1
|
Aygun B, Biswas A, Blaaza M, Cooper J, Gaur P, Avsenik J, Rao HR, Stegeman J, Löbel U, Szychot E, D’Arco F, Sudhakar S, Mankad K. Improved diagnostic accuracy for leptomeningeal dissemination in pediatric brain tumors using contrast-enhanced FLAIR imaging. Neurooncol Pract 2025; 12:51-57. [PMID: 39917759 PMCID: PMC11798603 DOI: 10.1093/nop/npae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Background Central nervous system cancers are a leading cause of childhood cancer-related mortality. Accurate staging and assessment of leptomeningeal spread, particularly in aggressive neoplasms such as embryonal tumors, is crucial for treatment planning and prognosis. Conventional diagnostic methods, relying on magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) cytology, have limitations, including high false-negative rates and sensitivity issues. In this retrospective study, we aim to compare the diagnostic sensitivity of contrast-enhanced T2-weighted fluid-attenuated inversion recovery (CE-T2W-FLAIR) and 2D and 3D contrast-enhanced T1-weighted imaging (CE-T1WI) for detecting leptomeningeal disease. Methods We retrospectively reviewed 1372 MRI brain studies of 297 patients aged 1-19 years. We included only those MRI examinations adhering to our neuro-oncology protocol while excluding incomplete or suboptimal studies. A control group without leptomeningeal disease was matched for disease and age. Three groups of 2 neuroradiologists each, blinded to case status, reviewed the images using various sequences. The results were compared using the McNemar test and chi-squared test for P-values. Results The sensitivity of CE-T2W-FLAIR sequence was significantly higher compared with that of CE-T1WI (P = .025). There was no statistically significant difference between the sensitivity of 2D CE-T1WI and 3D CE-T1WI (P = .3173). The specificity of the 3D CE-T1WI was significantly lower compared with those of CE-T2W-FLAIR and 2D CE-T1WI (P = .014). The positive predictive values for CE-T2W-FLAIR, 2D CE-T1WI, and 3D CE-T1WI were 100%, 100%, and 68.4%, respectively, whereas the negative predictive values were 100%, 85.7%, and 85.71%, respectively. Conclusions The inclusion of CE-T2W-FLAIR in the MRI protocol improves sensitivity and specificity in diagnosing leptomeningeal spread in pediatric brain tumors.
Collapse
Affiliation(s)
- Berna Aygun
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, UK
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mohammed Blaaza
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jessica Cooper
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Pritika Gaur
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jernej Avsenik
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Harini R Rao
- Department of Haematology-Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - James Stegeman
- Monash Imaging, Monash Children’s Hospital, Monash Health, Melbourne, Australia
| | - Ulrike Löbel
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elwira Szychot
- Department of Pediatrics, Pediatric Oncology and Immunology, Pomeranian Medical University, Szczecin, Poland
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Felice D’Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sniya Sudhakar
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Du S, Gong G, Liu R, Meng K, Yin Y. Advances in determining the gross tumor target volume for radiotherapy of brain metastases. Front Oncol 2024; 14:1338225. [PMID: 38779095 PMCID: PMC11109437 DOI: 10.3389/fonc.2024.1338225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Brain metastases (BMs) are the most prevalent intracranial malignant tumors in adults and are the leading cause of mortality attributed to malignant brain diseases. Radiotherapy (RT) plays a critical role in the treatment of BMs, with local RT techniques such as stereotactic radiosurgery (SRS)/stereotactic body radiotherapy (SBRT) showing remarkable therapeutic effectiveness. The precise determination of gross tumor target volume (GTV) is crucial for ensuring the effectiveness of SRS/SBRT. Multimodal imaging techniques such as CT, MRI, and PET are extensively used for the diagnosis of BMs and GTV determination. With the development of functional imaging and artificial intelligence (AI) technology, there are more innovative ways to determine GTV for BMs, which significantly improve the accuracy and efficiency of the determination. This article provides an overview of the progress in GTV determination for RT in BMs.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanzhong Gong
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Rui Liu
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kangning Meng
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Suzuki T, Akamatsu Y, Oshida S, Sato S. A Case of Rheumatoid Meningitis Diagnosed with FLAIR Images and Anti-cyclic Citrullinated Peptide Antibodies Levels. NMC Case Rep J 2024; 11:119-123. [PMID: 38756142 PMCID: PMC11098618 DOI: 10.2176/jns-nmc.2023-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024] Open
Abstract
Rheumatoid meningitis (RM) is a rare but serious extra-articular manifestation of rheumatoid arthritis. Due to the absence of specific biomarkers, imaging findings, or guidelines for its detection, the diagnosis of RM is difficult. This report describes a patient of RM diagnosed with an open biopsy and discusses the utility of anticyclic citrullinated peptide antibodies (ACPA) levels in the serum and cerebrospinal fluid (CSF), and contrast-enhanced (CE) fluid-attenuated inversion recovery (FLAIR) images for screening and monitoring RM. A 65-year-old woman presented with a 2-month history of headaches. Imaging studies showed asymmetric meningeal and leptomeningeal involvement seen on brain magnetic resonance imaging (MRI). An open biopsy of the meninges and leptomeninges depicted palisaded and necrotizing granulomatous inflammation, which suggests rheumatoid nodules. Treatment with prednisolone and tocilizumab led to symptom improvement and reduced lesion intensity on follow-up MRI. Throughout the treatment, the ACPA index in her serum and CSF, and the findings of CE-FLAIR images, rather than the CE T1WI, reflected disease activity. For 6 months, the patient has been stable without symptom recurrence. The ACPA index and the CE-FLAIR images were useful for the diagnosis and monitoring of RM. To validate these findings, further studies are necessary.
Collapse
Affiliation(s)
- Taro Suzuki
- Department of Neurosurgery, Iwate Prefectural Ofunato Hospital, Ofunato, Iwate, Japan
| | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Sotaro Oshida
- Department of Neurosurgery, Iwate Prefectural Ofunato Hospital, Ofunato, Iwate, Japan
| | - Shinpei Sato
- Department of Neurosurgery, Iwate Prefectural Ofunato Hospital, Ofunato, Iwate, Japan
| |
Collapse
|
4
|
Dekker HM, Stroomberg GJ, Van der Molen AJ, Prokop M. Review of strategies to reduce the contamination of the water environment by gadolinium-based contrast agents. Insights Imaging 2024; 15:62. [PMID: 38411847 PMCID: PMC10899148 DOI: 10.1186/s13244-024-01626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCA) are essential for diagnostic MRI examinations. GBCA are only used in small quantities on a per-patient basis; however, the acquisition of contrast-enhanced MRI examinations worldwide results in the use of many thousands of litres of GBCA per year. Data shows that these GBCA are present in sewage water, surface water, and drinking water in many regions of the world. Therefore, there is growing concern regarding the environmental impact of GBCA because of their ubiquitous presence in the aquatic environment. To address the problem of GBCA in the water system as a whole, collaboration is necessary between all stakeholders, including the producers of GBCA, medical professionals and importantly, the consumers of drinking water, i.e. the patients. This paper aims to make healthcare professionals aware of the opportunity to take the lead in making informed decisions about the use of GBCA and provides an overview of the different options for action.In this paper, we first provide a summary on the metabolism and clinical use of GBCA, then the environmental fate and observations of GBCA, followed by measures to reduce the use of GBCA. The environmental impact of GBCA can be reduced by (1) measures focusing on the application of GBCA by means of weight-based contrast volume reduction, GBCA with higher relaxivity per mmol of Gd, contrast-enhancing sequences, and post-processing; and (2) measures that reduce the waste of GBCA, including the use of bulk packaging and collecting residues of GBCA at the point of application.Critical relevance statement This review aims to make healthcare professionals aware of the environmental impact of GBCA and the opportunity for them to take the lead in making informed decisions about GBCA use and the different options to reduce its environmental burden.Key points• Gadolinium-based contrast agents are found in sources of drinking water and constitute an environmental risk.• Radiologists have a wide spectrum of options to reduce GBCA use without compromising diagnostic quality.• Radiology can become more sustainable by adopting such measures in clinical practice.
Collapse
Affiliation(s)
- Helena M Dekker
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - Gerard J Stroomberg
- RIWA-Rijn - Association of River Water Works, Groenendael 6, 3439 LV, Nieuwegein, The Netherlands
| | - Aart J Van der Molen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Estler A, Hauser TK, Mengel A, Brunnée M, Zerweck L, Richter V, Zuena M, Schuhholz M, Ernemann U, Gohla G. Deep Learning Accelerated Image Reconstruction of Fluid-Attenuated Inversion Recovery Sequence in Brain Imaging: Reduction of Acquisition Time and Improvement of Image Quality. Acad Radiol 2024; 31:180-186. [PMID: 37280126 DOI: 10.1016/j.acra.2023.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023]
Abstract
RATIONALE AND OBJECTIVES Fluid-attenuated inversion recovery (FLAIR) imaging is playing an increasingly significant role in the detection of brain metastases with a concomitant increase in the number of magnetic resonance imaging (MRI) examinations. Therefore, the purpose of this study was to investigate the impact on image quality and diagnostic confidence of an innovative deep learning-based accelerated FLAIR (FLAIRDLR) sequence of the brain compared to conventional (standard) FLAIR (FLAIRS) imaging. MATERIALS AND METHODS Seventy consecutive patients with staging cerebral MRIs were retrospectively enrolled in this single-center study. The FLAIRDLR was conducted using the same MRI acquisition parameters as the FLAIRS sequence, except for a higher acceleration factor for parallel imaging (from 2 to 4), which resulted in a shorter acquisition time of 1:39 minute instead of 2:40 minutes (-38%). Two specialized neuroradiologists evaluated the imaging datasets using a Likert scale that ranged from 1 to 4, with 4 indicating the best score for the following parameters: sharpness, lesion demarcation, artifacts, overall image quality, and diagnostic confidence. Additionally, the image preference of the readers and the interreader agreement were assessed. RESULTS The average age of the patients was 63 ± 11years. FLAIRDLR exhibited significantly less image noise than FLAIRS, with P-values of< .001 and< .05, respectively. The sharpness of the images and the ability to detect lesions were rated higher in FLAIRDLR, with a median score of 4 compared to a median score of 3 in FLAIRS (P-values of<.001 for both readers). In terms of overall image quality, FLAIRDLR was rated superior to FLAIRS, with a median score of 4 vs 3 (P-values of<.001 for both readers). Both readers preferred FLAIRDLR in 68/70 cases. CONCLUSION The feasibility of deep learning FLAIR brain imaging was shown with additional 38% reduction in examination time compared to standard FLAIR imaging. Furthermore, this technique has shown improvement in image quality, noise reduction, and lesion demarcation.
Collapse
Affiliation(s)
- Arne Estler
- Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Baden-Württemberg, Germany (A.E., T.-K.H., L.Z., V.R., M.Z., U.E., G.G.).
| | - Till-Karsten Hauser
- Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Baden-Württemberg, Germany (A.E., T.-K.H., L.Z., V.R., M.Z., U.E., G.G.)
| | - Annerose Mengel
- Department of Neurology & Stroke, Eberhard-Karls University of Tübingen, Tuebingen, Germany (A.M.)
| | - Merle Brunnée
- Department of Neuroradiology, Neurological University Clinic, Heidelberg University Hospital, Heidelberg, Germany (M.B.)
| | - Leonie Zerweck
- Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Baden-Württemberg, Germany (A.E., T.-K.H., L.Z., V.R., M.Z., U.E., G.G.)
| | - Vivien Richter
- Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Baden-Württemberg, Germany (A.E., T.-K.H., L.Z., V.R., M.Z., U.E., G.G.)
| | - Mario Zuena
- Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Baden-Württemberg, Germany (A.E., T.-K.H., L.Z., V.R., M.Z., U.E., G.G.)
| | - Martin Schuhholz
- Faculty of Medicine, University of Tuebingen, Tübingen, Germany (M.S.)
| | - Ulrike Ernemann
- Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Baden-Württemberg, Germany (A.E., T.-K.H., L.Z., V.R., M.Z., U.E., G.G.)
| | - Georg Gohla
- Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Baden-Württemberg, Germany (A.E., T.-K.H., L.Z., V.R., M.Z., U.E., G.G.)
| |
Collapse
|
6
|
Ahn SJ, Taoka T, Moon WJ, Naganawa S. Contrast-Enhanced Fluid-Attenuated Inversion Recovery in Neuroimaging: A Narrative Review on Clinical Applications and Technical Advances. J Magn Reson Imaging 2022; 56:341-353. [PMID: 35170148 DOI: 10.1002/jmri.28117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
While contrast-enhanced fluid-attenuated inversion recovery (FLAIR) has long been regarded as an adjunct sequence to evaluate leptomeningeal disease in addition to contrast-enhanced T1-weighted imaging, it is gradually being used for more diverse pathologies beyond leptomeningeal disease. Contrast-enhanced FLAIR is known to be highly sensitive to low concentrations of gadolinium within the fluid. Accordingly, recent research has suggested the potential utility of contrast-enhanced FLAIR in various kinds of disease, such as Meniere's disease, seizure, stroke, traumatic brain injury, and brain metastasis, in addition to being used for visualizing glymphatic dysfunction. However, its potential applications have been reported sporadically in an unorganized manner. Furthermore, the exact mechanism for its superior sensitivity to low concentrations of gadolinium has not been fully understood. Rapidly developing magnetic resonance technology and unoptimized parameters for FLAIR may challenge its accurate application in clinical practice. This review provides the fundamental mechanism of contrast-enhanced FLAIR, systematically describes its current and potential clinical application, and elaborates on technical considerations for its optimization. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 5.
Collapse
Affiliation(s)
- Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|