1
|
Wanjari M, Mittal G, Prasad R. AI-Driven innovations for managing ependymoma in neurosurgery. Neurosurg Rev 2024; 47:590. [PMID: 39256263 DOI: 10.1007/s10143-024-02871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND, India.
| | - Gaurav Mittal
- Department of Medicine, Mahatma Gandhi Institute of Medical Sciences, Wardha, IND, India
| | - Roshan Prasad
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND, India
| |
Collapse
|
2
|
Chukwujindu E, Faiz H, Ai-Douri S, Faiz K, De Sequeira A. Role of artificial intelligence in brain tumour imaging. Eur J Radiol 2024; 176:111509. [PMID: 38788610 DOI: 10.1016/j.ejrad.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Artificial intelligence (AI) is a rapidly evolving field with many neuro-oncology applications. In this review, we discuss how AI can assist in brain tumour imaging, focusing on machine learning (ML) and deep learning (DL) techniques. We describe how AI can help in lesion detection, differential diagnosis, anatomic segmentation, molecular marker identification, prognostication, and pseudo-progression evaluation. We also cover AI applications in non-glioma brain tumours, such as brain metastasis, posterior fossa, and pituitary tumours. We highlight the challenges and limitations of AI implementation in radiology, such as data quality, standardization, and integration. Based on the findings in the aforementioned areas, we conclude that AI can potentially improve the diagnosis and treatment of brain tumours and provide a path towards personalized medicine and better patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Khunsa Faiz
- McMaster University, Department of Radiology, L8S 4L8, Canada.
| | | |
Collapse
|
3
|
Tsang B, Gupta A, Takahashi MS, Baffi H, Ola T, Doria AS. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment. Jpn J Radiol 2023; 41:1127-1147. [PMID: 37395982 DOI: 10.1007/s11604-023-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/18/2023] [Indexed: 07/04/2023]
Abstract
PURPOSES To review the uses of AI for magnetic resonance (MR) imaging assessment of primary pediatric cancer and identify common literature topics and knowledge gaps. To assess the adherence of the existing literature to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines. MATERIALS AND METHODS A scoping literature search using MEDLINE, EMBASE and Cochrane databases was performed, including studies of > 10 subjects with a mean age of < 21 years. Relevant data were summarized into three categories based on AI application: detection, characterization, treatment and monitoring. Readers independently scored each study using CLAIM guidelines, and inter-rater reproducibility was assessed using intraclass correlation coefficients. RESULTS Twenty-one studies were included. The most common AI application for pediatric cancer MR imaging was pediatric tumor diagnosis and detection (13/21 [62%] studies). The most commonly studied tumor was posterior fossa tumors (14 [67%] studies). Knowledge gaps included a lack of research in AI-driven tumor staging (0/21 [0%] studies), imaging genomics (1/21 [5%] studies), and tumor segmentation (2/21 [10%] studies). Adherence to CLAIM guidelines was moderate in primary studies, with an average (range) of 55% (34%-73%) CLAIM items reported. Adherence has improved over time based on publication year. CONCLUSION The literature surrounding AI applications of MR imaging in pediatric cancers is limited. The existing literature shows moderate adherence to CLAIM guidelines, suggesting that better adherence is required for future studies.
Collapse
Affiliation(s)
- Brian Tsang
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aaryan Gupta
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcelo Straus Takahashi
- Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InRad/HC-FMUSP), São Paulo, SP, Brazil
- Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP), São Paulo, SP, Brazil
- DasaInova, Diagnósticos da América SA (Dasa), São Paulo, SP, Brazil
| | | | - Tolulope Ola
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrea S Doria
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
4
|
Mahajan A, Burrewar M, Agarwal U, Kss B, Mlv A, Guha A, Sahu A, Choudhari A, Pawar V, Punia V, Epari S, Sahay A, Gupta T, Chinnaswamy G, Shetty P, Moiyadi A. Deep learning based clinico-radiological model for paediatric brain tumor detection and subtype prediction. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:669-684. [PMID: 37720352 PMCID: PMC10501890 DOI: 10.37349/etat.2023.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/13/2023] [Indexed: 09/19/2023] Open
Abstract
Aim Early diagnosis of paediatric brain tumors significantly improves the outcome. The aim is to study magnetic resonance imaging (MRI) features of paediatric brain tumors and to develop an automated segmentation (AS) tool which could segment and classify tumors using deep learning methods and compare with radiologist assessment. Methods This study included 94 cases, of which 75 were diagnosed cases of ependymoma, medulloblastoma, brainstem glioma, and pilocytic astrocytoma and 19 were normal MRI brain cases. The data was randomized into training data, 64 cases; test data, 21 cases and validation data, 9 cases to devise a deep learning algorithm to segment the paediatric brain tumor. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the deep learning model were compared with radiologist's findings. Performance evaluation of AS was done based on Dice score and Hausdorff95 distance. Results Analysis of MRI semantic features was done with necrosis and haemorrhage as predicting features for ependymoma, diffusion restriction and cystic changes were predictors for medulloblastoma. The accuracy of detecting abnormalities was 90%, with a specificity of 100%. Further segmentation of the tumor into enhancing and non-enhancing components was done. The segmentation results for whole tumor (WT), enhancing tumor (ET), and non-enhancing tumor (NET) have been analyzed by Dice score and Hausdorff95 distance. The accuracy of prediction of all MRI features was compared with experienced radiologist's findings. Substantial agreement observed between the classification by model and the radiologist's given classification [K-0.695 (K is Cohen's kappa score for interrater reliability)]. Conclusions The deep learning model had very high accuracy and specificity for predicting the magnetic resonance (MR) characteristics and close to 80% accuracy in predicting tumor type. This model can serve as a potential tool to make a timely and accurate diagnosis for radiologists not trained in neuroradiology.
Collapse
Affiliation(s)
- Abhishek Mahajan
- Clatterbridge Centre for Oncology NHS Foundation Trust, L7 8YA, Liverpool, UK
| | - Mayur Burrewar
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Ujjwal Agarwal
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | | | - Apparao Mlv
- Endimension Technology Pvt Ltd, Maharashtra, India
| | - Amrita Guha
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Amit Choudhari
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Vivek Pawar
- Endimension Technology Pvt Ltd, Maharashtra, India
| | - Vivek Punia
- Endimension Technology Pvt Ltd, Maharashtra, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Tejpal Gupta
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, Maharashtra, India
| | - Girish Chinnaswamy
- Department of Paediatric Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Prakash Shetty
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Aliasgar Moiyadi
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| |
Collapse
|
5
|
Yang Y, Zhang Y, Li Y. Artificial intelligence applications in pediatric oncology diagnosis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:157-169. [PMID: 36937318 PMCID: PMC10017189 DOI: 10.37349/etat.2023.00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 03/04/2023] Open
Abstract
Artificial intelligence (AI) algorithms have been applied in abundant medical tasks with high accuracy and efficiency. Physicians can improve their diagnostic efficiency with the assistance of AI techniques for improving the subsequent personalized treatment and surveillance. AI algorithms fundamentally capture data, identify underlying patterns, achieve preset endpoints, and provide decisions and predictions about real-world events with working principles of machine learning and deep learning. AI algorithms with sufficient graphic processing unit power have been demonstrated to provide timely diagnostic references based on preliminary training of large amounts of clinical and imaging data. The sample size issue is an inevitable challenge for pediatric oncology considering its low morbidity and individual heterogeneity. However, this problem may be solved in the near future considering the exponential advancements of AI algorithms technically to decrease the dependence of AI operation on the amount of data sets and the efficiency of computing power. For instance, it could be a feasible solution by shifting convolutional neural networks (CNNs) from adults and sharing CNN algorithms across multiple institutions besides original data. The present review provides important insights into emerging AI applications for the diagnosis of pediatric oncology by systematically overviewing of up-to-date literature.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yimao Zhang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuan Li
- Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Correspondence: Yuan Li, Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Machine Learning in the Classification of Pediatric Posterior Fossa Tumors: A Systematic Review. Cancers (Basel) 2022; 14:cancers14225608. [PMID: 36428701 PMCID: PMC9688156 DOI: 10.3390/cancers14225608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Posterior fossa tumors (PFTs) are a morbid group of central nervous system tumors that most often present in childhood. While early diagnosis is critical to drive appropriate treatment, definitive diagnosis is currently only achievable through invasive tissue collection and histopathological analyses. Machine learning has been investigated as an alternative means of diagnosis. In this systematic review and meta-analysis, we evaluated the primary literature to identify all machine learning algorithms developed to classify and diagnose pediatric PFTs using imaging or molecular data. Methods: Of the 433 primary papers identified in PubMed, EMBASE, and Web of Science, 25 ultimately met the inclusion criteria. The included papers were extracted for algorithm architecture, study parameters, performance, strengths, and limitations. Results: The algorithms exhibited variable performance based on sample size, classifier(s) used, and individual tumor types being investigated. Ependymoma, medulloblastoma, and pilocytic astrocytoma were the most studied tumors with algorithm accuracies ranging from 37.5% to 94.5%. A minority of studies compared the developed algorithm to a trained neuroradiologist, with three imaging-based algorithms yielding superior performance. Common algorithm and study limitations included small sample sizes, uneven representation of individual tumor types, inconsistent performance reporting, and a lack of application in the clinical environment. Conclusions: Artificial intelligence has the potential to improve the speed and accuracy of diagnosis in this field if the right algorithm is applied to the right scenario. Work is needed to standardize outcome reporting and facilitate additional trials to allow for clinical uptake.
Collapse
|
7
|
Meshaka R, Pinto Dos Santos D, Arthurs OJ, Sebire NJ, Shelmerdine SC. Artificial intelligence reporting guidelines: what the pediatric radiologist needs to know. Pediatr Radiol 2022; 52:2101-2110. [PMID: 34196729 DOI: 10.1007/s00247-021-05129-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
There has been an exponential rise in artificial intelligence (AI) research in imaging in recent years. While the dissemination of study data that has the potential to improve clinical practice is welcomed, the level of detail included in early AI research reporting has been highly variable and inconsistent, particularly when compared to more traditional clinical research. However, inclusion checklists are now commonly available and accessible to those writing or reviewing clinical research papers. AI-specific reporting guidelines also exist and include distinct requirements, but these can be daunting for radiologists new to the field. Given that pediatric radiology is a specialty faced with workforce shortages and an ever-increasing workload, AI could help by offering solutions to time-consuming tasks, thereby improving workflow efficiency and democratizing access to specialist opinion. As a result, pediatric radiologists are expected to be increasingly leading and contributing to AI imaging research, and researchers and clinicians alike should feel confident that the findings reported are presented in a transparent way, with sufficient detail to understand how they apply to wider clinical practice. In this review, we describe two of the most clinically relevant and available reporting guidelines to help increase awareness and engage the pediatric radiologist in conducting AI imaging research. This guide should also be useful for those reading and reviewing AI imaging research and as a checklist with examples of what to expect.
Collapse
Affiliation(s)
- Riwa Meshaka
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK.,UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | | | - Owen J Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK.,UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Neil J Sebire
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK.,Department of Pathology, Great Ormond Street Hospital for Children, London, UK
| | - Susan C Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK. .,UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK. .,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK. .,Department of Clinical Radiology, St. George's Hospital, London, UK.
| |
Collapse
|
8
|
Xu J, Meng Y, Qiu K, Topatana W, Li S, Wei C, Chen T, Chen M, Ding Z, Niu G. Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges. Front Oncol 2022; 12:892056. [PMID: 35965542 PMCID: PMC9363668 DOI: 10.3389/fonc.2022.892056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma is one of the most fatal primary brain tumors, and it is well-known for its difficulty in diagnosis and management. Medical imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), and spectral imaging can efficiently aid physicians in diagnosing, treating, and evaluating patients with gliomas. With the increasing clinical records and digital images, the application of artificial intelligence (AI) based on medical imaging has reduced the burden on physicians treating gliomas even further. This review will classify AI technologies and procedures used in medical imaging analysis. Additionally, we will discuss the applications of AI in glioma, including tumor segmentation and classification, prediction of genetic markers, and prediction of treatment response and prognosis, using MRI, PET, and spectral imaging. Despite the benefits of AI in clinical applications, several issues such as data management, incomprehension, safety, clinical efficacy evaluation, and ethical or legal considerations, remain to be solved. In the future, doctors and researchers should collaborate to solve these issues, with a particular emphasis on interdisciplinary teamwork.
Collapse
Affiliation(s)
- Jiaona Xu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Meng
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefan Qiu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wei
- Department of Neurology, Affiliated Ningbo First Hospital, Ningbo, China
| | - Tianwen Chen
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Guozhong Niu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| |
Collapse
|
9
|
Radiomics signature for the prediction of progression-free survival and radiotherapeutic benefits in pediatric medulloblastoma. Childs Nerv Syst 2022; 38:1085-1094. [PMID: 35394210 DOI: 10.1007/s00381-022-05507-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To develop and validate a radiomics signature for progression-free survival (PFS) and radiotherapeutic benefits in pediatric medulloblastoma. MATERIALS AND METHODS We retrospectively enrolled 253 consecutive children with medulloblastoma from two hospitals. A total of 1294 radiomic features were extracted from the region of tumor on the T1-weighted and contrast-enhanced T1-weighted (CE-T1w) MRI. Radiomic feature selection and machine learning modelling were performed to build radiomics signature for the prediction of PFS on the training set. Moreover, the prognostic performance of the clinical parameters was investigated for PFS. The Concordance index (a value of 0.5 indicates no predictive discrimination, and a value of 1 indicates perfect predictive discrimination) was used to measure and compare the prognostic performance of these models. RESULTS The radiomics signature for the prediction of the PFS yielded Concordance indices of 0.711, 0.707, and 0.717 on the training and held-out test sets 1 and 2, respectively. The radiomics nomogram integrating the radiomics signature, age, and metastasis performed better than the nomogram incorporating only clinicopathological factors (C-index, 0.723 vs. 0.665 and 0.722 vs. 0.677 on the held-out test sets 1 and 2, respectively), which was also validated by the good calibration and decision curve analysis. Further analysis demonstrated that patients with lower value of radiomics signature were associated with better clinical outcomes after postoperative radiotherapy (p < 0.001). CONCLUSION The radiomics signature and nomogram performed well for the prediction of PFS and could stratify patients underwent postoperative radiotherapy into the high- and low-risk groups with significantly different clinical outcomes.
Collapse
|
10
|
Zhang M, Tam L, Wright J, Mohammadzadeh M, Han M, Chen E, Wagner M, Nemalka J, Lai H, Eghbal A, Ho CY, Lober RM, Cheshier SH, Vitanza NA, Grant GA, Prolo LM, Yeom KW, Jaju A. Radiomics Can Distinguish Pediatric Supratentorial Embryonal Tumors, High-Grade Gliomas, and Ependymomas. AJNR Am J Neuroradiol 2022; 43:603-610. [PMID: 35361575 PMCID: PMC8993189 DOI: 10.3174/ajnr.a7481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Pediatric supratentorial tumors such as embryonal tumors, high-grade gliomas, and ependymomas are difficult to distinguish by histopathology and imaging because of overlapping features. We applied machine learning to uncover MR imaging-based radiomics phenotypes that can differentiate these tumor types. MATERIALS AND METHODS Our retrospective cohort of 231 patients from 7 participating institutions had 50 embryonal tumors, 127 high-grade gliomas, and 54 ependymomas. For each tumor volume, we extracted 900 Image Biomarker Standardization Initiative-based PyRadiomics features from T2-weighted and gadolinium-enhanced T1-weighted images. A reduced feature set was obtained by sparse regression analysis and was used as input for 6 candidate classifier models. Training and test sets were randomly allocated from the total cohort in a 75:25 ratio. RESULTS The final classifier model for embryonal tumor-versus-high-grade gliomas identified 23 features with an area under the curve of 0.98; the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 0.85, 0.91, 0.79, 0.94, and 0.89, respectively. The classifier for embryonal tumor-versus-ependymomas identified 4 features with an area under the curve of 0.82; the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 0.93, 0.69, 0.76, 0.90, and 0.81, respectively. The classifier for high-grade gliomas-versus-ependymomas identified 35 features with an area under the curve of 0.96; the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 0.82, 0.94, 0.82, 0.94, and 0.91, respectively. CONCLUSIONS In this multi-institutional study, we identified distinct radiomic phenotypes that distinguish pediatric supratentorial tumors, high-grade gliomas, and ependymomas with high accuracy. Incorporation of this technique in diagnostic algorithms can improve diagnosis, risk stratification, and treatment planning.
Collapse
Affiliation(s)
- M Zhang
- From the Departments of Neurosurgery (M.Z.)
| | - L Tam
- Stanford University School of Medicine (L.T.), Stanford, California
| | - J Wright
- Department of Radiology (J.W.).,Department of Radiology (J.W.), Harborview Medical Center, Seattle, Washington
| | - M Mohammadzadeh
- Department of Radiology (M.M.), Tehran University of Medical Sciences, Tehran, Iran
| | - M Han
- Department of Pediatrics (M.H.), Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - E Chen
- Departments of Clinical Radiology & Imaging Sciences (E.C., C.Y.H.), Riley Children's Hospital, Indiana University, Indianapolis, Indiana
| | - M Wagner
- Department of Diagnostic Imaging (M.W.), The Hospital for Sick Children, Ontario, Canada
| | - J Nemalka
- Division of Pediatric Neurosurgery (J.N., S.H.C.), Department of Neurosurgery, Huntsman Cancer Institute, Intermountain Healthcare Primary Children's Hospital, University of Utah School of Medicine, Salt Lake City, Utah
| | - H Lai
- Department of Radiology (H.L., A.E.), CHOC Children's Hospital of Orange County California, University of California, Irvine, California
| | - A Eghbal
- Department of Radiology (H.L., A.E.), CHOC Children's Hospital of Orange County California, University of California, Irvine, California
| | - C Y Ho
- Departments of Clinical Radiology & Imaging Sciences (E.C., C.Y.H.), Riley Children's Hospital, Indiana University, Indianapolis, Indiana
| | - R M Lober
- Division of Neurosurgery (R.M.L.), Dayton Children's Hospital, Dayton, Ohio; Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - S H Cheshier
- Division of Pediatric Neurosurgery (J.N., S.H.C.), Department of Neurosurgery, Huntsman Cancer Institute, Intermountain Healthcare Primary Children's Hospital, University of Utah School of Medicine, Salt Lake City, Utah
| | - N A Vitanza
- Division of Pediatric Hematology/Oncology (N.A.V.), Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - G A Grant
- Neurosurgery (G.A.G., L.M.P.), Lucile Packard Children's Hospital, Stanford University, Palo Alto, California
| | - L M Prolo
- Neurosurgery (G.A.G., L.M.P.), Lucile Packard Children's Hospital, Stanford University, Palo Alto, California
| | - K W Yeom
- Departments of Radiology (K.W.Y.)
| | - A Jaju
- Department of Medical Imaging (A.J.), Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
11
|
Chen Z, Ye N, Jiang N, Yang Q, Wanggou S, Li X. Deep Learning Model for Intracranial Hemangiopericytoma and Meningioma Classification. Front Oncol 2022; 12:839567. [PMID: 35311127 PMCID: PMC8927090 DOI: 10.3389/fonc.2022.839567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Intracranial hemangiopericytoma/solitary fibrous tumor (SFT/HPC) is a rare type of neoplasm containing malignancies of infiltration, peritumoral edema, bleeding, or bone destruction. However, SFT/HPC has similar radiological characteristics as meningioma, which had different clinical managements and outcomes. This study aims to discriminate SFT/HPC and meningioma via deep learning approaches based on routine preoperative MRI. Methods We enrolled 236 patients with histopathological diagnosis of SFT/HPC (n = 144) and meningioma (n = 122) from 2010 to 2020 in Xiangya Hospital. Radiological features were extracted manually, and a radiological diagnostic model was applied for classification. And a deep learning pretrained model ResNet-50 was adapted to train T1-contrast images for predicting tumor class. Deep learning model attention mechanism was visualized by class activation maps. Results Our study reports that SFT/HPC was found to have more invasion to venous sinus (p = 0.001), more cystic components (p < 0.001), and more heterogeneous enhancement patterns (p < 0.001). Deep learning model achieved a high classification accuracy of 0.889 with receiver-operating characteristic curve area under the curve (AUC) of 0.91 in the validation set. Feature maps showed distinct clustering of SFT/HPC and meningioma in the training and test cohorts, respectively. And the attention of the deep learning model mainly focused on the tumor bulks that represented the solid texture features of both tumors for discrimination.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ningrong Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Nian Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Predicting EGFR mutation status by a deep learning approach in patients with non-small cell lung cancer brain metastases. J Neurooncol 2022; 157:63-69. [PMID: 35119589 DOI: 10.1007/s11060-022-03946-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) tends to metastasize to the brain. Between 10 and 60% of NSCLCs harbor an activating mutation in the epidermal growth-factor receptor (EGFR), which may be targeted with selective EGFR inhibitors. However, due to a high discordance rate between the molecular profile of the primary tumor and the brain metastases (BMs), identifying an individual patient's EGFR status of the BMs necessitates tissue diagnosis via an invasive surgical procedure. We employed a deep learning (DL) method with the aim of noninvasive detection of the EGFR mutation status in NSCLC BM. METHODS We retrospectively collected clinical, radiological, and pathological-molecular data of all the NSCLC patients who had been diagnosed with BMs and underwent resection of their BM during 2009-2019. The study population was then divided into two groups based upon EGFR mutational status. We further employed a DL technique to classify the two groups according to their preoperative magnetic resonance imaging features. Augmentation techniques, transfer learning approach, and post-processing of the predicted results were applied to overcome the relatively small cohort. Finally, we established the accuracy of our model in predicting EGFR mutation status of BM of NSCLC. RESULTS Fifty-nine patients were included in the study, 16 patients harbored EGFR mutations. Our model predicted mutational status with mean accuracy of 89.8%, sensitivity of 68.7%, specificity of 97.7%, and a receiver operating characteristic curve value of 0.91 across the 5 validation datasets. CONCLUSION DL-based noninvasive molecular characterization is feasible, has high accuracy and should be further validated in large prospective cohorts.
Collapse
|
13
|
Pringle C, Kilday JP, Kamaly-Asl I, Stivaros SM. The role of artificial intelligence in paediatric neuroradiology. Pediatr Radiol 2022; 52:2159-2172. [PMID: 35347371 PMCID: PMC9537195 DOI: 10.1007/s00247-022-05322-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/22/2021] [Accepted: 02/11/2022] [Indexed: 01/17/2023]
Abstract
Imaging plays a fundamental role in the managing childhood neurologic, neurosurgical and neuro-oncological disease. Employing multi-parametric MRI techniques, such as spectroscopy and diffusion- and perfusion-weighted imaging, to the radiophenotyping of neuroradiologic conditions is becoming increasingly prevalent, particularly with radiogenomic analyses correlating imaging characteristics with molecular biomarkers of disease. However, integration into routine clinical practice remains elusive. With modern multi-parametric MRI now providing additional data beyond anatomy, informing on histology, biology and physiology, such metric-rich information can present as information overload to the treating radiologist and, as such, information relevant to an individual case can become lost. Artificial intelligence techniques are capable of modelling the vast radiologic, biological and clinical datasets that accompany childhood neurologic disease, such that this information can become incorporated in upfront prognostic modelling systems, with artificial intelligence techniques providing a plausible approach to this solution. This review examines machine learning approaches than can be used to underpin such artificial intelligence applications, with exemplars for each machine learning approach from the world literature. Then, within the specific use case of paediatric neuro-oncology, we examine the potential future contribution for such artificial intelligence machine learning techniques to offer solutions for patient care in the form of decision support systems, potentially enabling personalised medicine within this domain of paediatric radiologic practice.
Collapse
Affiliation(s)
- Catherine Pringle
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK ,Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - John-Paul Kilday
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK ,The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Ian Kamaly-Asl
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK ,The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Stavros Michael Stivaros
- Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK. .,Department of Paediatric Radiology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK. .,The Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Dixon L, Jandu GK, Sidpra J, Mankad K. Diagnostic accuracy of qualitative MRI in 550 paediatric brain tumours: evaluating current practice in the computational era. Quant Imaging Med Surg 2022; 12:131-143. [PMID: 34993066 DOI: 10.21037/qims-20-1388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND To investigate the accuracy of qualitative reporting of conventional magnetic resonance imaging (MRI) in the classification of paediatric brain tumours. METHODS Preoperative MRI reports of 608 children prior to resection or biopsy of an intracranial lesion were retrospectively reviewed. A total of 550 children had complete radiological and histopathological notes, thereby reaching our inclusion criteria. Concordance between MRI report and final histopathological diagnosis was assessed using an established lexicon derived from the WHO 2016 classification of CNS tumours. Levels of agreement based on cellular origin, tumour type, and tumour grade were evaluated. Diagnostic accuracy, sensitivity, specificity, confidence intervals, and positive and negative predictive values were calculated. RESULTS Diagnostic accuracy differed significantly between tumour types and tumour grades. Sensitivities were highest for ependymomas and sellar, pituitary, pineal, and cranial and/or paraspinal nerve tumours (range 80.65-100%). Sensitivity was slightly lower for astrocytic gliomas, oligodendrogliomas, and choroid plexus, neuronal, mixed neuronal-glial, embryonal, and histiocytic tumours (range 63.33-79.59%). Low sensitivities were noted for meningiomas and mesenchymal non-meningothelial, melanocytic, and germ cell tumours (range 0-56.25%). The most correct tumour type predictions were made in the posterior fossa whilst the most incorrect predictions were made in the lobar regions, pineal/tectal plate area, and the supratentorial ventricles. CONCLUSIONS This is the largest published series investigating the predictive accuracy of MRI in paediatric brain tumours. We show that diagnostic accuracy varies greatly by tumour type and location. Looking forward, we should develop and leverage computational methods to improve accuracy in the tumour types and anatomical locations where qualitative diagnostic accuracy is lower.
Collapse
Affiliation(s)
- Luke Dixon
- Department of Neuroradiology, Imperial University Healthcare NHS Foundation Trust, London, UK
| | | | - Jai Sidpra
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Developmental Biology and Cancer Section, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Kitamura FC, Pan I, Ferraciolli SF, Yeom KW, Abdala N. Clinical Artificial Intelligence Applications in Radiology: Neuro. Radiol Clin North Am 2021; 59:1003-1012. [PMID: 34689869 DOI: 10.1016/j.rcl.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Radiologists have been at the forefront of the digitization process in medicine. Artificial intelligence (AI) is a promising area of innovation, particularly in medical imaging. The number of applications of AI in neuroradiology has also grown. This article illustrates some of these applications. This article reviews machine learning challenges related to neuroradiology. The first approval of reimbursement for an AI algorithm by the Centers for Medicare and Medicaid Services, covering a stroke software for early detection of large vessel occlusion, is also discussed.
Collapse
Affiliation(s)
- Felipe Campos Kitamura
- DasaInova, Diagnósticos da América SA (Dasa), São Paulo, São Paulo, Brazil; Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Ian Pan
- DasaInova, Diagnósticos da América SA (Dasa), São Paulo, São Paulo, Brazil; Brigham and Woman's Hospital, Boston, MA, USA
| | | | | | - Nitamar Abdala
- Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Abdel Razek AAK, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, Helmy E. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 2021; 12:152. [PMID: 34676470 PMCID: PMC8531173 DOI: 10.1186/s13244-021-01102-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This article is a comprehensive review of the basic background, technique, and clinical applications of artificial intelligence (AI) and radiomics in the field of neuro-oncology. A variety of AI and radiomics utilized conventional and advanced techniques to differentiate brain tumors from non-neoplastic lesions such as inflammatory and demyelinating brain lesions. It is used in the diagnosis of gliomas and discrimination of gliomas from lymphomas and metastasis. Also, semiautomated and automated tumor segmentation has been developed for radiotherapy planning and follow-up. It has a role in the grading, prediction of treatment response, and prognosis of gliomas. Radiogenomics allowed the connection of the imaging phenotype of the tumor to its molecular environment. In addition, AI is applied for the assessment of extra-axial brain tumors and pediatric tumors with high performance in tumor detection, classification, and stratification of patient's prognoses.
Collapse
Affiliation(s)
| | - Ahmed Alksas
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mohamed Shehata
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Amr AbdelKhalek
- Internship at Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Khaled Abdel Baky
- Department of Diagnostic Radiology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Ayman El-Baz
- Biomaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Eman Helmy
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Elgomheryia Street, Mansoura, 3512, Egypt.
| |
Collapse
|
17
|
Biratu ES, Schwenker F, Ayano YM, Debelee TG. A Survey of Brain Tumor Segmentation and Classification Algorithms. J Imaging 2021; 7:jimaging7090179. [PMID: 34564105 PMCID: PMC8465364 DOI: 10.3390/jimaging7090179] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis process safer. Since the beginning of this millennia and late nineties, the effort of the research community to come-up with automatic brain tumor segmentation and classification method has been tremendous. As a result, there are ample literature on the area focusing on segmentation using region growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have been performed in the area of brain tumor classification into their respective histological type, and an impressive performance results have been obtained. Considering state of-the-art methods and their performance, the purpose of this paper is to provide a comprehensive survey of three, recently proposed, major brain tumor segmentation and classification model techniques, namely, region growing, shallow machine learning and deep learning. The established works included in this survey also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and post-processing techniques, feature extraction, datasets, and models' performance evaluation metrics.
Collapse
Affiliation(s)
- Erena Siyoum Biratu
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
| | - Friedhelm Schwenker
- Institute of Neural Information Processing, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Taye Girma Debelee
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
- Ethiopian Artificial Intelligence Center, Addis Ababa 40782, Ethiopia;
| |
Collapse
|
18
|
Shaari H, Kevrić J, Jukić S, Bešić L, Jokić D, Ahmed N, Rajs V. Deep Learning-Based Studies on Pediatric Brain Tumors Imaging: Narrative Review of Techniques and Challenges. Brain Sci 2021; 11:brainsci11060716. [PMID: 34071202 PMCID: PMC8230188 DOI: 10.3390/brainsci11060716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Brain tumors diagnosis in children is a scientific concern due to rapid anatomical, metabolic, and functional changes arising in the brain and non-specific or conflicting imaging results. Pediatric brain tumors diagnosis is typically centralized in clinical practice on the basis of diagnostic clues such as, child age, tumor location and incidence, clinical history, and imaging (Magnetic resonance imaging MRI / computed tomography CT) findings. The implementation of deep learning has rapidly propagated in almost every field in recent years, particularly in the medical images’ evaluation. This review would only address critical deep learning issues specific to pediatric brain tumor imaging research in view of the vast spectrum of other applications of deep learning. The purpose of this review paper is to include a detailed summary by first providing a succinct guide to the types of pediatric brain tumors and pediatric brain tumor imaging techniques. Then, we will present the research carried out by summarizing the scientific contributions to the field of pediatric brain tumor imaging processing and analysis. Finally, to establish open research issues and guidance for potential study in this emerging area, the medical and technical limitations of the deep learning-based approach were included.
Collapse
Affiliation(s)
- Hala Shaari
- Department of Information Technologies, Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Jasmin Kevrić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Samed Jukić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Larisa Bešić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Dejan Jokić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Nuredin Ahmed
- Control Department, Technical Computer College Tripoli, Tripoli 00218, Libya;
| | - Vladimir Rajs
- Department of Power, Electronics and Telecommunication Engineering, Faculty of Technical Science, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
19
|
Sargolzaei S. Can Deep Learning Hit a Moving Target? A Scoping Review of Its Role to Study Neurological Disorders in Children. Front Comput Neurosci 2021; 15:670489. [PMID: 34025380 PMCID: PMC8131543 DOI: 10.3389/fncom.2021.670489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders dramatically impact patients of any age population, their families, and societies. Pediatrics are among vulnerable age populations who differently experience the devastating consequences of neurological conditions, such as attention-deficit hyperactivity disorders (ADHD), autism spectrum disorders (ASD), cerebral palsy, concussion, and epilepsy. System-level understanding of these neurological disorders, particularly from the brain networks' dynamic perspective, has led to the significant trend of recent scientific investigations. While a dramatic maturation in the network science application domain is evident, leading to a better understanding of neurological disorders, such rapid utilization for studying pediatric neurological disorders falls behind that of the adult population. Aside from the specific technological needs and constraints in studying neurological disorders in children, the concept of development introduces uncertainty and further complexity topping the existing neurologically driven processes caused by disorders. To unravel these complexities, indebted to the availability of high-dimensional data and computing capabilities, approaches based on machine learning have rapidly emerged a new trend to understand pathways better, accurately diagnose, and better manage the disorders. Deep learning has recently gained an ever-increasing role in the era of health and medical investigations. Thanks to its relatively more minor dependency on feature exploration and engineering, deep learning may overcome the challenges mentioned earlier in studying neurological disorders in children. The current scoping review aims to explore challenges concerning pediatric brain development studies under the constraints of neurological disorders and offer an insight into the potential role of deep learning methodology on such a task with varying and uncertain nature. Along with pinpointing recent advancements, possible research directions are highlighted where deep learning approaches can assist in computationally targeting neurological disorder-related processes and translating them into windows of opportunities for interventions in diagnosis, treatment, and management of neurological disorders in children.
Collapse
Affiliation(s)
- Saman Sargolzaei
- Department of Engineering, College of Engineering and Natural Sciences, University of Tennessee at Martin, Martin, TN, United States
| |
Collapse
|