1
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
2
|
Wainwright CL, Walsh SK. Pharmacology of Non-Psychoactive Phytocannabinoids and Their Potential for Treatment of Cardiometabolic Disease. Handb Exp Pharmacol 2025; 287:61-93. [PMID: 39235486 DOI: 10.1007/164_2024_731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of Cannabis sativa by humans dates back to the third millennium BC, and it has been utilized in many forms for multiple purposes, including production of fibre and rope, as food and medicine, and (perhaps most notably) for its psychoactive properties for recreational use. The discovery of Δ9-tetrahydrocannabinol (Δ9-THC) as the main psychoactive phytocannabinoid contained in cannabis by Gaoni and Mechoulam in 1964 (J Am Chem Soc 86, 1646-1647), was the first major step in cannabis research; since then the identification of the chemicals (phytocannabinoids) present in cannabis, the classification of the pharmacological targets of these compounds and the discovery that the body has its own endocannabinoid system (ECS) have highlighted the potential value of cannabis-derived compounds in the treatment of many diseases, such as neurological disorders and cancers. Although the use of Δ9-THC as a therapeutic agent is constrained by its psychoactive properties, there is growing evidence that non-psychoactive phytocannabinoids, derived from both Cannabis sativa and other plant species, as well as non-cannabinoid compounds found in Cannabis sativa, have real potential as therapeutics. This chapter will focus on the possibilities for using these compounds in the prevention and treatment of cardiovascular disease and related metabolic disturbances.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK.
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| |
Collapse
|
3
|
Tang CY, Lai CC, Huang PH, Yang AH, Chiang SC, Huang PC, Tseng KW, Huang CH. Magnolol reduces myocardial injury induced by renal ischemia and reperfusion. J Chin Med Assoc 2022; 85:584-596. [PMID: 35385419 DOI: 10.1097/jcma.0000000000000727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Magnolol is a component of the bark of Magnolia officinalis, which is a traditional herbal remedy used in China. In this study, we investigated whether magnolol can reduce myocardial injury induced by renal ischemia and reperfusion (I/R). METHODS Renal I/R was elicited by a 60-minute occlusion of the bilateral renal arteries and a 24-hour reperfusion in Sprague-Dawley rats. Magnolol was administered intravenously 10 minutes before renal I/R to evaluate its effects on myocardial injury induced by renal I/R. RESULTS Renal I/R significantly increased the serum levels of creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and cardiac troponin I and caused myocardial damage. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive nuclei and caspase-3 activation was significantly increased in the myocardium, indicating increase of apoptosis. Echocardiography revealed left ventricular dysfunction, as evidenced by reduction of left ventricular ejection fraction and left ventricular fractional shortening. Furthermore, serum levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were significantly elevated, while the IL-10 level was suppressed. However, intravenously, pretreatment with magnolol at doses of 0.003 and 0.006 mg/kg 10 minutes before renal I/R significantly prevented the increases of CPK, LDH, and cardiac troponin I levels, as well as the histological damage and the apoptosis in the myocardium. Echocardiography showed significant improvement of left ventricular function. Furthermore, the increases in TNF-α, IL-1β, and IL-6 and the decrease in IL-10 were significantly limited, while Bcl-2 was increased and Bax was decreased in the myocardium. Phosphorylation of Akt and extracellular signal-regulated kinases 1 and 2 was increased, while phosphorylation of p38 and c-Jun N-terminal kinase was reduced. CONCLUSION Magnolol reduces myocardial injury induced by renal I/R. The underlying mechanisms for this effect might be related to modulation of the production of pro- and anti-inflammatory cytokines and the limiting of apoptosis.
Collapse
Affiliation(s)
- Chia-Yu Tang
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Chang-Chi Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - An-Han Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Shu-Chiung Chiang
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Po-Chao Huang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuo-Wei Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Cheng-Hsiung Huang
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Magnolol upregulates CHRM1 to attenuate Amyloid-β-triggered neuronal injury through regulating the cAMP/PKA/CREB pathway. J Nat Med 2021; 76:188-199. [PMID: 34705126 DOI: 10.1007/s11418-021-01574-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by neuronal degeneration and hyperphosphorylated Tau. Magnolol is an active component isolated from Magnolia officinalis with potential neuroprotection activity. However, the function and mechanism of magnolol in AD progression is largely uncertain. In present study, the biomarkers related to AD and magnolol were predicted by bioinformatics analyses. The key biomarker levels were predicted by GSE5281 and GSE36980 using AlzData. Cell viability was detected by CCK-8 assay. mRNA and protein levels were examined by qRT-PCR and western blotting assays. Cell apoptosis was investigated by caspase-3 activity and flow cytometry analyses. The cAMP/PKA/CREB signaling was evaluated by ELISA and western blotting analyses. The results showed that CHRM1 was a key biomarker for magnolol against AD progression. Magnolol attenuated Aβ-induced viability inhibition, Tau hyperphosphorylation and apoptosis in SH-SY5Y cells by upregulating CHRM1. In addition, the cAMP signaling might be a potential pathway of CHRM1 in AD. Magnolol contributed to activation of the cAMP/PKA/CREB pathway through enhancing CHRM1 level. Inactivation of the cAMP/PKA/CREB signaling reversed the suppressive effect of magnolol on Tau hyperphosphorylation and apoptosis in Aβ-treated SH-SY5Y cells. As a conclusion, magnolol mitigated Aβ-induced Tau hyperphosphorylation and neuron apoptosis by upregulating CHRM1 and activating the cAMP/PKA/CREB pathway.
Collapse
|
5
|
Luo H, Wu H, Yu X, Zhang X, Lu Y, Fan J, Tang L, Wang Z. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:412-442. [PMID: 30818008 DOI: 10.1016/j.jep.2019.02.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnoliae Officinalis Cortex (the dried bark of Magnolia officinalis), a widely used traditional Chinese medicine, is also known as 'Houpo' (Chinese: ). Magnoliae Officinalis Cortex has a wide range of pharmacological effects and has been used to treat conditions such as abdominal distention, vomiting, diarrhea, food accumulation, Qi stagnation, constipation, phlegm and fluid retention and cough resulting from asthma. AIMS OF THE REVIEW The present paper reviews advances in research relating to the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of Magnoliae Officinalis Cortex. Prospects for future investigation and application of this herb are also discussed. MATERIALS AND METHODS Information on Magnoliae Officinalis Cortex was obtained from published materials, including ancient and modern books; PhD and MSc dissertations; monographs on medicinal plants; the pharmacopoeia of different countries and electronic databases, such as SCI finder, PubMed, Web of Science, ACS, Science Direct, Wiley, Springer, Taylor, AGRIS, Europe PMC, EBSCO host, CNKI, WanFang DATA, J-STAGE and Google Scholar. RESULTS More than 200 chemical compounds have been isolated from Magnoliae Officinalis Cortex, including lignans, phenylethanoid glycosides, phenolic glycosides, alkaloids, steroids and essential oils. The plant has been reported to have pharmacological effects on the digestive system, nervous system and cardiovascular and cerebrovascular systems, as well as antibacterial, anti-tumour, analgesic, anti-inflammatory and anti-oxidative effects. CONCLUSIONS Magnoliae Officinalis Cortex is an essential traditional Chinese medicine with pharmacological activities that mainly affect the digestive system, nervous system and cardiovascular and cerebrovascular systems. This review summarises its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology. These information suggest that we should focus on the development of new drugs related to Magnoliae Officinalis Cortex, including specific constituents, so that Magnoliae Officinalis Cortex can exert greater therapeutic potential. Meanwhile, it is important to pay attention to the rational use of Magnolia resources, avoiding over-harvesting which could lead to lack of resources. We should also pursue research on Magnolia substitutes and develop resources such as Magnoliae Officinalis Flos and Magnolia Leaf.
Collapse
Affiliation(s)
- Hanyan Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiankuo Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiao Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yaqi Lu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Jianwei Fan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong 276006, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| |
Collapse
|
6
|
Tang CY, Lai CC, Huang PH, Yang AH, Chiang SC, Huang PC, Tseng KW, Huang CH. Magnolol Reduces Renal Ischemia and Reperfusion Injury via Inhibition of Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1421-1439. [PMID: 28946769 DOI: 10.1142/s0192415x1750077x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnolol, a constituent of the bark of Magnolia officinalis, has been reported to decrease myocardial stunning and infarct size. In this study, we investigated whether magnolol can reduce renal ischemia and reperfusion (I/R) injury. Renal I/R, induced by a 60-min occlusion of bilateral renal arteries and a 24-h reperfusion, significantly increased blood urea nitrogen (BUN) and creatinine levels, and caused histological damage to the kidneys of rats. Apoptosis, as evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and caspase-3 activation, was significantly increased in the kidneys. Furthermore, serum levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were significantly elevated, while the interleukin-10 (IL-10) level was suppressed. However, intravenous pretreatment with magnolol at doses of 0.003[Formula: see text]mg/kg and 0.006[Formula: see text]mg/kg 10[Formula: see text]min before renal I/R significantly limited the increases of BUN, creatinine, the histological damage, and apoptosis in the kidneys. The increases in TNF-[Formula: see text], IL-1β, and IL-6, and the decrease in IL-10 were also significantly inhibited. Additionally, magnolol increased Bcl-2 and decreased Bax in the kidneys. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was elevated, while phosphorylation of the pro-apoptotic mitogen-activated protein kinases, including p38 and c-Jun N-terminal kinase (JNK), was suppressed. In conclusion, magnolol reduces renal I/R injury. The underlying mechanisms for this effect might be related to the prevention of apoptosis, possibly via the inhibition of both extrinsic and intrinsic apoptotic pathways, including the reduction of TNF-[Formula: see text] production and the modulation of pro- and anti-apoptotic signaling elements.
Collapse
Affiliation(s)
- Chia-Yu Tang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,§ Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Chi Lai
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,§ Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,** Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| | - Po-Hsun Huang
- † Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,§ Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,¶ Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - An-Han Yang
- ‡ Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chiung Chiang
- ∥ Institute of Hospital and Health Care Administration, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Chao Huang
- †† Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kuo-Wei Tseng
- ** Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| | - Cheng-Hsiung Huang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L, Manzari V, Modesti A, Bei R. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017; 9:nu9050523. [PMID: 28531112 PMCID: PMC5452253 DOI: 10.3390/nu9050523] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress.
Collapse
Affiliation(s)
- Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | | | - Sonia Bergante
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Guido Tettamanti
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00164 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
8
|
Du G, Sun L, Zhao R, Du L, Song J, Zhang L, He G, Zhang Y, Zhang J. Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther 2016; 162:23-34. [PMID: 27113411 DOI: 10.1016/j.pharmthera.2016.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/05/2016] [Indexed: 12/09/2022]
Abstract
Polyphenols, which are naturally present in plants, have been studied for their chemical and pharmacological properties. Polyphenols have been found to exhibit various bioactivities such as antioxidant, free radical scavenging and anti-inflammatory effects, in addition to regulating the intracellular free calcium levels. These bioactivities are related to the underlying mechanisms of ischaemic heart diseases. Pharmacological studies have proven polyphenols to be effective in treating cardiovascular diseases in various ways, particularly ischaemic heart diseases. Based on their mode of action, we propose that some polyphenols can be developed as drugs to treat ischaemic heart diseases. For this purpose, a strategy to evaluate the therapeutic value of drugs for ischaemic heart diseases is needed. Despite several advances in percutaneous coronary intervention (PCI), the incidence of myocardial infarction and deaths due to cardiovascular diseases has not decreased markedly in China. Due to their pleiotropic properties and structural diversity, polyphenols have been of great interest in pharmacology. In the present review, we summarize the pharmacological effects and mechanisms of polyphenols reported after 2000, and we analyse the benefits or druggability of these compounds for ischaemic heart diseases.
Collapse
Affiliation(s)
- Guanhua Du
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Lan Sun
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Rui Zhao
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Lida Du
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Junke Song
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Zhang
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guorong He
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yongxiang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Juntian Zhang
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Liang X, Xing W, He J, Fu F, Zhang W, Su F, Liu F, Ji L, Gao F, Su H, Sun X, Zhang H. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS One 2015; 10:e0120366. [PMID: 25793876 PMCID: PMC4367990 DOI: 10.1371/journal.pone.0120366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with prehypertension are more likely to progress to manifest hypertension than those with optimal or normal blood pressure. However, the mechanisms underlying the development from prehypertension to hypertension still remain largely elusive and the drugs for antihypertensive treatment in prehypertension are absent. Here we determined the effects of magnolol (MAG) on blood pressure and aortic vasodilatation to insulin, and investigated the underlying mechanisms. Four-week-old male spontaneous hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto (WKY) control rats were used. Our results shown that treatment of young SHRs with MAG (100 mg/kg/day, o.g.) for 3 weeks decreased blood pressure, improved insulin-induced aorta vasodilation, restored Akt and eNOS activation stimulated by insulin, and increased PPARγ and decreased TRB3 expressions. In cultured human umbilical vein endothelial cells (HUVECs), MAG incubation increased PPARγ, decreased TRB3 expressions, and restored insulin-induced phosphorylated Akt and eNOS levels and NO production, which was blocked by both PPARγ antagonist and siRNA targeting PPARγ. Improved insulin signaling in HUVECs by MAG was abolished by upregulating TRB3 expression. In conclusion, treatment of young SHRs with MAG beginning at the prehypertensive stage decreases blood pressure via improving vascular insulin resistance that is at least partly attributable to upregulated PPARγ, downregulated TRB3 and consequently increased Akt and eNOS activations in blood vessels in SHRs.
Collapse
Affiliation(s)
- Xiangyan Liang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Jinxiao He
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fange Liu
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Lele Ji
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geratology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (HZ); (XS); (HS)
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (HZ); (XS); (HS)
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
- * E-mail: (HZ); (XS); (HS)
| |
Collapse
|
10
|
Burn BR, Varner KJ. Environmentally persistent free radicals compromise left ventricular function during ischemia/reperfusion injury. Am J Physiol Heart Circ Physiol 2015; 308:H998-H1006. [PMID: 25681431 DOI: 10.1152/ajpheart.00891.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 11/22/2022]
Abstract
Increases in airborne particulate matter (PM) are linked to increased mortality from myocardial ischemia. PM contains environmentally persistent free radicals (EPFRs) that form as halogenated hydrocarbons chemisorb to transition metal oxide-coated particles, and are capable of sustained redox cycling. We hypothesized that exposure to the EPFR DCB230 would increase cardiac vulnerability to subsequent myocardial ischemia-reperfusion (MI/R) injury. Rats were exposed to DCB230 or vehicle via nose-only inhalation (230 μg max/day) over 30 min/day for 7 days. MI/R or sham MI/R (sham) was initiated 24 h after the final exposure. Following 1 or 7 days of reperfusion, left ventricular (LV) function was assessed and infarct size measured. In vehicle-exposed rats, MI/R injury did not significantly reduce cardiac output (CO), stroke volume (SV), stroke work (SW), end-diastolic volume (EDV), or end-systolic volume (ESV) after 1 day of reperfusion, despite significant reductions in end-systolic pressure (ESP). Preload-recruitable SW (PRSW; contractility) was elevated, presumably to maintain LV function. MI/R 1-day rats exposed to DCB230 also had similarly reduced ESP. Compared with vehicle controls, CO, SV, and SW were significantly reduced in DCB230-exposed MI/R 1-day rats; moreover, PRSW did not increase. DCB230's effects on LV function dissipated within 8 days of exposure. These data show that inhalation of EPFRs can exacerbate the deficits in LV function produced by subsequent MI/R injury. Infarct size was not different between the MI/R groups. We conclude that inhalation of EPFRs can compromise cardiac function during MI/R injury and may help to explain the link between PM and MI/R-related mortality.
Collapse
Affiliation(s)
- Brendan R Burn
- Department of Pharmacology and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kurt J Varner
- Department of Pharmacology and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
11
|
Dong LY, Li S, Zhen YL, Wang YN, Shao X, Luo ZG. Cardioprotection of vitexin on myocardial ischemia/reperfusion injury in rat via regulating inflammatory cytokines and MAPK pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 41:1251-66. [PMID: 24228599 DOI: 10.1142/s0192415x13500845] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was conducted to demonstrate myocardial protective effects and possible underlying mechanisms of vitexin on myocardial ischemia/reperfusion (I/R) injury in rats. Occluding the anterior descending artery for 30 min and restoring blood perfusion for 60 min in rat established a model of myocardial I/R. The elevation of the ST segment of Electrocardiograph (ECG) was observed. The infarct size of the rat heart was assessed by triphenyltetrazolium chloride staining (TTC). LDH, CK, SOD activities and MDA content were determined. An immunohistochemical analysis was applied to measure the expression of myocardial NF-κBp65 and TNF-α. ERK/phospho-ERKand c-Jun/phospho-c-Jun protein expression was examined via Western Blot. Vitexin significantly reduced the elevation of the ST segment of ECG and myocardial infarct size. LDH and CK activities and MDA content were attenuated in serum, while SOD activity was markedly enhanced. Vitexin significantly attenuated I/R-induced increases of myocardial NF-κB and TNF-α. Moreover, Western Blot analysis presented that vitexin markedly enhanced the expression of phospho-ERK and weakened the expression of phospho-c-Jun compared to I/R group. The significant protective effect against myocardial ischemical/reperfusion injury in rat, which is exhibited by vitexin, may be related to its antioxidative and anti-inflammatory effects by regulating inflammatory cytokines and the MAPK pathway.
Collapse
Affiliation(s)
- Liu-Yi Dong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Hefei 230032, China
| | | | | | | | | | | |
Collapse
|
12
|
Magnolia extract (BL153) protection of heart from lipid accumulation caused cardiac oxidative damage, inflammation, and cell death in high-fat diet fed mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:205849. [PMID: 24693333 PMCID: PMC3945234 DOI: 10.1155/2014/205849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022]
Abstract
Magnolia as an herbal material obtained from Magnolia officinalis has been found to play an important role in anti-inflammation, antioxidative stress, and antiapoptosis. This study was designed to investigate the effect of Magnolia extract (BL153) on obesity-associated lipid accumulation, inflammation, oxidative stress, and apoptosis in the heart. C57BL/6 mice were fed a low- (10 kcal% fat) or high-fat (60 kcal% fat) diet for 24 weeks to induce obesity. These mice fed with high-fat diet (HFD) were given a gavage of vehicle, 2.5, 5, or 10 mg/kg body weight BL153 daily. The three doses of BL153 treatment slightly ameliorated insulin resistance without decrease of body weight gain induced by HFD feeding. BL153 at 10 mg/kg slightly attenuated a mild cardiac hypertrophy and dysfunction induced by HFD feeding. Both 5 mg/kg and 10 mg/kg of BL153 treatment significantly inhibited cardiac lipid accumulation measured by Oil Red O staining and improved cardiac inflammation and oxidative stress by downregulating ICAM-1, TNF-α, PAI-1, 3-NT, and 4-HNE. TUNEL staining showed that BL153 treatment also ameliorated apoptosis induced by mitochondrial caspase-3 independent cell death pathway. This study demonstrates that BL153 attenuates HFD-associated cardiac damage through prevention of HFD-induced cardiac lipid accumulation, inflammation, oxidative stress, and apoptosis.
Collapse
|
13
|
Caspase Inhibition Via A3 Adenosine Receptors: A New Cardioprotective Mechanism Against Myocardial Infarction. Cardiovasc Drugs Ther 2013; 28:19-32. [DOI: 10.1007/s10557-013-6500-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Wang CC, Lin KC, Lin BS, Chio CC, Kuo JR. Resuscitation from experimental traumatic brain injury by magnolol therapy. J Surg Res 2013; 184:1045-52. [PMID: 23721932 DOI: 10.1016/j.jss.2013.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/08/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND The purpose of the present study was to determine whether magnolol, a free radical scavenger, mitigates the deleterious effects of traumatic brain injury (TBI). MATERIAL AND METHODS Traumatic brain injuries were induced in anesthetized male Sprague-Dawley rats using fluid percussion, and the rats were divided into groups treated with magnolol (2 mg/kg, intravenously) or vehicle. A group of rats that did not undergo TBI induction was also studied as controls. Biomarkers of TBI, including glycerol and 2,3-dihydroxybenzoic acid, were evaluated by microdialysis. Infraction volume, extent of neuronal apoptosis, and antiapoptosis factor transforming growth factor β1 (TGF-β1) were also measured. Functional outcomes were assessed by motor assays. RESULTS Compared with the rats without TBI, the animals with TBI exhibited higher hippocampal glycerol and 2,3-dihydroxybenzoic acid. Relative to the vehicle-treated group, the magnolol-treated group showed decreased hippocampal levels of glycerol and hydroxyl radical levels. The magnolol-treated rats also exhibited decreased cerebral infarction volume and neuronal apoptosis and increased antiapoptosis-associated factor TGF-β1 expression. These effects were translated into improved motor function post TBI. CONCLUSIONS Our results suggest that intravenous magnolol injection mitigates the deleterious effects of TBI in rats based on its potent free radical scavenging capability, and the mechanism of anti-neuronal apoptosis is partly due to an increase in TGF-β1 expression in the ischemic cortex.
Collapse
Affiliation(s)
- Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Imaging and Biomedical Photonics, National Chiao-Tung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Gao J, Zhao L, Wang Y, Teng Q, Liang L, Zhang J. Effect of limb ischemic preconditioning on myocardial apoptosis-related proteins in ischemia-reperfusion injury. Exp Ther Med 2013; 5:1305-1309. [PMID: 23737869 PMCID: PMC3671768 DOI: 10.3892/etm.2013.977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/08/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effect of limb ischemic preconditioning (LIPC) on myocardial apoptosis in myocardial ischemia-reperfusion injury (MIRI), as well as the regulation of caspase-3 and the B cell lymphoma 2 (Bcl-2) gene in LIPC. A total of 50 rats were divided randomly into 5 groups (n=10). Four rats in each group were drawn out for detection of apoptosis. The sham, MIRI and LIPC groups underwent surgery without additional treatment. In the LY294002 group, LY294002 preconditioning was administered 15 min before reperfusion. In the LY294002+LIPC group, following LIPC, LY294002 was administered 15 min before reperfusion. The relative expression of myocardial Bcl-2 and caspase-3 mRNA and the apoptotic index for each group were determined by reverse transcription-polymerase chain reaction (RT-PCR) and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), respectively. The ultrastructure of the cardiac muscle tissues was observed by election microscopy. Compared with the sham group, the expression of caspase-3 mRNA in the MIRI group significantly increased (P<0.05) and the expression of Bcl-2 mRNA clearly decreased. Compared with the MIRI group, LIPC reduced the expression of caspase-3 and increased the expression of Bcl-2 mRNA (P<0.05). There were no significant differences between the LY294002+LIPC group and the MIRI group. Compared with the sham group, the apoptotic index of myocardial cells in the MIRI group significantly increased (P<0.05). Compared with the MIRI group, LIPC significantly decreased the apoptotic index of myocardial cells (P<0.05) and LY294002 increased the apoptotic index of myocardial cells. Compared with the LIPC group, LY294002+LIPC significantly increased the apoptotic index of myocardial cells (P<0.05). There were no significant differences between the LY294002+LIPC and MIRI groups. In conclusion, LIPC increased the expression of Bcl-2 and decreased caspase-3 mRNA and apoptosis in myocardial tissue following MIRI. Therefore, LIPC plays a protective role in myocardial tissue.
Collapse
Affiliation(s)
- Jianzhi Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003
| | | | | | | | | | | |
Collapse
|
16
|
Magnolol protects against oxidative stress-mediated neural cell damage by modulating mitochondrial dysfunction and PI3K/Akt signaling. J Mol Neurosci 2013; 50:469-81. [PMID: 23404573 DOI: 10.1007/s12031-013-9964-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/14/2013] [Indexed: 02/05/2023]
Abstract
Magnolol, an orally available compound from Magnolia officinalis used widely in traditional herbal medicine against a variety of neuronal diseases, possesses potent antioxidant properties and protects the brain against oxidative damage. The aim of the work is to examine the protective mechanisms of magnolol on human neuroblastoma SH-SY5Y cells against apoptosis induced by the neurotoxin acrolein, which can cause neurodegenerative disorders by inducing oxidative stress. By investigating the effect of magnolol on neural cell damage induced by the neurotoxin acrolein, we found that magnolol pretreatment significantly attenuated acrolein-induced oxidative stress through inhibiting reactive oxygen species accumulation caused by intracellular glutathione depletion and nicotinamide adenine dinucleotide phosphate oxidase activation. We next examined the signaling cascade(s) involved in magnolol-mediated antiapoptotic effects. The results showed that acrolein induced SH-SY5Y cell apoptosis by activating mitochondria/caspase and MEK/ERK signaling pathways. Our findings provide the first evidence that magnolol protects SH-SY5Y cells against acrolein-induced oxidative stress and prolongs SH-SY5Y cell survival through regulating JNK/mitochondria/caspase, PI3K/MEK/ERK, and PI3K/Akt/FoxO1 signaling pathways.
Collapse
|
17
|
Ho JHC, Hong CY. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects. J Biomed Sci 2012; 19:70. [PMID: 22849814 PMCID: PMC3418199 DOI: 10.1186/1423-0127-19-70] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/26/2012] [Indexed: 12/17/2022] Open
Abstract
Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.
Collapse
Affiliation(s)
- Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
18
|
Yuan H, Yan B, Wang HH, Hua S, Hu A. Nitric oxide preserves XIAP and reduces hypoxia/reoxygenation-induced cardiomyocytes apoptosis via ERK1/2 activation. Biochem Biophys Res Commun 2012; 421:134-9. [DOI: 10.1016/j.bbrc.2012.03.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 11/25/2022]
|
19
|
Zhao L, Peng DQ, Zhang J, Song JQ, Teng X, Yu YR, Tang CS, Qi YF. Extracellular signal-regulated kinase 1/2 activation is involved in intermedin1-53 attenuating myocardial oxidative stress injury induced by ischemia/reperfusion. Peptides 2012; 33:329-35. [PMID: 22244813 DOI: 10.1016/j.peptides.2011.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/31/2011] [Accepted: 12/31/2011] [Indexed: 11/16/2022]
Abstract
Intermedin (IMD)(1-53) is a novel member of the calcitonin gene-related peptide superfamily and has potent cardioprotective effects against myocardial injury induced by ischemia-reperfusion (I/R). To explore the mechanism of the IMD(1-53) cardioprotective effect, we studied the anti-oxidant effects of IMD(1-53) on myocardial injury induced by I/R in vivo in rat and H(2)O(2) treatment in vitro in rat cardiomyocytes. Compared with sham treatment, I/R treatment induced severe lipid peroxidation injury in rat myocardium: plasma malondialdehyde (MDA) content and myocardial LDH activity was increased by 34% and 85% (all P<0.01); Mn-superoxide dismutase (Mn-SOD) and catalase (CAT) activity was reduced 80% and 86% (all P<0.01), respectively, and the protein levels of the NADPH oxidase complex subunits gp91(phox) and p47(phox) were markedly increased, by 86% (P<0.05) and 95% (P<0.01), respectively; IMD(1-53) treatment ameliorated lipid peroxidation injury: plasma MDA content and myocardial LDH activity was decreased by 30% (P<0.05) and 36% (P<0.01); Mn-SOD and CAT activity was elevated 1.0- and 4.3-fold (all P<0.01), respectively; and the protein levels of gp91(phox) and p47(phox) were reduced, by 28% and 36% (both P<0.05), respectively. Concurrently, IMD(1-53) treatment markedly promoted cell viability and inhibited apoptosis in cardiomyocytes as compared with H(2)O(2) treatment alone. Furthermore, IMD(1-53) increased the ratio of p-ERK to ERK by 66% (P<0.05) as compared with I/R alone, and the protective effect of IMD(1-53) on H(2)O(2)-induced apoptosis was abolished by preincubation with PD98059, a MEK inhibitor. IMD(1-53) may improve the oxidative stress injury induced by I/R via inhibiting the production of reactive oxygen species and enhancing ERK phosphorylation.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML. Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 2010; 68:571-603. [PMID: 20883417 DOI: 10.1111/j.1753-4887.2010.00319.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The present review of the literature on lignan physiology and lignan intervention and epidemiological studies was conducted to determine if lignans decrease the risks of cardiovascular disease in Western populations. Five intervention studies using flaxseed lignan supplements indicated beneficial associations with C-reactive protein, and a meta-analysis that included these studies also suggested lignans have a lowering effect on plasma total and low-density lipoprotein cholesterol. Three intervention studies using sesamin supplements indicated possible lipid- and blood pressure-lowering associations. Eleven human observational epidemiological studies examined dietary intakes of lignans in relation to cardiovascular disease risk. Five showed decreased risk with either increasing dietary intakes of lignans or increased levels of serum enterolactone (an enterolignan used as a biomarker of lignan intake), five studies were of borderline significance, and one was null. The associations between lignans and decreased risk of cardiovascular disease are promising, but they are yet not well established, perhaps due to low lignan intakes in habitual Western diets. At the higher doses used in intervention studies, associations were more evident.
Collapse
Affiliation(s)
- Julia Peterson
- Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachussets, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kao YH, Jawan B, Sun CK, Goto S, Lin YC, Hung CT, Pan MC, Hsu LW, Cheng YF, Lai CY, Wang CS, Tsai CC, Chang HR, Chen CL. High concentration of magnolol induces hepatotoxicity under serum-reduced conditions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:469-474. [PMID: 19683908 DOI: 10.1016/j.phymed.2009.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/17/2009] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Although magnolol is cytoprotective against warm ischemia/reperfusion injury, its effect on cold preservation has not been fully investigated. This study aimed at examining whether magnolol maintains the liver graft integrity after cold preservation and elucidating the underlying mechanisms in terms of apoptotic signaling under both normothermic and hypothermic conditions. After being preserved in Ringer's lactate (RL) at 4 degrees C for 6h ex vivo, the magnolol-treated grafts demonstrated significantly higher AST, ALT, and LDH levels in perfusates than those from negative controls. TUNEL staining showed no difference in the number of apoptotic nuclei in both groups, whereas a more intense apoptotic signal in magnolol-treated grafts was shown as compared with the controls. In vitro data showed no significant difference in viability of RL-preserved clone-9 hepatocytes between the magnolol-treated and control groups, while magnolol pretreatment at 30min before cold preservation prominently induced hepatocyte cell death. RT-PCR and Western blotting analyses revealed a suppression in Bcl-2, but an up-regulation in Bax expression in clone-9 cells after magnolol treatment. Magnolol suppressed the ratios of NF-kappaB to I-kappaBalpha protein contents and I-kappaBalpha phosphorylation induced by TNF-alpha, and potentiated mitochondrial cytochrome c release and subsequent caspase-3 cleavage. Conversely, caspase-3 inhibitor attenuated magnolol-induced hepatotoxicity. We concluded that magnolol could not protect liver grafts from cold ischemia/reperfusion injury. High concentration of magnolol under serum-reduced conditions attenuates NF-kappaB-mediated signaling and induces intrinsic apoptotic pathway, thereby inducing in vitro hepatotoxicity.
Collapse
Affiliation(s)
- Ying-Hsien Kao
- Liver Transplantation Program and Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, 123 Ta-Pei Rd., Niao-Sung, Kaohsiung 83305, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Q, Xiang J, Wang X, Liu H, Hu B, Feng M, Fu Q. β2-adrenoceptor agonist clenbuterol reduces infarct size and myocardial apoptosis after myocardial ischaemia/reperfusion in anaesthetized rats. Br J Pharmacol 2010; 160:1561-72. [DOI: 10.1111/j.1476-5381.2010.00813.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Leng H, Luo X, Ma L, Kang K, Zheng Z. Reversal of ultraviolet B-induced immunosuppression by inhibition of the extracellular signal-regulated mitogen-activated protein kinase. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2009; 25:264-9. [PMID: 19747246 DOI: 10.1111/j.1600-0781.2009.00458.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Topical treatment of the specific inhibitor PD98059 (PD) for extracellular signal-regulated kinase (ERK)1/2 combined with ultraviolet B (UVB) exposure in an in vivo study was proposed to confirm the effectiveness of ERK1/2 involved in UVB-induced immunosuppression that was reversed by PD. METHODS Based on the mouse model of local UVB-induced immunosuppression [UVB exposure, followed by sensitization with dinitrofluorobenzene (DNFB) on the abdomen skin before challenge on the ear site], the PD was applied on the abdomen-irradiated area 1 h, immediately before and 6 h after UVB exposure, respectively. The baseline of ear thickness was measured and remeasured 24 h after the challenge of DNFB for evaluation of ear-swelling response. Histopathologically, the ear biopsies were taken for hematoxylin and eosin staining. RESULTS Mice that received PD post-irradiation treatment showed a statistically significant contact hypersensitivity compared with the UVB-irradiated mice (P<0.05), and paralleled with the biopsy showing a thickened epidermis with lymphocyte infiltration. Thus, the PD had abrogated the UV-induced local suppression of contact hypersensitivity. CONCLUSION The ERK1/2 mitogen-activated protein kinase (MAPK) pathway plays an important role in the local UVB-induced immunosuppression, and its specific inhibitor PD can arrest its function, resulting in protection against UVB-induced immunosuppression in the present in vivo study.
Collapse
Affiliation(s)
- Hong Leng
- Department of Dermatology, Hua-Shan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
24
|
Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 2009; 106:1113-22. [PMID: 19229860 DOI: 10.1002/jcb.22098] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose- and time-dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol-treated cells. Treatment of PC-3 cells with an apoptosis-inducing concentration of magnolol (60 microM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 microM) also caused a decrease in Ser((136)) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl-xL, an anti-apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase-8, -9, -3, and poly(ADP-ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax(+/-) cell line, but not HCT116Bax(-/-) cell line. Interestingly, at similar concentrations (60 microM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)-mediated signaling transduction pathways.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Surgery and Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
25
|
Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro. Food Chem Toxicol 2009; 47:1569-76. [DOI: 10.1016/j.fct.2009.03.044] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 03/06/2009] [Accepted: 03/31/2009] [Indexed: 02/07/2023]
|
26
|
EP2 receptor activation by prostaglandin E2 leads to induction of HO-1 via PKA and PI3K pathways in C6 cells. Biochem Biophys Res Commun 2009; 379:1043-7. [DOI: 10.1016/j.bbrc.2009.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/01/2009] [Indexed: 12/21/2022]
|
27
|
Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascul Pharmacol 2008; 50:71-7. [PMID: 18996224 DOI: 10.1016/j.vph.2008.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/20/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
Propofol, a rapidly acting, short duration, intravenous hypnotic anesthetic induction agent, is often used in clinical situations where myocardial ischemia/ reperfusion (I/R) injury is a threat. The aim of the present study was to evaluate the protective effect of propofol on myocardial I/R injury in rat due to apoptosis. Myocardial I/R injury were induced by occluding the left anterior descending (LAD) coronary artery for 25 min followed by either 2 h or 6 h reperfusion. Apoptosis was evaluated by Western blot analysis (Bcl-2, Bax expression), DNA strand breaks, TUNEL analysis and measuring myocardial caspase-3 activity. Propofol significantly reduced infarct size and improved I/R-induced myocardial contractile dysfunction by improving left ventricular diastolic pressure and positive and negative maximal values of the first derivative (+dp/dt) of left ventricular pressure. Propofol increased Bcl-2/Bax expression ratio and decreased caspase-3 activity in I/R rat hearts, which resulted in reduction of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. In an in vitro study, propofol increased H9c2 cell viability against oxidative stress induced by glucose oxidase (GOX) in a dose-dependent manner. These data suggest propofol limits I/R injury with an associated reduction in apoptotic cell death in vivo.
Collapse
|