1
|
Moosavi-Zare AR, Najafi R, Goudarziafshar H. The preparation of [1,2,4]triazolo[1,5- a]pyrimidines catalyzed by Schiff base zinc(ii) complex supported on magnetite nanoparticles under mild conditions. RSC Adv 2024; 14:19167-19173. [PMID: 38882483 PMCID: PMC11177290 DOI: 10.1039/d4ra02339k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Nano-[CuFe2O4@SiO2/propyl-1-(O-vanillinaldimine)][ZnCl2] was prepared by placing a Schiff base zinc(ii) complex on a magnetite core and fully characterized by various analyses such as FT-IR, FE-SEM, EDAX, SEM-coupled EDX, TGA, VSM and TEM. The complexes supported on silica-coated magnetite copper ferrite nanoparticles were used as a reusable catalyst for the synthesis of 5-methyl-N,7-diphenyl-4,7-dihydro-[1,2,4]triazolo[1,5-a] pyrimidine-6-carboxamides resulting in 40% to 96% yield in the reactions of various aldehydes, acetoacetanilide, and 3-amino-1,2,4-triazole at 60 °C under solvent-free conditions. The zinc complex can change its structure from tetrahedral to square planar and catalyze the reaction. Some products containing the benzyloxy moiety are new and have been reported for the first time.
Collapse
Affiliation(s)
- Ahmad Reza Moosavi-Zare
- Department of Chemical Engineering, Hamedan University of Technology Hamedan 65155 Iran
- Chemistry Department, College of Sciences, Shiraz University Shiraz 71946-84795 Iran
| | - Raha Najafi
- Department of Chemical Engineering, Hamedan University of Technology Hamedan 65155 Iran
| | - Hamid Goudarziafshar
- Department of Chemical Engineering, Hamedan University of Technology Hamedan 65155 Iran
| |
Collapse
|
2
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
3
|
Merugu SR, Cherukupalli S, Karpoormath R. An Overview on Synthetic and Medicinal Perspectives of [1,2,4]Triazolo[1,5-a]pyrimidine Scaffold. Chem Biodivers 2022; 19:e202200291. [PMID: 35946991 DOI: 10.1002/cbdv.202200291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/02/2022] [Indexed: 11/08/2022]
Abstract
[1,2,4]Triazolo[1,5-a]pyrimidine is an important heterocyclic scaffold known to have a wide range of pharmacological activities such as anticancer, antimicrobial, anti-tubercular, CB2 cannabinoid agonists, feticide, and adenosine antagonists. Several clinical trials and marketed drugs such as Trapidil, Essramycin, Pyroxsulam, DSM-265, Flumetsulam, GNF-6702, and Cevipabulin indicate the potential of [1,2,4]triazolo[1,5-a]pyrimidine moiety with various functional groups in medicinal chemistry. Herein, we represent a concise report focusing on the synthetic strategies used for diversely substituted [1,2,4]triazolo[1,5-a]pyrimidine analogs and their pharmacological applications. To the best of our knowledge, since 1980, we are the first to write a review on this emerging scaffold, which reveals the synthetic strategies, and pharmacological activities of differently substituted [1,2,4]triazolo[1,5-a]pyrimidine with special emphasis on structure-activity relationship studies.
Collapse
Affiliation(s)
- Srinivas Reddy Merugu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| |
Collapse
|
4
|
Sajadikhah SS, Liravi-Deylami B. Green Synthesis of Benzoimidazopyrimidine, Benzimidazoloquinazolinone,
Triazolopyrimidine and Triazoloquinazolinone Derivatives Catalyzed by
Oxalic Acid Dihydrate. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210506120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Benzoimidazopyrimidine, benzimidazoloquinazolinone, triazolopyrimidine, and triazoloquinazolinone
derivatives were synthesized via a one-pot multi-component reaction in the presence of
a catalytic amount of oxalic acid dihydrate. The reactions were performed in the mixture of EtOH:H2O
or under solvent-free conditions as green media. The advantageous features of these methodologies are
inexpensive starting materials and catalyst, high atom economy and good yields, and metal-free synthesis.
Moreover, all the products were obtained by simple filtration, and no need for column chromatography
or tedious separation procedures, which is very important in terms of reducing environmental
pollutions.
Collapse
Affiliation(s)
- Seyed Sajad Sajadikhah
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| | - Bagher Liravi-Deylami
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
5
|
Imtiaz S, Ahmad War J, Banoo S, Khan S. α-Aminoazoles/azines: key reaction partners for multicomponent reactions. RSC Adv 2021; 11:11083-11165. [PMID: 35423648 PMCID: PMC8695948 DOI: 10.1039/d1ra00392e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aromatic α-aminoazaheterocycles are the focus of significant investigations and exploration by researchers owing to their key role in diverse biological and physiological processes. The existence of their derivatives in numerous drugs and alkaloids is due to their heterocyclic nitrogenous nature. Therefore, the synthesis of a structurally diverse range of their derivatives through simple and convenient methods represents a vital field of synthetic organic chemistry. Multicomponent reactions (MCRs) provide a platform to introduce desirable structure diversity and complexity into a molecule in a single operation with a significant reduction in the use of harmful organic waste, and hence have attracted particular attention as an excellent tool to access these derivatives. This review covers the advances made from 2010 to the beginning of 2020 in terms of the utilization of α-aminoazaheterocycles as synthetic precursors in MCRs.
Collapse
Affiliation(s)
- Shah Imtiaz
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| | - Jahangir Ahmad War
- Department of Chemistry, National Institute of Technology Kashmir India-190006
| | - Syqa Banoo
- Department of Chemistry, Mangalayatan University Beswan Aligarh India-202146
| | - Sarfaraz Khan
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| |
Collapse
|
6
|
Lashkari M, Ghashang M, Abedi-Madiseh A. Soluble Glass, an Efficient Promoter for the Cascade Addition-Cyclization Reaction of 4-Hydroxycoumarins to Chalcone Derivatives. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1833694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Majid Ghashang
- Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ali Abedi-Madiseh
- Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
7
|
Pseudo-three-component synthesis of substituted 1,2,4-triazolo[1,5-a]pyridines. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Shokoohian M, Hazeri N, Maghsoodlou M, Lashkari M. Multi-component Reaction Synthesis of 1,6-diamino-2-oxo-1,2,3,4-tetrahydropyridine-3,5-dicarbonitriles Using Ultrasonication and Dmap as Catalyst. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2019.639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Murlykina MV, Morozova AD, Zviagin IM, Sakhno YI, Desenko SM, Chebanov VA. Aminoazole-Based Diversity-Oriented Synthesis of Heterocycles. Front Chem 2018; 6:527. [PMID: 30555815 PMCID: PMC6282055 DOI: 10.3389/fchem.2018.00527] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/11/2018] [Indexed: 02/02/2023] Open
Abstract
The comprehensive review contains the analysis of literature data concerning reactions of heterocyclization of aminoazoles and demonstrates the application of these types of transformations in diversity-oriented synthesis. The review is oriented to wide range of chemists working in the field of organic synthesis and both experimental and theoretical studies of nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Maryna V Murlykina
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Alisa D Morozova
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Ievgen M Zviagin
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine
| | - Sergey M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine.,Chemistry Faculty, Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine (NAS), Kharkiv, Ukraine.,Chemistry Faculty, Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|