1
|
Hossain MS, Khaleque MA, Ali MR, Bacchu MS, Hossain MI, Aly Saad Aly M, Khan MZH. Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate-Modified Electrode for the Detection of Furosemide in Pharmaceutical Products. ACS OMEGA 2023; 8:16851-16858. [PMID: 37214665 PMCID: PMC10193417 DOI: 10.1021/acsomega.3c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Furosemide (4-chloro-2-(furan-2-ylmethylamino)-5-sulfamoyl benzoic acid) is a widely used, FDA-approved drug prescribed for several symptoms associated with heart, kidney, liver failure, or chronic high blood pressure. In this work, a glassy carbon working electrode modified with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate is developed to detect furosemide (FURO) with high sensitivity and precise selectivity. The modified electrode was also characterized using field emission scanning electron microscopy, attenuated total reflectance-Fourier transform infrared, and cyclic voltammetry. Here, an efficient and cost- and time-efficient technique to study the furosemide mechanism of reaction in an acidic liquid medium is presented. An electrochemical oxidation of loop diuretic furosemide was investigated in a supporting electrolyte, 0.01 M of phosphate buffer (at a pH level of 4.0) at 25 ± 0.1 °C using a differential pulse voltammetric (DPV) technique. Under optimized parameters, the developed sensor displays a wide detection range of furosemide concentrations of 6.0 × 10-6 to 1.0 × 10-4 M with a detection limit of 2.0 × 10-6 M using DPV. The presented sensor offers a robust and high-precision technique with an excellent reproducibility to detect furosemide in as a real sample such as urine and pharmaceutical products.
Collapse
Affiliation(s)
- Md. Shamim Hossain
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Abdul Khaleque
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Romzan Ali
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Sadek Bacchu
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Ikram Hossain
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohamed Aly Saad Aly
- Department
of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute
(GTSI), Tianjin University, Shenzhen, Guangdong 518052, China
| | - Md. Zaved Hossain Khan
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
- Laboratory
of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
2
|
Mechanism of Oxidation of Ketorolac by Hexacyanoferrate(III) in Aqueous Alkali: A Thermodynamics and Kinetics Study. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|