1
|
Marini ACB, Schincaglia RM, Candow DG, Pimentel GD. Effect of Creatine Supplementation on Body Composition and Malnutrition-Inflammation Score in Hemodialysis Patients: An Exploratory 1-Year, Balanced, Double-Blind Design. Nutrients 2024; 16:615. [PMID: 38474743 PMCID: PMC10934827 DOI: 10.3390/nu16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Hemodialysis has a detrimental effect on fat-free mass (FFM) and muscle strength over time. Thus, we aimed to evaluate the effect of creatine supplementation on the body composition and Malnutrition-Inflammation Score (MIS) in patients with chronic kidney disease (CKD) undergoing hemodialysis. An exploratory 1-year balanced, placebo-controlled, and double-blind design was conducted with hemodialysis patients (≥18 years). The creatine group (CG) received 5 g of creatine monohydrate and 5 g of maltodextrin per day and the placebo group (PG) received 10 g of maltodextrin per day. MIS and body composition were analyzed at three time points: pre, intermediate (after 6 months), and post (after 12 months). After 6 months, 60% of patients on creatine experienced an increase in FFM compared to a 36.8% increase for those on placebo. Moreover, 65% of patients on creatine increased their skeletal muscle mass index (SMMI) compared to only 15.8% for those on placebo. Creatine increased intracellular water (ICW) in 60% of patients. MIS did not change after the intervention. In the CG, there was an increase in body weight (p = 0.018), FFM (p = 0.010), SMMI (p = 0.022). CG also increased total body water (pre 35.4 L, post 36.1 L; p = 0.008), mainly due to ICW (pre 20.2 L, intermediate 20.7 L, post 21.0 L; p = 0.016). Long-term creatine supplementation in hemodialysis patients did not attenuate the MIS, but enhanced FFM and SMMI, which was likely triggered by an increase in ICW.
Collapse
Affiliation(s)
- Ana Clara B. Marini
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| | - Raquel M. Schincaglia
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gustavo D. Pimentel
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| |
Collapse
|
2
|
No effect of intradialytic neuromuscular electrical stimulation on inflammation and quality of life: a randomized and parallel design clinical trial. Sci Rep 2021; 11:22176. [PMID: 34772982 PMCID: PMC8590010 DOI: 10.1038/s41598-021-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) elicits muscle contraction and has been shown to improvement of quality of life. However, if NMES improvement the quality of life and attenuate the inflammation is not fully understood. Therefore, our aim sought to assess the effects of short-term of intradialytic NMES on inflammation and quality of life in patients with chronic kidney disease patients undergoing hemodialysis. A randomized clinical trial conducted with parallel design enrolled adult hemodialysis patients three times a week during 1 month. Patients were randomly assigned to two groups (control group, n = 11; 4F/7 M) or (NMES group, n = 10; 4F/6 M). Pre-and post-intervention, was measured the high-sensitivity C reactive protein, interleukin-6, interleukin-10, and TNFα by the ELISA, and quality of life was applied using the SF-36. During each hemodialysis session, NMES was applied bilaterally at thigh and calves for 40 min. There was not change in cytokines (hs-CRP, IL-6, IL-10, and TNFα) concentrations time × group interaction. In addition, no difference was found in eight domains of quality of life. In addition, the groups did not differ for muscle strength and muscle mass. In conclusion, we found that intradialytic NMES did not change inflammation neither quality of life.
Collapse
|
3
|
Bonilla DA, Kreider RB, Petro JL, Romance R, García-Sillero M, Benítez-Porres J, Vargas-Molina S. Creatine Enhances the Effects of Cluster-Set Resistance Training on Lower-Limb Body Composition and Strength in Resistance-Trained Men: A Pilot Study. Nutrients 2021; 13:2303. [PMID: 34371813 PMCID: PMC8308441 DOI: 10.3390/nu13072303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022] Open
Abstract
Creatine monohydrate (CrM) supplementation has been shown to improve body composition and muscle strength when combined with resistance training (RT); however, no study has evaluated the combination of this nutritional strategy with cluster-set resistance training (CS-RT). The purpose of this pilot study was to evaluate the effects of CrM supplementation during a high-protein diet and a CS-RT program on lower-limb fat-free mass (LL-FFM) and muscular strength. Twenty-three resistance-trained men (>2 years of training experience, 26.6 ± 8.1 years, 176.3 ± 6.8 cm, 75.6 ± 8.9 kg) participated in this study. Subjects were randomly allocated to a CS-RT+CrM (n = 8), a CS-RT (n = 8), or a control group (n = 7). The CS-RT+CrM group followed a CrM supplementation protocol with 0.1 g·kg-1·day-1 over eight weeks. Two sessions per week of lower-limb CS-RT were performed. LL-FFM corrected for fat-free adipose tissue (dual-energy X-ray absorptiometry) and muscle strength (back squat 1 repetition maximum (SQ-1RM) and countermovement jump (CMJ)) were measured pre- and post-intervention. Significant improvements were found in whole-body fat mass, fat percentage, LL-fat mass, LL-FFM, and SQ-1RM in the CS-RT+CrM and CS-RT groups; however, larger effect sizes were obtained in the CS-RT+CrM group regarding whole body FFM (0.64 versus 0.16), lower-limb FFM (0.62 versus 0.18), and SQ-1RM (1.23 versus 0.75) when compared to the CS-RT group. CMJ showed a significant improvement in the CS-RT+CrM group with no significant changes in CS-RT or control groups. No significant differences were found between groups. Eight weeks of CrM supplementation plus a high-protein diet during a CS-RT program has a higher clinical meaningfulness on lower-limb body composition and strength-related variables in trained males than CS-RT alone. Further research might study the potential health and therapeutic effects of this nutrition and exercise strategy.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics®, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Ramón Romance
- Body Composition and Biodynamic Laboratory, Faculty of Education Sciences, University of Málaga, 29071 Málaga, Spain;
| | - Manuel García-Sillero
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain; (M.G.-S.); (S.V.-M.)
| | - Javier Benítez-Porres
- Physical Education and Sports, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain; (M.G.-S.); (S.V.-M.)
- Physical Education and Sports, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| |
Collapse
|