1
|
Dafsari HS, Martinelli D, Saffari A, Ebrahimi-Fakhari D, Fanto M, Dionisi-Vici C, Jungbluth H. An update on autophagy disorders. J Inherit Metab Dis 2024. [PMID: 39420677 DOI: 10.1002/jimd.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Macroautophagy is a highly conserved cellular pathway for the degradation and recycling of defective cargo including proteins, organelles, and macromolecular complexes. As autophagy is particularly relevant for cellular homeostasis in post-mitotic tissues, congenital disorders of autophagy, due to monogenic defects in key autophagy genes, share a common "clinical signature" including neurodevelopmental, neurodegenerative, and neuromuscular features, as well as variable abnormalities of the eyes, skin, heart, bones, immune cells, and other organ systems, depending on the expression pattern and the specific function of the defective proteins. Since the clinical and genetic resolution of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy, the widespread use of massively parallel sequencing has resulted in the identification of a growing number of autophagy-associated disease genes, encoding members of the core autophagy machinery as well as related proteins. Recently identified monogenic disorders linking selective autophagy, vesicular trafficking, and other pathways have further expanded the molecular and phenotypical spectrum of congenital disorders of autophagy as a clinical disease spectrum. Moreover, significant advances in basic research have enhanced the understanding of the underlying pathophysiology as a basis for therapy development. Here, we review (i) autophagy in the context of other intracellular trafficking pathways; (ii) the main congenital disorders of autophagy and their typical clinico-pathological signatures; and (iii) the recommended primary health surveillance in monogenic disorders of autophagy based on available evidence. We further discuss recently identified molecular mechanisms that inform the current understanding of autophagy in health and disease, as well as perspectives on future therapeutic approaches.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of Pediatrics and Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max-Planck-Institute for Biology of Ageing; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Afshin Saffari
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manolis Fanto
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signaling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| |
Collapse
|
2
|
Gafner M, Garel C, Leibovitz Z, Valence S, Krajden Haratz K, Oegema R, Mancini GMS, Heron D, Bueltmann E, Burglen L, Rodriguez D, Huisman TAGM, Lequin MH, Arad A, Kidron D, Muqary M, Gindes L, Lev D, Boltshauser E, Lerman-Sagie T. Medullary Tegmental Cap Dysplasia: Fetal and Postnatal Presentations of a Unique Brainstem Malformation. AJNR Am J Neuroradiol 2023; 44:334-340. [PMID: 36822823 PMCID: PMC10187821 DOI: 10.3174/ajnr.a7805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND AND PURPOSE Medullary tegmental cap dysplasia is a rare brainstem malformation, first described and defined by James Barkovich in his book Pediatric Neuroimaging from 2005 as an anomalous mass protruding from the posterior medullary surface. We describe the neuroimaging, clinical, postmortem, and genetic findings defining this unique malformation. MATERIALS AND METHODS This is a multicenter, international, retrospective study. We assessed the patients' medical records, prenatal ultrasounds, MR images, genetic findings, and postmortem results. We reviewed the medical literature for all studies depicting medullary malformations and evaluated cases in which a dorsal medullary protuberance was described. RESULTS We collected 13 patients: 3 fetuses and 10 children. The medullary caps had multiple characteristics. Associated brain findings were a rotated position of the medulla, a small and flat pons, cerebellar anomalies, a molar tooth sign, and agenesis of the corpus callosum. Systemic findings included the following: polydactyly, hallux valgus, large ears, and coarse facies. Postmortem analysis in 3 patients revealed that the cap contained either neurons or white matter tracts. We found 8 publications describing a dorsal medullary protuberance in 27 patients. The syndromic diagnosis was Joubert-Boltshauser syndrome in 11 and fibrodysplasia ossificans progressiva in 14 patients. CONCLUSIONS This is the first study to describe a series of 13 patients with medullary tegmental cap dysplasia. The cap has different shapes: distinct in Joubert-Boltshauser syndrome and fibrodysplasia ossificans progressive. Due to the variations in the clinical, imaging, and postmortem findings, we conclude that there are multiple etiologies and pathophysiology. We suggest that in some patients, the pathophysiology might be abnormal axonal guidance.
Collapse
Affiliation(s)
- M Gafner
- From the Department of Pediatrics B (M.G.), Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty ofMedicine (M.G., K.K.H., L.G., D.L., T.L.-S.), Tel Aviv University, Tel Aviv, Israel
| | - C Garel
- Department of Radiology (C.G.)
- Reference Center for Cerebellar Malformations and Congenital Diseases (C.G., S.V., D.H., L.B., D.R.), Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Z Leibovitz
- Obstetrics and Gynecology Ultrasound Unit (Z.L.), Bnai-Zion Medical Center, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Valence
- Reference Center for Cerebellar Malformations and Congenital Diseases (C.G., S.V., D.H., L.B., D.R.), Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
- Service de Neuropédiatrie (S.V., L.B., D.R.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - K Krajden Haratz
- Sackler Faculty ofMedicine (M.G., K.K.H., L.G., D.L., T.L.-S.), Tel Aviv University, Tel Aviv, Israel
- Division of Ultrasound in ObGyn (K.K.H.), Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - G M S Mancini
- Department of Clinical Genetics (G.M.S.M.), Erasmus MC University Medical Center, GD Rotterdam, the Netherlands
| | - D Heron
- Reference Center for Cerebellar Malformations and Congenital Diseases (C.G., S.V., D.H., L.B., D.R.), Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
- Service de Génétique Clinique (D.H.), Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - E Bueltmann
- Institute of Diagnostic und Interventional Neuroradiology (E. Bueltmann), Hannover Medical School, Hannover, Germany
| | - L Burglen
- Reference Center for Cerebellar Malformations and Congenital Diseases (C.G., S.V., D.H., L.B., D.R.), Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
- Service de Neuropédiatrie (S.V., L.B., D.R.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - D Rodriguez
- Reference Center for Cerebellar Malformations and Congenital Diseases (C.G., S.V., D.H., L.B., D.R.), Hôpital d'Enfants Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
- Service de Neuropédiatrie (S.V., L.B., D.R.), Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - T A G M Huisman
- Edward B. Singleton Department of Radiology (T.A.G.M.H.), Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - M H Lequin
- Radiology (M.H.L.), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A Arad
- Department of Pathology (A.A.), Bnai-Zion Medical Center, Haifa, Israel
| | - D Kidron
- Department of Pathology (D.K.), Meir Medical Center, Kfar Saba, Israel
| | - M Muqary
- Department of Obstetrics and Gynecology (M.M.), Poriya Medical Center, Tiberias, Galilee, Israel
| | - L Gindes
- Sackler Faculty ofMedicine (M.G., K.K.H., L.G., D.L., T.L.-S.), Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology (L.G.)
| | - D Lev
- Sackler Faculty ofMedicine (M.G., K.K.H., L.G., D.L., T.L.-S.), Tel Aviv University, Tel Aviv, Israel
- The Rina Mor Institute of Medical Genetics (D.L.)
- Fetal Neurology Clinic (D.L., T.L.-S.)
| | - E Boltshauser
- Pediatric Neurology (Emeritus) (E. Boltshauser), Children's University Hospital, Zürich, Switzerland
| | - T Lerman-Sagie
- Sackler Faculty ofMedicine (M.G., K.K.H., L.G., D.L., T.L.-S.), Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic (D.L., T.L.-S.)
- Magen Center for Rare Diseases (T.L.-S.)
- Pediatric Neurology Unit (T.L.-S.), Wolfson Medical Center, Holon, Israel
| |
Collapse
|