1
|
Robinson SD, Deuis JR, Niu P, Touchard A, Mueller A, Schendel V, Brinkwirth N, King GF, Vetter I, Schmidt JO. Peptide toxins that target vertebrate voltage-gated sodium channels underly the painful stings of harvester ants. J Biol Chem 2024; 300:105577. [PMID: 38110035 PMCID: PMC10821600 DOI: 10.1016/j.jbc.2023.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain, and other neurotoxic symptoms in vertebrates. Here, we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.
Collapse
Affiliation(s)
- Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Pancong Niu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Axel Touchard
- CNRS, UMR Ecologie des forêts de Guyane - EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Kourou, France
| | - Alexander Mueller
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; Centro de Investigación Biomédica CENBIO, Universidad UTE, Quito, Ecuador
| | - Vanessa Schendel
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
2
|
|
3
|
Abstract
The mammalian toxicity of the potently algogenic venom of the ant Pogonomyrmex badius is greater than that reported for any other insect venom. This enzyme-rich venom contains high concentrations of phospholipase A2 and B, hyaluronidase, acid phosphatase, lipase, and esterases. This hemolytic secretion from the poison gland products unusual symptoms in mammals and appears to have been evolved as a deterrent for vertebrate predators.
Collapse
|
4
|
WILLIAMS MW, WILLIAMS CS, DEWITT GR. Temperature and subspecies variation on the oxygen consumption of the desert ant,. Life Sci 1965; 4:603-6. [PMID: 14326250 DOI: 10.1016/0024-3205(65)90271-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|