1
|
A Cell-Based Platform for the Investigation of Immunoproteasome Subunit β5i Expression and Biology of β5i-Containing Proteasomes. Cells 2021; 10:cells10113049. [PMID: 34831272 PMCID: PMC8616536 DOI: 10.3390/cells10113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged β5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of β5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool.
Collapse
|
2
|
Maltsev A, Funikov S, Burov A, Spasskaya D, Ignatyuk V, Astakhova T, Lyupina Y, Deikin A, Tutyaeva V, Bal N, Karpov V, Morozov A. Immunoproteasome Inhibitor ONX-0914 Affects Long-Term Potentiation in Murine Hippocampus. J Neuroimmune Pharmacol 2021; 16:7-11. [PMID: 33405099 DOI: 10.1007/s11481-020-09973-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991, Moscow, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991, Moscow, Russia
| | - Daria Spasskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991, Moscow, Russia
| | - Vasilina Ignatyuk
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov street, 26 119334, Moscow, Russia
| | - Tatjana Astakhova
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov street, 26 119334, Moscow, Russia
| | - Yulia Lyupina
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov street, 26 119334, Moscow, Russia
| | - Alexey Deikin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Vera Tutyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991, Moscow, Russia
| | - Natalia Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991, Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991, Moscow, Russia.
| |
Collapse
|