1
|
Nishioka N, Shimizu Y, Kaneko Y, Shirai T, Suzuki A, Amemiya T, Ochi H, Bito Y, Takizawa M, Ikebe Y, Kameda H, Harada T, Fujima N, Kudo K. Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities. Jpn J Radiol 2024:10.1007/s11604-024-01666-5. [PMID: 39316286 DOI: 10.1007/s11604-024-01666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE To evaluate deep learning-reconstructed (DLR)-fluid-attenuated inversion recovery (FLAIR) images generated from undersampled data, compare them with fully sampled and rapidly acquired FLAIR images, and assess their potential for white matter hyperintensity evaluation. MATERIALS AND METHODS We examined 30 patients with white matter hyperintensities, obtaining fully sampled FLAIR images (standard FLAIR, std-FLAIR). We created accelerated FLAIR (acc-FLAIR) images using one-third of the fully sampled data and applied deep learning to generate DLR-FLAIR images. Three neuroradiologists assessed the quality (amount of noise and gray/white matter contrast) in all three image types. The reproducibility of hyperintensities was evaluated by comparing a subset of 100 hyperintensities in acc-FLAIR and DLR-FLAIR images with those in the std-FLAIR images. Quantitatively, similarities and errors of the entire image and the focused regions on white matter hyperintensities in acc-FLAIR and DLR-FLAIR images were measured against std-FLAIR images using structural similarity index measure (SSIM), regional SSIM, normalized root mean square error (NRMSE), and regional NRMSE values. RESULTS All three neuroradiologists evaluated DLR-FLAIR as having significantly less noise and higher image quality scores compared with std-FLAIR and acc-FLAIR (p < 0.001). All three neuroradiologists assigned significantly higher frontal lobe gray/white matter visibility scores for DLR-FLAIR than for acc-FLAIR (p < 0.001); two neuroradiologists attributed significantly higher scores for DLR-FLAIR than for std-FLAIR (p < 0.05). Regarding white matter hyperintensities, all three neuroradiologists significantly preferred DLR-FLAIR (p < 0.0001). DLR-FLAIR exhibited higher similarity to std-FLAIR in terms of visibility of the hyperintensities, with 97% of the hyperintensities rated as nearly identical or equivalent. Quantitatively, DLR-FLAIR demonstrated significantly higher SSIM and regional SSIM values than acc-FLAIR, with significantly lower NRMSE and regional NRMSE values (p < 0.0001). CONCLUSIONS DLR-FLAIR can reduce scan time and generate images of similar quality to std-FLAIR in patients with white matter hyperintensities. Therefore, DLR-FLAIR may serve as an effective method in traditional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Noriko Nishioka
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yukio Kaneko
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Toru Shirai
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Atsuro Suzuki
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Tomoki Amemiya
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Hisaaki Ochi
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Yoshitaka Bito
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- FUJIFILM Healthcare Corporation, Tokyo, Japan
| | | | - Yohei Ikebe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Faculty of Dental Medicine, Department of Radiology, Hokkaido University, Sapporo, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Liebrand LC, Karkalousos D, Poirion É, Emmer BJ, Roosendaal SD, Marquering HA, Majoie CBLM, Savatovsky J, Caan MWA. Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01200-8. [PMID: 39212832 DOI: 10.1007/s10334-024-01200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To compare compressed sensing (CS) and the Cascades of Independently Recurrent Inference Machines (CIRIM) with respect to image quality and reconstruction times when 12-fold accelerated scans of patients with neurological deficits are reconstructed. MATERIALS AND METHODS Twelve-fold accelerated 3D T2-FLAIR images were obtained from a cohort of 62 patients with neurological deficits on 3 T MRI. Images were reconstructed offline via CS and the CIRIM. Image quality was assessed in a blinded and randomized manner by two experienced interventional neuroradiologists and one experienced pediatric neuroradiologist on imaging artifacts, perceived spatial resolution (sharpness), anatomic conspicuity, diagnostic confidence, and contrast. The methods were also compared in terms of self-referenced quality metrics, image resolution, patient groups and reconstruction time. In ten scans, the contrast ratio (CR) was determined between lesions and white matter. The effect of acceleration factor was assessed in a publicly available fully sampled dataset, since ground truth data are not available in prospectively accelerated clinical scans. Specifically, 451 FLAIR scans, including scans with white matter lesions, were adopted from the FastMRI database to evaluate structural similarity (SSIM) and the CR of lesions and white matter on ranging acceleration factors from four-fold up to 12-fold. RESULTS Interventional neuroradiologists significantly preferred the CIRIM for imaging artifacts, anatomic conspicuity, and contrast. One rater significantly preferred the CIRIM in terms of sharpness and diagnostic confidence. The pediatric neuroradiologist preferred CS for imaging artifacts and sharpness. Compared to CS, the CIRIM reconstructions significantly improved in terms of imaging artifacts and anatomic conspicuity (p < 0.01) for higher resolution scans while yielding a 28% higher SNR (p = 0.001) and a 5.8% lower CR (p = 0.04). There were no differences between patient groups. Additionally, CIRIM was five times faster than CS was. An increasing acceleration factor did not lead to changes in CR (p = 0.92), but led to lower SSIM (p = 0.002). DISCUSSION Patients with neurological deficits can undergo MRI at a range of moderate to high acceleration. DL reconstruction outperforms CS in terms of image resolution, efficient denoising with a modest reduction in contrast and reduced reconstruction times.
Collapse
Affiliation(s)
- Luka C Liebrand
- Department of Biomedical Engineering & Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Dimitrios Karkalousos
- Department of Biomedical Engineering & Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Émilie Poirion
- Fondation Rothschild Hospital, 29 Rue Manin, Paris, France
| | - Bart J Emmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stefan D Roosendaal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Henk A Marquering
- Department of Biomedical Engineering & Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Matthan W A Caan
- Department of Biomedical Engineering & Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Yoo RE, Choi SH. Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging. Magn Reson Med Sci 2024; 23:341-351. [PMID: 38684425 PMCID: PMC11234952 DOI: 10.2463/mrms.rev.2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite its superior soft tissue contrast and non-invasive nature, MRI requires long scan times due to its intrinsic signal acquisition principles, a main drawback which technological advancements in MRI have been focused on. In particular, scan time reduction is a natural requirement in neuroimaging due to detailed structures requiring high resolution imaging and often volumetric (3D) acquisitions, and numerous studies have recently attempted to harness deep learning (DL) technology in enabling scan time reduction and image quality improvement. Various DL-based image reconstruction products allow for additional scan time reduction on top of existing accelerated acquisition methods without compromising the image quality.
Collapse
Affiliation(s)
- Roh-Eul Yoo
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
4
|
Brain ME, Amukotuwa S, Bammer R. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality. J Med Imaging Radiat Oncol 2024; 68:377-384. [PMID: 38577926 DOI: 10.1111/1754-9485.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Deep learning reconstruction (DLR) technologies are the latest methods attempting to solve the enduring problem of reducing MRI acquisition times without compromising image quality. The clinical utility of this reconstruction technique is yet to be fully established. This study aims to assess whether a commercially available DLR technique applied to 2D T2-weighted FLAIR brain images allows a reduction in scan time, without compromising image quality and thus diagnostic accuracy. METHODS 47 participants (24 male, mean age 55.9 ± 18.7 SD years, range 20-89 years) underwent routine, clinically indicated brain MRI studies in March 2022, that included a standard-of-care (SOC) T2-weighted FLAIR sequence, and an accelerated acquisition that was reconstructed using the DLR denoising product. Overall image quality, lesion conspicuity, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and artefacts for each sequence, and preferred sequence on direct comparison, were subjectively assessed by two readers. RESULTS There was a strong preference for SOC FLAIR sequence for overall image quality (P = 0.01) and head-to-head comparison (P < 0.001). No difference was observed for lesion conspicuity (P = 0.49), perceived SNR (P = 1.0), and perceived CNR (P = 0.84). There was no difference in motion (P = 0.57) nor Gibbs ringing (P = 0.86) artefacts. Phase ghosting (P = 0.038) and pseudolesions were significantly more frequent (P < 0.001) on DLR images. CONCLUSION DLR algorithm allowed faster FLAIR acquisition times with comparable image quality and lesion conspicuity. However, an increased incidence and severity of phase ghosting artefact and presence of pseudolesions using this technique may result in a reduction in reading speed, efficiency, and diagnostic confidence.
Collapse
Affiliation(s)
- Matthew E Brain
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Shalini Amukotuwa
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Roland Bammer
- Department of Diagnostic Imaging, Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Demuth S, Paris J, Faddeenkov I, De Sèze J, Gourraud PA. Clinical applications of deep learning in neuroinflammatory diseases: A scoping review. Rev Neurol (Paris) 2024:S0035-3787(24)00522-8. [PMID: 38772806 DOI: 10.1016/j.neurol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Deep learning (DL) is an artificial intelligence technology that has aroused much excitement for predictive medicine due to its ability to process raw data modalities such as images, text, and time series of signals. OBJECTIVES Here, we intend to give the clinical reader elements to understand this technology, taking neuroinflammatory diseases as an illustrative use case of clinical translation efforts. We reviewed the scope of this rapidly evolving field to get quantitative insights about which clinical applications concentrate the efforts and which data modalities are most commonly used. METHODS We queried the PubMed database for articles reporting DL algorithms for clinical applications in neuroinflammatory diseases and the radiology.healthairegister.com website for commercial algorithms. RESULTS The review included 148 articles published between 2018 and 2024 and five commercial algorithms. The clinical applications could be grouped as computer-aided diagnosis, individual prognosis, functional assessment, the segmentation of radiological structures, and the optimization of data acquisition. Our review highlighted important discrepancies in efforts. The segmentation of radiological structures and computer-aided diagnosis currently concentrate most efforts with an overrepresentation of imaging. Various model architectures have addressed different applications, relatively low volume of data, and diverse data modalities. We report the high-level technical characteristics of the algorithms and synthesize narratively the clinical applications. Predictive performances and some common a priori on this topic are finally discussed. CONCLUSION The currently reported efforts position DL as an information processing technology, enhancing existing modalities of paraclinical investigations and bringing perspectives to make innovative ones actionable for healthcare.
Collapse
Affiliation(s)
- S Demuth
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France.
| | - J Paris
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - I Faddeenkov
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - J De Sèze
- Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France; Department of Neurology, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France; Inserm CIC 1434 Clinical Investigation Center, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - P-A Gourraud
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; "Data clinic", Department of Public Health, University Hospital of Nantes, Nantes, France
| |
Collapse
|
6
|
Spagnolo F, Depeursinge A, Schädelin S, Akbulut A, Müller H, Barakovic M, Melie-Garcia L, Bach Cuadra M, Granziera C. How far MS lesion detection and segmentation are integrated into the clinical workflow? A systematic review. Neuroimage Clin 2023; 39:103491. [PMID: 37659189 PMCID: PMC10480555 DOI: 10.1016/j.nicl.2023.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Over the past few years, the deep learning community has developed and validated a plethora of tools for lesion detection and segmentation in Multiple Sclerosis (MS). However, there is an important gap between validating models technically and clinically. To this end, a six-step framework necessary for the development, validation, and integration of quantitative tools in the clinic was recently proposed under the name of the Quantitative Neuroradiology Initiative (QNI). AIMS Investigate to what extent automatic tools in MS fulfill the QNI framework necessary to integrate automated detection and segmentation into the clinical neuroradiology workflow. METHODS Adopting the systematic Cochrane literature review methodology, we screened and summarised published scientific articles that perform automatic MS lesions detection and segmentation. We categorised the retrieved studies based on their degree of fulfillment of QNI's six-steps, which include a tool's technical assessment, clinical validation, and integration. RESULTS We found 156 studies; 146/156 (94%) fullfilled the first QNI step, 155/156 (99%) the second, 8/156 (5%) the third, 3/156 (2%) the fourth, 5/156 (3%) the fifth and only one the sixth. CONCLUSIONS To date, little has been done to evaluate the clinical performance and the integration in the clinical workflow of available methods for MS lesion detection/segmentation. In addition, the socio-economic effects and the impact on patients' management of such tools remain almost unexplored.
Collapse
Affiliation(s)
- Federico Spagnolo
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland; MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Adrien Depeursinge
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sabine Schädelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aysenur Akbulut
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Ankara University School of Medicine, Ankara, Turkey
| | - Henning Müller
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; The Sense Research and Innovation Center, Lausanne and Sion, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Radiology Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Griguoli M, Pimpinella D. Medial septum: relevance for social memory. Front Neural Circuits 2022; 16:965172. [PMID: 36082110 PMCID: PMC9445153 DOI: 10.3389/fncir.2022.965172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Animal species are named social when they develop the capability of complex behaviors based on interactions with conspecifics that include communication, aggression, mating and parental behavior, crucial for well-being and survival. The underpinning of such complex behaviors is social memory, namely the capacity to discriminate between familiar and novel individuals. The Medial Septum (MS), a region localized in the basal forebrain, is part of the brain network involved in social memory formation. MS receives several cortical and subcortical synaptic and neuromodulatory inputs that make it an important hub in processing social information relevant for social memory. Particular attention is paid to synaptic inputs that control both the MS and the CA2 region of the hippocampus, one of the major MS output, that has been causally linked to social memory. In this review article, we will provide an overview of local and long range connectivity that allows MS to integrate and process social information. Furthermore, we will summarize previous strategies used to determine how MS controls social memory in different animal species. Finally, we will discuss the impact of an altered MS signaling on social memory in animal models and patients affected by neurodevelopmental and neurodegenerative disorders, including autism and Alzheimer’s Disease.
Collapse
Affiliation(s)
- Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
- Institute of Molecular Biology and Pathology of the National Council of Research (IBPM-CNR), Rome, Italy
- *Correspondence: Marilena Griguoli
| | - Domenico Pimpinella
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|