MA, Fischbeck KH, Singleton AB, Ferreira CR, Wang Z, Yan L, Garbern JY, Simsek-Kiper PO, Ohashi H, Robey PG, Boyde A, Matsumoto N, Miyake N, Spranger J, Schiffmann R, Vanderver A, Nishimura G, Passos-Bueno MRDS, Simons C, Ishikawa K, Ikegawa S. Bi-allelic CSF1R Mutations Cause Skeletal Dysplasia of Dysosteosclerosis-Pyle Disease Spectrum and Degenerative Encephalopathy with Brain Malformation. Am J Hum Genet 2019; 104:925-935. [PMID: 30982609 PMCID: PMC6507048 DOI: 10.1016/j.ajhg.2019.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/04/2019] [Indexed: 11/18/2022] Open
Abstract
Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.
Collapse
Affiliation(s)
- Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Débora Romeo Bertola
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Biociências da Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Asako Takanohashi
- Division of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Asuka Saito
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yuko Segawa
- Department of Orthopedic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Guilherme Lopes Yamamoto
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Biociências da Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - José Francisco da Silva Franco
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Chong Ae Kim
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Camila Manso Musso
- Instituto de Biociências da Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Margaret Timmons
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Amy Pizzino
- Division of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan J Taft
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Bryan Lajoie
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Melanie A Knight
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute of Aging, NIH, Bethesda, MD 20892, USA
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA, and Division of Genetics and Metabolism, Children's National Health System, Washington, DC 20010, USA
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Medical Genetics, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, People's Republic of China
| | - Li Yan
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - James Y Garbern
- Center of Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Pelin O Simsek-Kiper
- Department of Pediatrics, Hacettepe University Medical Faculty, Ankara 06100, Turkey
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama 330-8777, Japan
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Alan Boyde
- Biophysics, Oral Growth and Development, Dental Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Jürgen Spranger
- Central German Competence Center for Rare Diseases (MKSE), Magdeburg 39120, Germany; Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gen Nishimura
- Intractable Disease Center, Saitama University Hospital, Moro 350-0495, Japan
| | | | - Cas Simons
- Translational Bioinformatics Group, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan.
| |
Collapse
|
29
|
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia: A case report. Radiol Case Rep 2019; 14:514-517. [PMID: 30834063 PMCID: PMC6379521 DOI: 10.1016/j.radcr.2019.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 11/23/2022] Open
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare neurodegenerative disorder characterized by cerebral white matter abnormalities, myelin loss, and axonal swellings. ALSP is caused by mutations in colony stimulating factor 1 receptor gene. We report an ASLP patient with asymptomatic intracranial calcifications distributed in white matter found incidentally in a health screening.
Collapse
|
30
|
|
31
|
Coomans C, Sieben A, Lammens M, Ceuterick-de Groote C, Vandenbroecke C, Goethals I, Van Melkebeke D, Hemelsoet D. Early-onset dementia, leukoencephalopathy and brain calcifications: a clinical, imaging and pathological comparison of ALSP and PLOSL/Nasu Hakola disease. Acta Neurol Belg 2018; 118:607-615. [PMID: 30242731 DOI: 10.1007/s13760-018-1023-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia, and Nasu Hakola disease or polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy are both underrecognized progressive degenerative white matter diseases that can present with young dementia, leukoencephalopathy and brain calcifications. We report and compare three cases in terms of clinical phenotype, imaging and neuropathological findings. Both cases have led to the identification of two novel causal mutations.
Collapse
Affiliation(s)
- C Coomans
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | - A Sieben
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Institute Born-Bunge, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - M Lammens
- Institute Born-Bunge, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - C Ceuterick-de Groote
- Institute Born-Bunge, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - C Vandenbroecke
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - I Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - D Van Melkebeke
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - D Hemelsoet
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
32
|
Adult-onset leukoencephalopathy with neuroaxonal spheroids and pigmented glia mimicking systemic lupus erythematosus cerebral vasculitis. J Neurol Sci 2018; 395:25-28. [DOI: 10.1016/j.jns.2018.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
|
33
|
Konno T, Kasanuki K, Ikeuchi T, Dickson DW, Wszolek ZK. CSF1R-related leukoencephalopathy: A major player in primary microgliopathies. Neurology 2018; 91:1092-1104. [PMID: 30429277 DOI: 10.1212/wnl.0000000000006642] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
Since the discovery of CSF1R gene mutations in families with hereditary diffuse leukoencephalopathy with spheroids in 2012, more than 70 different mutations have been identified around the world. Through the analyses of mutation carriers, CSF1R-related leukoencephalopathy has been distinctly characterized clinically, radiologically, and pathologically. Typically, patients present with frontotemporal dementia-like phenotype in their 40s-50s, accompanied by motor symptoms, including pyramidal and extrapyramidal signs. Women tend to develop the clinical symptoms at a younger age than men. On brain imaging, in addition to white matter abnormalities, thinning of the corpus callosum, diffusion-restricted lesions in the white matter, and brain calcifications are hallmarks. Primary axonopathy followed by demyelination was suggested by pathology. Haploinsufficiency of colony-stimulating factor-1 receptor (CSF1R) is evident in a patient with a frameshift mutation, facilitating the establishment of Csf1r haploinsufficient mouse model. These mice develop clinical, radiologic, and pathologic phenotypes consistent with those of human patients with CSF1R mutations. In vitro, perturbation of CSF1R signaling is shown in cultured cells expressing mutant CSF1R. However, the underlying mechanisms by which CSF1R mutations selectively lead to white matter degeneration remains to be elucidated. Given that CSF1R mainly expresses in microglia, CSF1R-related leukoencephalopathy is representative of primary microgliopathies, of which microglia have a pivotal and primary role in pathogenesis. In this review, we address the current knowledge of CSF1R-related leukoencephalopathy and discuss the putative pathophysiology, with a focus on microglia, as well as future research directions.
Collapse
Affiliation(s)
- Takuya Konno
- From the Departments of Neurology (T.K., Z.K.W.) and Neuroscience (K.K., D.W.D.), Mayo Clinic, Jacksonville, FL; and Department of Molecular Genetics (T.I.), Brain Research Institute, Niigata University, Niigata, Japan. Dr. Konno is currently with the Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Koji Kasanuki
- From the Departments of Neurology (T.K., Z.K.W.) and Neuroscience (K.K., D.W.D.), Mayo Clinic, Jacksonville, FL; and Department of Molecular Genetics (T.I.), Brain Research Institute, Niigata University, Niigata, Japan. Dr. Konno is currently with the Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- From the Departments of Neurology (T.K., Z.K.W.) and Neuroscience (K.K., D.W.D.), Mayo Clinic, Jacksonville, FL; and Department of Molecular Genetics (T.I.), Brain Research Institute, Niigata University, Niigata, Japan. Dr. Konno is currently with the Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Dennis W Dickson
- From the Departments of Neurology (T.K., Z.K.W.) and Neuroscience (K.K., D.W.D.), Mayo Clinic, Jacksonville, FL; and Department of Molecular Genetics (T.I.), Brain Research Institute, Niigata University, Niigata, Japan. Dr. Konno is currently with the Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Zbigniew K Wszolek
- From the Departments of Neurology (T.K., Z.K.W.) and Neuroscience (K.K., D.W.D.), Mayo Clinic, Jacksonville, FL; and Department of Molecular Genetics (T.I.), Brain Research Institute, Niigata University, Niigata, Japan. Dr. Konno is currently with the Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
34
|
Miura T, Mezaki N, Konno T, Iwasaki A, Hara N, Miura M, Funayama M, Unai Y, Tashiro Y, Okita K, Kihara T, Ito N, Kanatsuka Y, Jones DT, Hara N, Ishiguro T, Tokutake T, Kasuga K, Nozaki H, Dickson DW, Onodera O, Wszolek ZK, Ikeuchi T. Identification and functional characterization of novel mutations including frameshift mutation in exon 4 of CSF1R in patients with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. J Neurol 2018; 265:2415-2424. [PMID: 30136118 PMCID: PMC6182692 DOI: 10.1007/s00415-018-9017-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
Abstract
Objective Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is caused by mutations in CSF1R. Pathogenic mutations in exons 12–22 including coding sequence of the tyrosine kinase domain (TKD) of CSF1R were previously identified. We aimed to identify CSF1R mutations in patients who were clinically suspected of having ALSP and to determine the pathogenicity of novel CSF1R variants. Methods Sixty-one patients who fulfilled the diagnostic criteria of ALSP were included in this study. Genetic analysis of CSF1R was performed for all the coding exons. The haploinsufficiency of CSF1R was examined for frameshift mutations by RT-PCR. Ligand-dependent autophosphorylation of CSF1R was examined in cells expressing CSF1R mutants. Results We identified ten variants in CSF1R including two novel frameshift, five novel missense, and two known missense mutations as well as one known missense variant. Eight mutations were located in TKD. One frameshift mutation (p.Pro104LeufsTer8) and one missense variant (p.His362Arg) were located in the extracellular domain. RT-PCR analysis revealed that the frameshift mutation of p.Pro104LeufsTer8 caused nonsense-mediated mRNA decay. Functional assay revealed that none of the mutations within TKD showed autophosphorylation of CSF1R. The p.His362Arg variant located in the extracellular domain showed comparable autophosphorylation of CSF1R to the wild type, suggesting that this variant is not likely pathogenic. Conclusions The detection of the CSF1R mutation outside of the region-encoding TKD may extend the genetic spectrum of ALSP with CSF1R mutations. Mutational analysis of all the coding exons of CSF1R should be considered for patients clinically suspected of having ALSP. Electronic supplementary material The online version of this article (10.1007/s00415-018-9017-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takeshi Miura
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan.,Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Naomi Mezaki
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan.,Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Takuya Konno
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan.,Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Akio Iwasaki
- Department of Neurology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga, 321-0293, Japan
| | - Naoyuki Hara
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Science, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masatomo Miura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto, 860-8555, Japan
| | - Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, 284-1 Yobe, Ashikaga, 326-0843, Japan
| | - Yuki Unai
- Department of Neurology, Sumitomo Hospital, 5-3-20 Nakanoshima, Kita-ku, Osaka, 530-0005, Japan
| | - Yuichi Tashiro
- Department of Neurology, National Hospital Organization Mito Medical Center, 280 Sakuranosato, Ibarakimachi, Higashiibaraki, 311-3193, Japan
| | - Kenji Okita
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1-40, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takeshi Kihara
- Department of Neurology, Rakuwakai Otowa Rehabilitation Hospital, 32-1 Koyamakitamizocho, Yamashina-ku, Kyoto, 607-8113, Japan
| | - Nobuo Ito
- Department of Neurology, Suzuka General Hospital, 1275-53 Yamanohana, Yasuzukacho, Suzuka, 513-8630, Japan
| | - Yoichi Kanatsuka
- Department of Neurology, Yokohama Municipal Citizen's Hospital, 56 Okazawacho, Hodogaya-ku, Yokohama, 240-8555, Japan
| | - David T Jones
- Department of Neurology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Takanobu Ishiguro
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan.,Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Hiroaki Nozaki
- Graduate School of Health Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585, Japan.
| |
Collapse
|
35
|
Codjia P, Ayrignac X, Mochel F, Mouzat K, Carra-Dalliere C, Castelnovo G, Ellie E, Etcharry-Bouyx F, Verny C, Belliard S, Hannequin D, Marelli C, Nadjar Y, Le Ber I, Dorboz I, Samaan S, Boespflug-Tanguy O, Lumbroso S, Labauge P. Adult-Onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia: An MRI Study of 16 French Cases. AJNR Am J Neuroradiol 2018; 39:1657-1661. [PMID: 30115677 DOI: 10.3174/ajnr.a5744] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/01/2018] [Indexed: 11/07/2022]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia is an autosomal dominant leukoencephalopathy related to CSF1R gene mutations. A growing number of clinicoradiologic phenotypes have been described. In this study, we analyzed brain imaging findings in 16 patients with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia to refine radiologic diagnostic clues. T2/FLAIR white matter hyperintensities were present in all patients with frontal or frontoparietal predilection, with asymmetric distribution in more than one-third. Brain atrophy and callosal involvement were almost constant, and corticospinal tract involvement was frequent. Moreover, deep white matter hyperintense dots on DWI and deep punctate calcifications on CT were often found. Conversely, deep gray matter nuclei, external capsules, and brain stem were rarely involved. Our series emphasized the great variability of MR imaging findings seen in adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. A complete imaging screening including DWI, T2*, and CT is mandatory to accurately assess patients with suspected inherited adult-onset leukoencephalopathy.
Collapse
Affiliation(s)
- P Codjia
- From the Department of Neurology (P.C., X.A., C.C.-D., C.M., P.L.), Montpellier University Hospital, Montpellier, France
| | - X Ayrignac
- From the Department of Neurology (P.C., X.A., C.C.-D., C.M., P.L.), Montpellier University Hospital, Montpellier, France
| | - F Mochel
- Genetics (F.M.), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Paris, France
| | - K Mouzat
- Departments of Biochemistry and Molecular Biology (K.M., S.L.)
| | - C Carra-Dalliere
- From the Department of Neurology (P.C., X.A., C.C.-D., C.M., P.L.), Montpellier University Hospital, Montpellier, France
| | - G Castelnovo
- Neurology (G.C.), Nîmes University Hospital, Nîmes, France
| | - E Ellie
- Department of Neurology (E.E.), Côte Basque Hospital, Bayonne, France
| | - F Etcharry-Bouyx
- Department of Neurology (F.E.-B., C.V.), Angers University Hospital, Angers, France
| | - C Verny
- Department of Neurology (F.E.-B., C.V.), Angers University Hospital, Angers, France
| | - S Belliard
- Department of Neurology (S.B.), Rennes University Hospital, Rennes, France
| | - D Hannequin
- Department of Neurology (D.H.), Rouen University Hospital, Rouen, France
| | - C Marelli
- From the Department of Neurology (P.C., X.A., C.C.-D., C.M., P.L.), Montpellier University Hospital, Montpellier, France
| | - Y Nadjar
- Departments of Neurology (Y.N., I.L.B.)
| | - I Le Ber
- Departments of Neurology (Y.N., I.L.B.)
| | - I Dorboz
- Department of Neuropediatrics and Metabolic Disorders (I.D., S.S., O.B.-T.), Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Paris, France
| | - S Samaan
- Department of Neuropediatrics and Metabolic Disorders (I.D., S.S., O.B.-T.), Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Paris, France
| | - O Boespflug-Tanguy
- Department of Neuropediatrics and Metabolic Disorders (I.D., S.S., O.B.-T.), Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Paris, France
| | - S Lumbroso
- Departments of Biochemistry and Molecular Biology (K.M., S.L.)
| | - P Labauge
- From the Department of Neurology (P.C., X.A., C.C.-D., C.M., P.L.), Montpellier University Hospital, Montpellier, France
| |
Collapse
|
36
|
Konno T, Miura T, Harriott AM, Mezaki N, Edwards ES, Rademakers R, Ross OA, Meschia JF, Ikeuchi T, Wszolek ZK. Partial loss of function of colony-stimulating factor 1 receptor in a patient with white matter abnormalities. Eur J Neurol 2018; 25:875-881. [PMID: 29509319 DOI: 10.1111/ene.13611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/28/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Mutations in colony-stimulating factor 1 receptor (CSF1R) cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). Patients with ALSP can be misdiagnosed as having acute ischemic stroke due to hyperintensity lesions on diffusion-weighted magnetic resonance imaging. Mutant CSF1R proteins identified in ALSP show a complete loss of autophosphorylation of CSF1R. METHODS We conducted mutation screening of CSF1R in 123 patients with definite acute ischemic cerebrovascular syndrome and positive family history of stroke. The pathogenicity of identified variants was evaluated using functional analyses. The levels of autophosphorylation of CSF1R in response to treatment with ligands of CSF1R were examined in cells transfected with wild-type and mutant CSF1R. RESULTS We identified eight CSF1R variants, six were known non-pathogenic polymorphisms, whereas the other two were missense variants inducing substitution of amino acid residues (p.Glu573Lys and p.Gly747Arg). Functional assay showed that the levels of autophosphorylation of p.Gly747Arg were similar to those of wild-type when treated with ligands. The autophosphorylation of p.Glu573Lys was detectable, but significantly decreased compared with those of wild-type CSF1R (P < 0.001, two-way anova with Bonferroni). The clinical presentation of the patient with p.Glu573Lys was consistent with cerebral embolism. The patient did not have typical clinical findings of ALSP. However, periventricular white matter abnormalities, unrelated to the recent infarct, were evident on brain magnetic resonance imaging. CONCLUSIONS In contrast to ALSP-associated missense mutations, CSF1R p.Glu573Lys variant in a patient with acute ischemic cerebrovascular syndrome showed a partial loss of autophosphorylation of CSF1R; its clinical significance warrants further investigation.
Collapse
Affiliation(s)
- T Konno
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurology, Brain Research Institute, Niigata University, Niigata
| | - T Miura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata.,Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - A M Harriott
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - N Mezaki
- Department of Neurology, Brain Research Institute, Niigata University, Niigata.,Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - E S Edwards
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - R Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - O A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - J F Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - T Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Z K Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
37
|
Cognitive dysfunction and symptoms of movement disorders in adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. Parkinsonism Relat Disord 2018; 46 Suppl 1:S39-S41. [DOI: 10.1016/j.parkreldis.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
|
38
|
Adams SJ, Kirk A, Auer RN. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP): Integrating the literature on hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). J Clin Neurosci 2017; 48:42-49. [PMID: 29122458 DOI: 10.1016/j.jocn.2017.10.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/23/2017] [Indexed: 01/26/2023]
Abstract
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a progressive degenerative white matter disorder. ALSP was previously recognized as two distinct entities, hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). However, recent identification of mutations in the tyrosine kinase domain of the colony stimulating factor 1 receptor (CSF1R) gene, which regulates mononuclear cell lineages including microglia, have provided genetic and mechanistic evidence that POLD and HDLS should be regarded as a single clinicopathologic entity. We describe two illustrative cases of ALSP which presented with neuropsychiatric symptoms, progressive cognitive decline, and motor and gait disturbances. Antemortem diagnoses of autopsy-confirmed ALSP vary significantly, and include primary progressive multiple sclerosis, frontotemporal dementia, Alzheimer disease, atypical cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), corticobasal syndrome, and atypical Parkinson disease, suggesting that ALSP may be significantly underdiagnosed. This article presents a systematic review of ALSP in the context of two illustrative cases to help integrate the literature on HDLS and POLD. Consistent use of the term ALSP is suggested for clarity in the literature going forward.
Collapse
Affiliation(s)
- Scott J Adams
- Department of Medical Imaging, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Andrew Kirk
- Division of Neurology, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Roland N Auer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, Saskatchewan S7N 0W8, Canada.
| |
Collapse
|
39
|
Konno T, Yoshida K, Mizuta I, Mizuno T, Kawarai T, Tada M, Nozaki H, Ikeda SI, Onodera O, Wszolek ZK, Ikeuchi T. Diagnostic criteria for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia due to CSF1R mutation. Eur J Neurol 2017; 25:142-147. [PMID: 28921817 DOI: 10.1111/ene.13464] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/07/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE To establish and validate diagnostic criteria for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) due to colony-stimulating factor 1 receptor (CSF1R) mutation. METHODS We developed diagnostic criteria for ALSP based on a recent analysis of the clinical characteristics of ALSP. These criteria provide 'probable' and 'possible' designations for patients who do not have a genetic diagnosis. To verify its sensitivity and specificity, we retrospectively applied our criteria to 83 ALSP cases who had CSF1R mutations (24 of these were analyzed at our institutions and the others were identified from the literature), 53 cases who had CSF1R mutation-negative leukoencephalopathies and 32 cases who had cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) with NOTCH3 mutations. RESULTS Among the CSF1R mutation-positive cases, 50 cases (60%) were diagnosed as 'probable' and 32 (39%) were diagnosed as 'possible,' leading to a sensitivity of 99% if calculated as a ratio of the combined number of cases who fulfilled 'probable' or 'possible' to the total number of cases. With regard to specificity, 22 cases (42%) with mutation-negative leukoencephalopathies and 28 (88%) with CADASIL were correctly excluded using these criteria. CONCLUSIONS These diagnostic criteria are very sensitive for diagnosing ALSP with sufficient specificity for differentiation from CADASIL and moderate specificity for other leukoencephalopathies. Our results suggest that these criteria are useful for the clinical diagnosis of ALSP.
Collapse
Affiliation(s)
- T Konno
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - K Yoshida
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - I Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - T Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - T Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - M Tada
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - H Nozaki
- Department of Medical Technology, School of Health Sciences Faculty of Medicine, Niigata University, Niigata, Japan
| | - S-I Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - O Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Z K Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - T Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
40
|
Okamoto M, Takeshita J, Takahashi K, Tanaka A, Yoshida K, Kuriyama M. Retraction:Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia: A case presented brain calcification and corpus callosum atrophy from over 10 years before the onset of dementia. Rinsho Shinkeigaku 2017; 57:521-526. [PMID: 28855495 DOI: 10.5692/clinicalneurol.cn-001072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article was retracted by author’s request.
Collapse
Affiliation(s)
- Miyuki Okamoto
- Department of Neurology, Brain Attack Center Ota Memorial Hospital
| | - Jun Takeshita
- Department of Neurology, Brain Attack Center Ota Memorial Hospital
| | | | - Akio Tanaka
- Department of Radiology, Brain Attack Center Ota Memorial Hospital
| | - Kunihiro Yoshida
- Department of Brain Disease Research, Shinshu University School of Medicine
| | - Masaru Kuriyama
- Department of Neurology, Brain Attack Center Ota Memorial Hospital
| |
Collapse
|
41
|
Deutschländer AB, Ross OA, Dickson DW, Wszolek ZK. Atypical parkinsonian syndromes: a general neurologist's perspective. Eur J Neurol 2017; 25:41-58. [PMID: 28803444 DOI: 10.1111/ene.13412] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The differential diagnosis of atypical parkinsonian syndromes is challenging. These severe and often rapidly progressive neurodegenerative disorders are clinically heterogeneous and show significant phenotypic overlap. Here, clinical, imaging, neuropathological and genetic features of multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration and frontotemporal lobar degeneration (FTLD) are reviewed. The terms corticobasal degeneration and FTLD refer to pathologically confirmed cases of corticobasal syndrome and frontotemporal dementia (FTD). Frontotemporal lobar degeneration clinically presents as the behavioral variant FTD, semantic variant primary progressive aphasia (PPA), non-fluent agrammatic variant PPA, logopenic variant PPA and FTD associated with motor neuron disease. While progressive supranuclear palsy and corticobasal syndrome have been called Parkinson-plus syndromes in the past, they are now classified as FTD-related disorders, reflecting that they pathologically differ from α-synucleinopathies like multiple system atrophy and Parkinson disease. The contribution of genetic factors to atypical parkinsonian syndromes is increasingly recognized. Genes involved in the etiology of FTLD include MAPT, GRN and C9orf72. Novel neuroimaging techniques, including tau positron emission tomography imaging, are being investigated. Multimodal magnetic resonance imaging approaches and automated magnetic resonance imaging volume segmentation techniques are being evaluated for optimized differential diagnosis. Current treatment options are symptomatic, and disease modifying therapies are under active investigation.
Collapse
Affiliation(s)
- A B Deutschländer
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - O A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - D W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Z K Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
42
|
Abstract
We herein report the case of a 47-year-old female with the colony-stimulating factor 1 receptor (CSF1R) mutation p.G589R, which is related to hereditary leukoencephalopathy with axonal spheroid (HDLS). The patient presented with an early-onset cognitive decline and progressive aphasia. Brain magnetic resonance imaging revealed HDLS-related alterations. In addition, brain computed tomography revealed interspersed spotty calcifications in the frontal and parietal subcortical white matter, while a characteristic "stepping stone" appearance was observed in the frontal pericallosal regions. Our findings emphasize the importance of calcification appearances in establishing an HDLS diagnosis and in screening for CSF1R mutations.
Collapse
Affiliation(s)
- Kensuke Daida
- Department of Neurology, Juntendo University School of Medicine, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Japan
| | - Sho Nakajima
- Department of Neurology, Juntendo University School of Medicine, Japan
| | - Ryota Tanaka
- Department of Neurology, Juntendo University School of Medicine, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Japan
| |
Collapse
|
43
|
Konno T, Broderick DF, Wszolek ZK. Brain calcification in a CSF1R
mutation carrier precedes white matter degeneration. Mov Disord 2017; 32:1493-1495. [DOI: 10.1002/mds.27130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 11/11/2022] Open
Affiliation(s)
- Takuya Konno
- Department of Neurology; Mayo Clinic Florida; Jacksonville Florida USA
| | | | | |
Collapse
|
44
|
Ayrignac X. Author response: Mystery Case: CSF-1R mutation is a cause of intracranial cerebral calcifications, cysts, and leukoencephalopathy. Neurology 2017; 88:1978. [DOI: 10.1212/wnl.0000000000003949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|