1
|
Zhao M, Jiang H, Zhang S, Liu K, Zhou L, Wu D, Wen X, Hu J, Wang X, Liu Z, Sha Y, Zeng M. An unenhanced 3D-FLAIR sequence using long repetition time and constant flip angle to image endolymphatic hydrops. Eur Radiol 2024:10.1007/s00330-024-10906-1. [PMID: 38985183 DOI: 10.1007/s00330-024-10906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVES To evaluate a three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) sequence using a long repetition time (TR) and constant flip angle (CFA) in differentiating between perilymph and endolymph in a phantom study, and unenhanced endolymphatic hydrops (EH) imaging in a patient study. METHODS Three solutions in similar ion and protein concentrations with endolymph, perilymph, and cerebrospinal fluid were prepared for variable flip angle (VFA) 3D-FLAIR (TR 10,000 ms) and CFA (120°) 3D-FLAIR using different TR (10,000, 16,000, and 20,000 ms). Fifty-two patients with probable or definite Meniere's disease received unenhanced CFA (120°) 3D-FLAIR using a long TR (20,000 ms) and 4-h-delay enhanced CFA (120°) 3D-FLAIR (TR 16,000 ms). Image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of them were compared. Agreement in the evaluation of the EH degree between them was analyzed. RESULTS In the phantom study, CNRs between perilymphatic and endolymphatic samples of VFA 3D-FLAIR (TR 10,000 ms) and CFA 3D-FLAIR (TR 10,000, 16,000, and 20,000 ms) were 6.66 ± 1.30, 17.90 ± 2.76, 23.87 ± 3.09, and 28.22 ± 3.15 (p < 0.001). In patient study, average score (3.65 ± 0.48 vs. 4.19 ± 0.40), SNR (34.56 ± 9.80 vs. 51.40 ± 11.27), and CNR (30.66 ± 10.55 vs. 45.08 ± 12.27) of unenhanced 3D-FLAIR were lower than enhanced 3D-FLAIR (p < 0.001). Evaluations of the two sequences showed excellent agreement in the cochlear and vestibule (Kappa value: 0.898 and 0.909). CONCLUSIONS The CFA 3D-FLAIR sequence using a long TR could be used in unenhanced EH imaging with high accuracy. CLINICAL RELEVANCE STATEMENT Unenhanced imaging of endolymphatic hydrops is valuable in the diagnosis and follow-up of patients, especially those who cannot receive contrast-enhanced MRI. KEY POINTS Ion and protein concentration differences can be utilized in differentiating endolymph and perilymph on MRI. Endolymphatic and perilymphatic samples could be differentiated in vitro on this 3D-FLAIR sequence. This unenhanced 3D-FLAIR sequence is in excellent agreement with the enhanced constant flip angle 3D-FLAIR sequence.
Collapse
Affiliation(s)
- Menglong Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Huaili Jiang
- Otolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shujie Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Lei Zhou
- Otolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Di Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Xixi Wen
- United Imaging Healthcare, Shanghai, 201807, China
| | - Junpu Hu
- United Imaging Healthcare, Shanghai, 201807, China
| | - Xuan Wang
- United Imaging Healthcare, Shanghai, 201807, China
| | - Zhuang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yan Sha
- Department of Radiology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
2
|
Connor S, Grzeda MT, Jamshidi B, Ourselin S, Hajnal JV, Pai I. Delayed post gadolinium MRI descriptors for Meniere's disease: a systematic review and meta-analysis. Eur Radiol 2023; 33:7113-7135. [PMID: 37171493 PMCID: PMC10511628 DOI: 10.1007/s00330-023-09651-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES Delayed post-gadolinium magnetic resonance imaging (MRI) detects changes of endolymphatic hydrops (EH) within the inner ear in Meniere's disease (MD). A systematic review with meta-analysis was conducted to summarise the diagnostic performance of MRI descriptors across the range of MD clinical classifications. MATERIALS AND METHODS Case-controlled studies documenting the diagnostic performance of MRI descriptors in distinguishing MD ears from asymptomatic ears or ears with other audio-vestibular conditions were identified (MEDLINE, EMBASE, Web of Science, Scopus databases: updated 17/2/2022). Methodological quality was evaluated with Quality Assessment of Diagnostic Accuracy Studies version 2. Results were pooled using a bivariate random-effects model for evaluation of sensitivity, specificity and diagnostic odds ratio (DOR). Meta-regression evaluated sources of heterogeneity, and subgroup analysis for individual clinical classifications was performed. RESULTS The meta-analysis included 66 unique studies and 3073 ears with MD (mean age 40.2-67.2 years), evaluating 11 MRI descriptors. The combination of increased perilymphatic enhancement (PLE) and EH (3 studies, 122 MD ears) achieved the highest sensitivity (87% (95% CI: 79.92%)) whilst maintaining high specificity (91% (95% CI: 85.95%)). The diagnostic performance of "high grade cochlear EH" and "any EH" descriptors did not significantly differ between monosymptomatic cochlear MD and the latest reference standard for definite MD (p = 0.3; p = 0.09). Potential sources of bias were case-controlled design, unblinded observers and variable reference standard, whilst differing MRI techniques introduced heterogeneity. CONCLUSIONS The combination of increased PLE and EH optimised sensitivity and specificity for MD, whilst some MRI descriptors also performed well in diagnosing monosymptomatic cochlear MD. KEY POINTS • A meta-analysis of delayed post-gadolinium magnetic resonance imaging (MRI) for the diagnosis of Meniere's disease is reported for the first time and comprised 66 studies (3073 ears). • Increased enhancement of the perilymphatic space of the inner ear is shown to be a key MRI feature for the diagnosis of Meniere's disease. • MRI diagnosis of Meniere's disease can be usefully applied across a range of clinical classifications including patients with cochlear symptoms alone.
Collapse
Affiliation(s)
- Steve Connor
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Department of Neuroradiology, King's College Hospital, London, SE5 9RS, UK.
- Department of Radiology, Guy's Hospital and St Thomas' Hospital, London, SE1 9RT, UK.
| | - Mariusz T Grzeda
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- King's Technology Evaluation Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London, SE1 7EH, UK
| | - Babak Jamshidi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- King's Technology Evaluation Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London, SE1 7EH, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Irumee Pai
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Ear, Nose and Throat Surgery, Guy's and St Thomas' Hospital, London, SE1 9RT, UK
| |
Collapse
|
3
|
Quint R, Vaussy A, Stemmer A, Hautefort C, Houdart E, Eliezer M. Iterative Denoising Accelerated 3D FLAIR Sequence for Hydrops MR Imaging at 3T. AJNR Am J Neuroradiol 2023; 44:1064-1069. [PMID: 37536733 PMCID: PMC10494947 DOI: 10.3174/ajnr.a7953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND PURPOSE 3D FLAIR sequences have become the criterion standard for identifying endolymphatic hydrops, but scan time remains an important limitation to their widespread use. Our purpose was to evaluate the diagnostic performance and image quality of an accelerated 3D FLAIR sequence combined with an iterative denoising algorithm. MATERIALS AND METHODS This was a retrospective study performed on 30 patients with clinical suspicion of endolymphatic hydrops who underwent 3T MR imaging 4 hours after gadolinium injection using two 3D FLAIR sequences. The first (conventional FLAIR) was accelerated with a conventional turbo factor of 187. The second was accelerated with an increased turbo factor of 263, resulting in a 33% scan time reduction (5 minutes 36 seconds versus 8 minutes 15 seconds, respectively). A sequence was reconstructed in-line immediately after the accelerated 3D FLAIR acquisition from the same raw data with iterative denoising (accelerated-FLAIR iterative denoising). The signal intensity ratio image quality score and endolymphatic hydrops diagnosis were evaluated. RESULTS The mean signal intensity ratio for symptomatic and asymptomatic ears of accelerated-FLAIR iterative denoising was significantly higher than the mean SNR of conventional FLAIR (29.5 versus 19 and 25.9 versus 16.3, P < .001). Compared with the conventional FLAIR sequence, the image-quality score was higher with accelerated-FLAIR iterative denoising (mean image-quality score, 3.8 [SD, 0.4] versus 3.3 [SD, 0.6] for accelerated-FLAIR iterative denoising and conventional FLAIR, respectively, P = .003). There was no significant difference in the diagnosis of endolymphatic hydrops between the 2 sequences. Interreader agreement was good-to-excellent. CONCLUSIONS The iterative denoising algorithm applied to an accelerated 3D FLAIR sequence for exploration of endolymphatic hydrops enabled significantly reducing the scan time without compromising image quality and diagnostic performance.
Collapse
Affiliation(s)
- R Quint
- From the Department of Neuroradiology (R.Q., E.H., M.E.), Lariboisière University Hospital, Paris, France
| | - A Vaussy
- Siemens Healthineers France (A.V.), Saint-Denis, France
| | - A Stemmer
- Siemens Healthineers (A.S.), Erlangen, Germany
| | - C Hautefort
- Department of Head and Neck Surgery (C.H.), Lariboisière University Hospital, Paris, France
| | - E Houdart
- From the Department of Neuroradiology (R.Q., E.H., M.E.), Lariboisière University Hospital, Paris, France
- Faculté de Médecine (E.H.), Université de Paris, Paris, France
| | - M Eliezer
- From the Department of Neuroradiology (R.Q., E.H., M.E.), Lariboisière University Hospital, Paris, France
| |
Collapse
|
4
|
Zhao M, Jiang H, Zhang S, Liu Z, Li Q, Wen X, Hu J, Zeng M, Xie X, Lin J. Comparison of an optimized 3D-real IR and a 3D-FLAIR with a constant flip angle in the evaluation of endolymphatic hydrops. Eur J Radiol 2023; 158:110614. [PMID: 36423365 DOI: 10.1016/j.ejrad.2022.110614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE To evaluate an optimized 3D-real IR sequence with a longer TR (16,000 ms) based on the modulated flip angle technique in refocused imaging with extended echo train (MATRIX) for the endolymphatic hydrops (EH) after intravenous (IV) single-dose gadolinium (Gd) administration, and compare it with a heavily T2-weighted 3D-FLAIR sequence with a constant flip angle. METHOD The 3D-FLAIR and 3D-real IR sequences were performed in forty patients with definite Meniere's disease (MD) four hours after IV Gd administration. Image qualities of the two sequences were rated and compared. Contrast-to-noise ratios (CNRs) and signal-to-noise ratios (SNRs) of the two sequences were measured for quantitative comparison. EH was graded on the images of the two sequences by two radiologists. RESULTS Scores and CNRs of the 3D-real IR were significantly higher than those of the 3D-FLAIR (P < 0.05). SNRs of the two sequences were comparable between the two groups. 3D-real IR had a higher inter- and intra-observer reliability for the grading of cochlear and vestibular EH than 3D-FLAIR. Using 3D-real IR sequence, the detection rate of EH of the whole labyrinth was higher than using 3D-FLAIR (86.6 % vs 73.3 %, p = 0.031). In the patients with unilateral MD, SNRs in the affected sides were significantly higher than the unaffected sides (P < 0.05). CONCLUSIONS The optimized 3D-real IR with a longer TR is a robust sequence with an improved depiction of EH after IV administration of single-dose Gd. Compared with 3D-FLAIR, it may allow a more precise evaluation and grading of EH.
Collapse
Affiliation(s)
- Menglong Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Huaili Jiang
- Otolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shujie Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Zhuang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Li
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xixi Wen
- United Imaging Healthcare, Shanghai 201807, China
| | - Junpu Hu
- United Imaging Healthcare, Shanghai 201807, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Xiaofeng Xie
- Otolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, China.
| |
Collapse
|
5
|
Optimized 3D-FLAIR sequences to shorten the delay between intravenous administration of gadolinium and MRI acquisition in patients with Menière's disease. Eur Radiol 2022; 32:6900-6909. [PMID: 35759015 DOI: 10.1007/s00330-022-08889-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The aim of this study was to shorten the 4-h delay between the intravenous administration of gadolinium and MRI acquisition for hydrops evaluation using an optimized 3D-FLAIR sequence in patients with Menière's disease. METHODS This was a single-center prospective study including 29 patients (58 ears), recruited between November 2020 and February 2021. All patients underwent a 3-T MRI with an optimized 3D-FLAIR sequence without contrast then at 1 h, 2 h, and 4 h after intravenous administration of gadobutrol. The signal intensity ratio was quantitatively assessed with the region of interest method. We also evaluated the volume of endolymphatic structures (saccule, utricle) then the presence of endolymphatic hydrops and blood-labyrinthine barrier impairment at each acquisition time. RESULTS For all ears, the signal intensity ratio was significantly non-inferior at 2 h compared to 4 h, with a mean geometric signal intensity ratio at 0.83 (95% CI: 0.76 to 0.90, one-sided p < .001 for non-inferiority at -30% margin). Mean volume equivalence of saccule and utricle between 2 and 4 h was proven at a ± 0.20 standardized deviation equivalence margin. Intra-rater agreements (Cohen's kappa) were all greater than 0.90 for all endolymphatic hydrops location and blood-labyrinthine-barrier impairment between the 2- and 4-h assessments. CONCLUSIONS We demonstrated that using an optimized 3D-FLAIR sequence we could shorten the acquisition from 4 to 2 h with a high reliability for the diagnosis of endolymphatic hydrops and blood-labyrinthine-barrier impairment. CLINICAL TRIAL REGISTRATION Clinical trial no: 38RC15.173 KEY POINTS: • Magnetic resonance imaging with delayed 3D-FLAIR sequences allows the diagnosis of endolymphatic hydrops in patients with definite Menière's disease. • An optimized 3D-FLAIR sequence with a long TR of 16000 ms and a constant flip angle allows for reducing the delay between intravenous injection of gadobutrol and MRI acquisition from 4 to 2 h to diagnose endolymphatic hydrops. • Reducing this delay between intravenous injection and MRI acquisition could have implications for clinical practice for both patients and imaging departments.
Collapse
|
6
|
A Perspective for Ménière’s Disease: In Silico Investigations of Dexamethasone as a Direct Modulator of AQP2. Biomolecules 2022; 12:biom12040511. [PMID: 35454100 PMCID: PMC9028334 DOI: 10.3390/biom12040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Ménière’s disease is a chronic illness characterized by intermittent episodes of vertigo associated with fluctuating sensorineural hearing loss, tinnitus and aural pressure. This pathology strongly correlates with a dilatation of the fluid compartment of the endolymph, so-called hydrops. Dexamethasone is one of the therapeutic approaches recommended when conventional antivertigo treatments have failed. Several mechanisms of actions have been hypothesized for the mode of action of dexamethasone, such as the anti-inflammatory effect or as a regulator of inner ear water homeostasis. However, none of them have been experimentally confirmed so far. Aquaporins (AQPs) are transmembrane water channels and are hence central in the regulation of transcellular water fluxes. In the present study, we investigated the hypothesis that dexamethasone could impact water fluxes in the inner ear by targeting AQP2. We addressed this question through molecular dynamics simulations approaches and managed to demonstrate a direct interaction between AQP2 and dexamethasone and its significant impact on the channel water permeability. Through compartmentalization of sodium and potassium ions, a significant effect of Na+ upon AQP2 water permeability was highlighted as well. The molecular mechanisms involved in dexamethasone binding and in its regulatory action upon AQP2 function are described.
Collapse
|
7
|
Comparison between 3D SPACE FLAIR and 3D TSE FLAIR in Menière's disease. Neuroradiology 2022; 64:1011-1020. [PMID: 35149883 PMCID: PMC9005391 DOI: 10.1007/s00234-022-02913-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 12/02/2022]
Abstract
Purpose Heavily T2-weighted 3D FLAIR (hT2w-3D-FLAIR) sequence with constant flip angle (CFA) has been reported as being more sensitive to low concentrations of gadolinium (Gd) enabling endolymphatic hydrops (EH) visualization. The purpose of this study was to compare signal-to-noise (SNR) ratio, detection rate of EH, and increased perilymphatic enhancement (PE) as well as diagnostic accuracy in diagnosing definite Menière’s disease (MD), using 3D-SPACE FLAIR versus conventional 3D-TSE FLAIR. Methods This retrospective study included 29 definite MD patients who underwent a 4-h delayed intravenous (IV) Gd-enhanced 3D-TSE FLAIR and 3D-SPACE FLAIR MRI between February 2019 and February 2020. MR images were qualitatively and quantitatively analyzed twice by 2 experienced head and neck radiologists. Qualitative assessment included grading of cochlear and vestibular EH and visual comparison of PE. Quantitative assessment of PE was performed by placing a region of interest (ROI) and ratio calculation in the basal turn of the cochlea and the brainstem. Results The intra- and inter-reader reliability for grading of EH and PE was excellent (0.7 < kappa < 0.9) for 3D-SPACE FLAIR and exceeded the values for 3D-TSE FLAIR (0.5 < kappa < 0.9) The combination of EH and visual assessment of PE has the highest diagnostic accuracy in diagnosing definite MD on 3D-SPACE FLAIR with a sensitivity of 0.91 and a specificity of 0.98 resulting in a sensitivity raise of 6% compared to 3D-TSE FLAIR. Conclusion Four-hour delayed IV Gd-enhanced 3D-SPACE FLAIR sequence has a higher sensitivity and reproducibility than 3D-TSE FLAIR for the visualization of EH and increased PE in definite MD patients.
Collapse
|
8
|
Osman S, Hautefort C, Attyé A, Vaussy A, Houdart E, Eliezer M. Increased signal intensity with delayed post contrast 3D-FLAIR MRI sequence using constant flip angle and long repetition time for inner ear evaluation. Diagn Interv Imaging 2021; 103:225-229. [PMID: 34690107 DOI: 10.1016/j.diii.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to compare the degree of perilymphatic enhancement between 4 hour post-contrast constant flip angle three-dimensional fluid attenuated inversion recovery (3D-FLAIR) images obtained with short repetition time (TR) and those obtained with long TR. MATERIALS AND METHODS This single-center, prospective study included patients who underwent MRI of the inner ear with heavily T2-weighted sequence, 3D-FLAIR sequence with a "short" TR of 10,000 ms (s3D-FLAIR) and with a "long" TR of 16,000 ms (l3D-FLAIR). Signal intensity ratio (SIR) and contrast-to-noise ratio (CNR) obtained with s3D-FLAIR and l3D-FLAIR were quantitatively assessed using region of interest (ROI) method and compared. The morphology of the endolymphatic space on both sequences was also evaluated. RESULTS From March 2020 to July 2020, 20 consecutive patients were enrolled (9 women and 11 men; mean age, 52.1 ± 14.5 [SD] years; age range: 29-75 years). On l3D-FLAIR images, mean SIR (21.1 ± 8.8 [SD]; range: 7.6-46.1) was significantly greater than that on s3D-FLAIR images (15.7 ± 6.7 [SD]; range: 5.9-33.4) (P < 0.01). On l3D-FLAIR images, mean CNR (17 ± 8.5 [SD]; range: 2-40) was significantly greater than that on s3D-FLAIR images (12 ± 6.3 [SD]; range: 3.2-29.8) (P < 0.01). Kappa value for inter-rater agreement for endolymphatic hydrops, vestibular atelectasis and perilymphatic fistula were 0.93 (95% CI: 0.74-1), 1 (95% CI: 0.85-1) and 1 (95% CI: 0.85-1) respectively. CONCLUSION This study demonstrates that the sensitivity of 3D-FLAIR sequences to low concentration gadolinium in the perilymphatic space is improved by elongation of the TR, with SIR and CNR increased by +34.4% and +41.3% respectively.
Collapse
Affiliation(s)
- Samir Osman
- Department of Neuroradiology, Lariboisière University Hospital, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Charlotte Hautefort
- Université de Paris, Faculté de Médecine, 75010 Paris, France; Department of Head and Neck Surgery, Lariboisière University Hospital, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Arnaud Attyé
- Department of Neuroradiology and MRI, Grenoble Alpes University Hospital, SFR RMN Neurosciences, 38000 Grenoble, France
| | | | - Emmanuel Houdart
- Department of Neuroradiology, Lariboisière University Hospital, Assistance Publique Hôpitaux de Paris, 75010 Paris, France; Université de Paris, Faculté de Médecine, 75010 Paris, France
| | - Michael Eliezer
- Department of Neuroradiology, Lariboisière University Hospital, Assistance Publique Hôpitaux de Paris, 75010 Paris, France; Université de Paris, Faculté de Médecine, 75010 Paris, France.
| |
Collapse
|
9
|
Mijnders LSP, Steup FWR, Lindhout M, van der Kleij PA, Brink WM, van der Molen AJ. Optimal sequences and sequence parameters for GBCA-enhanced MRI of the glymphatic system: a systematic literature review. Acta Radiol 2021; 62:1324-1332. [PMID: 33153270 DOI: 10.1177/0284185120969950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The glymphatic system (GS) is a recently discovered waste clearance system in the brain. PURPOSE To evaluate the most promising magnetic resonance imaging (MRI) sequence(s) and the most optimal sequence parameters for glymphatic MRI (gMRI) 4-24 h after administration of gadolinium-based contrast agent (GBCA). MATERIAL AND METHODS Multiple literature databases were systematically searched for articles regarding gMRI or MRI of the perilymph in the inner ear until 11 May 2020. All relevant MRI sequence parameters were tabulated for qualitative analysis. Their potential was assessed based on detection of low dose GBCA, primarily measured as signal intensity (SI) ratio. RESULTS Thirty articles were included in the analysis. Three-dimensional fluid attenuated inversion recovery (3D-FLAIR), 3D Real Inversion Recovery (3D-Real IR), and multiple 3D T1-weighted gradient echo sequences were used. In perilymph, 3D-FLAIR with a TE of at least 400 ms yielded the highest SIRs. In the qualitative analysis of inner ear studies using 3D-FLAIR, TR was in the range of 4400-10,000 ms, TI 1500-2600 ms, refocusing flip angle (rFA) (range 120°-180°), and echo train length (ETL) 23-173. In the gMRI studies, quantitative analysis was not possible. In the qualitative analysis, 3D-FLAIR was used in the majority (8/12) of the studies, usually with TR 4800-9000 ms, TI 1650-2500 ms, TE 311-561 ms, rFA 90°-120°, and ETL 167-278. CONCLUSION Long TE 3D-FLAIR is the most promising sequence for detection of low-dose GBCA in the GS. Clinical and/or phantom studies on other MRI parameters are needed for further optimization of gMRI.
Collapse
Affiliation(s)
- Liesje SP Mijnders
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Feline WR Steup
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Mette Lindhout
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Paul A van der Kleij
- Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Wyger M Brink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aart J van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Zanetti D, Conte G, Scola E, Casale S, Lilli G, Di Berardino F. Advanced Imaging of the Vestibular Endolymphatic Space in Ménière's Disease. Front Surg 2021; 8:700271. [PMID: 34497826 PMCID: PMC8419327 DOI: 10.3389/fsurg.2021.700271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023] Open
Abstract
The diagnosis of "definite" Méniére's disease (MD) relies upon its clinical manifestations. MD has been related with Endolymphatic Hydrops (EH), an enlargement of the endolymphatic spaces (ES) (cochlear duct, posterior labyrinth, or both). Recent advances in Magnetic Resonance (MR) imaging justify its increasing role in the diagnostic workup: EH can be consistently recognized in living human subjects by means of 3-dimensional Fluid-Attenuated Inversion-Recovery sequences (3D-FLAIR) acquired 4 h post-injection of intra-venous (i.v.) Gadolinium-based contrast medium, or 24 h after an intratympanic (i.t.) injection. Different criteria to assess EH include: the comparison of the area of the vestibular ES with the whole vestibule on an axial section; the saccule-to-utricle ratio ("SURI"); and the bulging of the vestibular organs toward the inferior 1/3 of the vestibule, in contact with the stapedial platina ("VESCO"). An absolute link between MD and EH has been questioned, since not all patients with hydrops manifest MD symptoms. In this literature review, we report the technical refinements of the imaging methods proposed with either i.t. or i.v. delivery routes, and we browse the outcomes of MR imaging of the ES in both MD and non-MD patients. Finally, we summarize the following imaging findings observed by different researchers: blood-labyrinthine-barrier (BLB) breakdown, the extent and grading of EH, its correlation with clinical symptoms, otoneurological tests, and stage and progression of the disease.
Collapse
Affiliation(s)
- Diego Zanetti
- Audiology Unit, Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Audiology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Scola
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Casale
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Lilli
- Audiology Unit, Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Audiology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Federica Di Berardino
- Audiology Unit, Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Audiology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Eliezer M, Attyé A, Toupet M, Hautefort C. Imaging of endolymphatic hydrops: A comprehensive update in primary and secondary hydropic ear disease. J Vestib Res 2021; 31:261-268. [PMID: 33646188 DOI: 10.3233/ves-200786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Since the first description by Hallpike and Cairns, the excess of endolymphatic fluid, also known as endolymphatic hydrops (EH), has been established as being the main biomarker in patients with Menière's disease. Recently, the concept of primary (PHED) and secondary hydropic ear disease (SHED) has been introduced. PHED corresponded to Menière's disease while SHED was defined as the presence of EH in patients with pre-existing inner ear disease. OBJECTIVE In this article, we would like to summarize the methodology of hydrops exploration using MRI and the previously published radiological findings in patients with PHED and SHED. RESULTS Before the emergence of delayed inner ear MRI, the presence of EH was assumed based on clinical symptoms. However, because of the recent technical developments, inner ear MRI became an important tool in clinical settings for identifying EH in vivo, in patients with PHED and SHED. The presence of EH on MRI is related with the degree of sensorineural hearing loss whether in patients with PHED or SHED. By contrast, in PHED or SHED patients without sensorineural hearing loss, MRI showed no sign of EH. CONCLUSIONS Thanks to the recent technical developments, inner ear MRI became an important tool in clinical settings for identifying EH in vivo, in patients with PHED and SHED.
Collapse
Affiliation(s)
- Michael Eliezer
- Department of Neuroradiology, Lariboisière University Hospital, Paris, France
| | - Arnaud Attyé
- Department of Neuroradiology, Lariboisière University Hospital, Paris, France.,Grenoble Alps University Hospital, IRMaGe, Grenoble, France
| | - Michel Toupet
- Centre d'Explorations Fonctionnelles Otoneurologiques, Paris, France
| | - Charlotte Hautefort
- Department of Head and Neck Surgery, Lariboisière University Hospital, Paris, France
| |
Collapse
|
12
|
Boegle R, Gerb J, Kierig E, Becker-Bense S, Ertl-Wagner B, Dieterich M, Kirsch V. Intravenous Delayed Gadolinium-Enhanced MR Imaging of the Endolymphatic Space: A Methodological Comparative Study. Front Neurol 2021; 12:647296. [PMID: 33967941 PMCID: PMC8100585 DOI: 10.3389/fneur.2021.647296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
In-vivo non-invasive verification of endolymphatic hydrops (ELH) by means of intravenous delayed gadolinium (Gd) enhanced magnetic resonance imaging of the inner ear (iMRI) is rapidly developing into a standard clinical tool to investigate peripheral vestibulo-cochlear syndromes. In this context, methodological comparative studies providing standardization and comparability between labs seem even more important, but so far very few are available. One hundred eight participants [75 patients with Meniere's disease (MD; 55.2 ± 14.9 years) and 33 vestibular healthy controls (HC; 46.4 ± 15.6 years)] were examined. The aim was to understand (i) how variations in acquisition protocols influence endolymphatic space (ELS) MR-signals; (ii) how ELS quantification methods correlate to each other or clinical data; and finally, (iii) how ELS extent influences MR-signals. Diagnostics included neuro-otological assessment, video-oculography during caloric stimulation, head-impulse test, audiometry, and iMRI. Data analysis provided semi-quantitative (SQ) visual grading and automatic algorithmic quantitative segmentation of ELS area [2D, mm2] and volume [3D, mm3] using deep learning-based segmentation and volumetric local thresholding. Within the range of 0.1-0.2 mmol/kg Gd dosage and a 4 h ± 30 min time delay, SQ grading and 2D- or 3D-quantifications were independent of signal intensity (SI) and signal-to-noise ratio (SNR; FWE corrected, p < 0.05). The ELS quantification methods used were highly reproducible across raters or thresholds and correlated strongly (0.3-0.8). However, 3D-quantifications showed the least variability. Asymmetry indices and normalized ELH proved the most useful for predicting quantitative clinical data. ELH size influenced SI (cochlear basal turn p < 0.001), but not SNR. SI could not predict the presence of ELH. In conclusion, (1) Gd dosage of 0.1-0.2 mmol/kg after 4 h ± 30 min time delay suffices for ELS quantification. (2) A consensus is needed on a clinical SQ grading classification including a standardized level of evaluation reconstructed to anatomical fixpoints. (3) 3D-quantification methods of the ELS are best suited for correlations with clinical variables and should include both ears and ELS values reported relative or normalized to size. (4) The presence of ELH increases signal intensity in the basal cochlear turn weakly, but cannot predict the presence of ELH.
Collapse
Affiliation(s)
- Rainer Boegle
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB (Integriertes Forschungs- und Behandlungszentrum), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Johannes Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB (Integriertes Forschungs- und Behandlungszentrum), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Emilie Kierig
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB (Integriertes Forschungs- und Behandlungszentrum), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sandra Becker-Bense
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB (Integriertes Forschungs- und Behandlungszentrum), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Department of Radiology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB (Integriertes Forschungs- und Behandlungszentrum), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Valerie Kirsch
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB (Integriertes Forschungs- und Behandlungszentrum), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School of Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
13
|
Suh YH, Kang Y, Baek MJ, Kim SH, Lee HJ, Lee J, Baik J. T2 relaxation time shortening in the cochlea of patients with sudden sensory neuronal hearing loss: a retrospective study using quantitative synthetic magnetic resonance imaging. Eur Radiol 2021; 31:6438-6445. [PMID: 33609144 DOI: 10.1007/s00330-021-07749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES High cochlear signal intensity on three-dimensional (3D) T2 fluid-attenuated inversion recovery (FLAIR) sequences in patients with sudden sensorineural hearing loss (SSNHL) has been reported. Here, we evaluated the cochlear T2 relaxation time differences in patients with idiopathic SSNHL using quantitative synthetic MRI (SyMRI). METHODS Twenty-four patients with unilateral SSNHL who underwent precontrast conventional 3D FLAIR and SyMRI were retrospectively included. T1 and T2 relaxation times and the proton density (PD) of the bilateral ears were measured by manually drawn regions of interest. Wilcoxon signed-rank tests and intra- and interobserver correlation analyses were performed. Qualitative analysis was also performed to determine the presence and laterality of the asymmetric high signal intensity on synthetic FLAIR (SyFLAIR) images. RESULTS The T2 relaxation time was significantly lower in the affected (basal and apico-middle turns) than in the unaffected cochlea (basal turn: 519 ± 181.3 vs. 608.8 ± 203.6, p = 0.042; apico-middle turn: 410.8 ± 163.8 vs. 514.5 ± 186.3, p = 0.037). There were no significant differences in the T1 relaxation time and PD between the affected and unaffected ears (p > 0.05). Additionally, three patients without asymmetric signal intensity on conventional MRI showed asymmetric increased signal intensity in the affected ear on SyFLAIR. CONCLUSIONS The T2 relaxation time was significantly shorter in the affected than in the unaffected cochlea of patients with idiopathic SSNHL. The SyMRI-derived T2 relaxation time may be a promising imaging marker, suggesting that the changes in inner ear fluid composition are implicated in the idiopathic SSNHL development. KEY POINTS • T2 relaxation time was significantly lower in the affected than in the unaffected cochlea. • SyFLAIR showed increased lesion conspicuity compared to conventional 3D-FLAIR in detecting asymmetric high signal intensity of the affected side. • SyMRI-derived T2 relaxation time may be a promising imaging marker of the affected ear in patients with idiopathic SSNHL.
Collapse
Affiliation(s)
- Young Hwa Suh
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Yeonah Kang
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| | - Moo Jin Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Shin Hye Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | | | - Jiyeon Baik
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
14
|
State of the Art Imaging in Menière’s Disease. Tips and Tricks for Protocol and Interpretation. CURRENT RADIOLOGY REPORTS 2020. [DOI: 10.1007/s40134-020-00365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Purpose of Review
Menière’s disease (MD) is a burdensome and not well understood inner ear disorder that has received increasing attention of scientists over the past decade. Until 2007, a certain diagnosis of endolymphatic hydrops (EH) required post-mortem histology. Today, dedicated high-resolution magnetic resonance imaging (MRI) protocols enable detection of disease-related changes in the membranous labyrinth in vivo. In this review, we summarize the current status of MR imaging for MD.
Recent Findings
The mainstays of hydrops imaging are inversion recovery sequences using delayed acquisition after intravenous or intratympanic contrast administration. Based on these techniques, several methods have been developed to detect and classify EH. In addition, novel imaging features of MD, such as blood-labyrinth barrier impairment, have recently been observed.
Summary
Delayed contrast enhanced MRI has emerged as a reliable technique to demonstrate EH in vivo, with promising application in the diagnosis and follow-up of MD patients. Therefore, familiarity with current techniques and diagnostic imaging criteria is increasingly important.
Collapse
|