1
|
Cai Q, Li Y, Lyu F, Zhou M, Lu K, Tang X, Ren D, Bao Q, Wang D, Li Y. Effects of All-Trans Retinoic Acid on the Optimization of Synovial Explant Induced by Tumor Necrosis Factor Alpha. J Nutr Sci Vitaminol (Tokyo) 2021; 66:300-310. [PMID: 32863302 DOI: 10.3177/jnsv.66.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current studies focused on the effects of all-trans-retinoic acid (ATRA) on synovial explants from rats with rheumatoid arthritis (RA) induced by lipopolysaccharides (LPS). In our study, synovial membranes were extracted aseptically from the quadriceps femoris of the knee joint of rats, and then incubated in medium containing 10% neonate bovine serum for 24 h adaptive culture. We first measured variations of correlation factors in synovium at 24, 48, 72, 96 and 120 h in control medium or in medium containing 20 ng/mL tumor necrosis factor alpha (TNF-α) (TNF-α-experiment). Then, we investigated the synovium exposed to three ATRA concentrations after 48 h incubation (ATRA-experiment). The effects of ATRA on synovitis were evaluated by observing the expression of inflammatory cytokines, angiogenic factors and the production of proteases in nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and apoptosis and autophagy. In TNF-α-experiment, the secretion of nitric oxide (NO), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and matrix metalloproteinase-9 (MMP-9) increased significantly after TNF-α stimulation without pathological damage to the synovium. Hence, we successfully obtained the synovial explants model, which had longer inflammatory response time. In the ATRA-experiment, ATRA suppressed the secretion of IL-6 and NO, downregulated the NF-κB P65 and Bcl-2, increased levels of autophagy marker protein LC3, but different doses of ATRA showed inconsistent regulatory effects on VEGF and MMP-9. In short, ATRA inhibited TNF-α induced synovitis by the regulation of inflammatory cytokines and inhibiting NF-κB signal transduction and potentially promoting autophagy, apoptosis and angiogenesis, displaying its role in alleviating synovial inflammation in patients with RA.
Collapse
Affiliation(s)
- Qiuying Cai
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Yulin Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Fan Lyu
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Mingming Zhou
- Department of Clinical Nutrition, West China Second Hospital, Sichuan University
| | - Kuiqing Lu
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Xiaoyue Tang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Dongxia Ren
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Qilin Bao
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Dan Wang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University
| | - Yun Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, Sichuan University.,West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University
| |
Collapse
|
2
|
Siefen T, Lokhnauth J, Liang A, Larsen CC, Lamprecht A. An ex-vivo model for transsynovial drug permeation of intraarticular injectables in naive and arthritic synovium. J Control Release 2021; 332:581-591. [PMID: 33705826 DOI: 10.1016/j.jconrel.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023]
Abstract
Estimation of joint residence time of a drug is a key requirement for rational development of intraarticular therapeutics. There is a great need for a predictive model to reduce the high number of animal experiments in early stage development. Here, a Franz-cell based porcine ex-vivo permeation model is proposed, and transsynovial permeation of fluorescently-labeled dextrans in the range of potential drug candidates (10-150 kDa), as well as a small molecule (fluorescein sodium) and charged dextran derivates, have been determined. In addition, a lipopolysaccharide (LPS) -induced synovitis model was assessed for inflammatory biomarker levels and its effect on permeation of the solutes. Size-dependent permeability was observed for the analytes, which distinctly differed from findings with an artificial polycarbonate membrane, which is a widely used model. LPS was found to successfully stimulate an inflammatory response and led to a reduced size selectivity of the synovial membrane. 150 kDa dextran flux was accelerated approximately 2.5-fold in the inflamed state, whereas the permeation of smaller molecules was little affected. Moreover, by varying the LPS concentrations, the ex-vivo model was shown to produce varying degrees of synovitis-like inflammation. A simple and highly relevant ex-vivo tool for investigation of transsynovial permeation was developed, offering the further advantage of mimicking synovitis-induced permeability changes. Thus, this model provides a promising method for formulation screening, while reducing the need for animal experiments.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | - Alfred Liang
- Ferring Pharmaceuticals Inc, Parsippany, NJ, USA
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
3
|
Systemic Inflammation Impairs Mood Function by Disrupting the Resting-State Functional Network in a Rat Animal Model Induced by Lipopolysaccharide Challenge. Mediators Inflamm 2019; 2019:6212934. [PMID: 31210750 PMCID: PMC6532295 DOI: 10.1155/2019/6212934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Background Systemic inflammation impairs cognitive performance, yet the brain networks mediating this process remain to be elucidated. The purpose of the current study was to use resting-state functional magnetic resonance imaging (fMRI) to explore changes in the functional connectivity in a lipopolysaccharide- (LPS-) induced systemic inflammation animal model. Materials and Methods We used the regional homogeneity (ReHo) method to examine abnormal brain regions between the control and LPS groups and then considered them as seeds of functional connectivity analysis. Results Compared with the control group, our study showed that (1) LPS impaired mood function, as reflected by a depression-like behavior in the forced swim test; (2) LPS induced significantly increased ReHo values in the anterior cingulate cortex (ACC) and caudate putamen (CPu); (3) the ACC seed showed increased functional connectivity with the retrosplenial cortex, superior colliculus, and inferior colliculus; and (4) the right CPu seed showed increased functional connectivity with the left CPu. Linear regression analysis showed a LPS-induced depression-like behavior which was associated with increased ReHo values in the ACC and right CPu. Moreover, the LPS-induced depression-like behavior was related to increased functional connectivity between the right CPu and left CPu. Conclusion This is the first study to show that systemic inflammation impairs mood function that is associated with an altered resting-state functional network based on ReHo analysis, providing evidence of the abnormal regional brain spontaneous activity which might be involved in inflammation-related neurobehavioral abnormalities.
Collapse
|