1
|
Šimora V, Ďúranová H, Brindza J, Moncada M, Ivanišová E, Joanidis P, Straka D, Gabríny L, Kačániová M. Cornelian Cherry ( Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes. Foods 2023; 12:foods12030593. [PMID: 36766122 PMCID: PMC9913965 DOI: 10.3390/foods12030593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
In the current study, Cornelian cherry powder (CCP, Cornus mas) was investigated as a functional ingredient for bread production. Experimental bread loaves were prepared using five levels of CCP (0, 1, 2, 5, and 10% w/w) to replace wheat flour in bread formulation. The final products were analyzed regarding their proximate composition, content of selected biologically active substances, antioxidant activity (AA), volume, and sensory attributes. Increasing the incorporation of CCP led to significantly (p < 0.05) higher concentrations of carbohydrate, ash, energetic value, total polyphenols, phenolic acids and AA, and reduced fat and protein contents (p < 0.05). Moreover, up to 5% addition of CCP positively affected the volume (642.63 ± 7.24 mL) and specific volume (2.83 ± 0.02 cm3/g) of bread loaves, which were significantly (p < 0.05) higher compared to the control (no addition of CCP; 576.99 ± 2.97 mL; 2.55 ± 0.002 cm3/g). The sensory attributes chewiness, crumb springiness, bitterness, and sourness had lower scores (p < 0.05) in bread formulated with 10% CCP compared to the control. Overall, results show that the bread loaves produced with up to 5% CCP addition were considered the preferred formulation among the experimental samples tested, taking into consideration their composition, bioactive content, sensory, and physical properties.
Collapse
Affiliation(s)
- Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Ján Brindza
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Marvin Moncada
- Department of Food, Bioprocessing, and Nutrition Science, North Carolina State University, Raleigh, NC 27606, USA
| | - Eva Ivanišová
- Institute of Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Patrícia Joanidis
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Dušan Straka
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Lucia Gabríny
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
2
|
Przybylska D, Kucharska AZ, Sozański T. A Review on Bioactive Iridoids in Edible Fruits – from Garden to Food and Pharmaceutical Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - A. Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - T. Sozański
- Department of Pharmacology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
3
|
Olędzka A, Cichocka K, Woliński K, Melzig MF, Czerwińska ME. Potentially Bio-Accessible Metabolites from an Extract of Cornus mas Fruit after Gastrointestinal Digestion In Vitro and Gut Microbiota Ex Vivo Treatment. Nutrients 2022; 14:nu14112287. [PMID: 35684087 PMCID: PMC9183047 DOI: 10.3390/nu14112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Targeting pancreatic lipase and α-amylase by digestion-derived fractions of ethanolic-aqueous (60%, v/v) extract from Cornus mas fruit (CM) in relation to the control and prevention of metabolic disorders, including diabetes, was the first purpose of the present study. Taking into consideration the significance of bio-accessibility of compounds, we attempted to identify metabolites of CM after gastrointestinal digestion in vitro, as well as their kinetic changes upon gut microbiota treatment. The digestion of extract was simulated with digestive enzymes in vitro and human gut microbiota ex vivo (1 h, 3 h, 6 h, 24 h), followed by chromatographic analysis using the UHPLC-DAD-MSn method. The effect of fractions from gastrointestinal digestion in vitro on the activity of pancreatic lipase and α-amylase was studied with fluorescence-based assays. The gastric and intestinal fractions obtained after in vitro digestion of CM inhibited pancreatic lipase and α-amylase. Loganic acid as the main constituent of the extract was digested in the experimental conditions in contrast to cornuside. It was found in most analytes such as salivary, gastric, intestinal, and even colon (fecal slurry, FS) fractions. In all fractions, kaempferol hexoside and reduced forms of kaempferol, such as aromadendrin, and benzoic acid were assigned. The signals of tannins were detected in all fractions. Cornusiin A was tentatively assigned in the gastric fraction. The metabolites originating from kinetic analytes have been classified mainly as phenolic acids, hydrolyzable tannins, and flavonoids. Phenolic acids (protocatechuic acid, gallic acid), tannins (digalloylglucose, tri-O-galloyl-β-D-glucose), and flavonoids (aromadendrin, dihydroquercetin) were detected in the late phases of digestion in fecal slurry suspension. Cornuside was found in FS analyte after 3 h incubation. It was not detected in the samples after 6 and 24 h incubation with FS. In conclusion, cornuside, aromadendrin, and phenolic acids may be potentially bio-accessible compounds of CM. The presence of plants' secondary metabolites in the intestinal fractions allows us to indicate them as responsible for decreasing glucose and lipid absorption.
Collapse
Affiliation(s)
- Agata Olędzka
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (A.O.); (K.C.)
| | - Katarzyna Cichocka
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (A.O.); (K.C.)
| | - Konrad Woliński
- Polish Academy of Sciences Botanical Garden, Centre for Biological Diversity Conservation in Powsin, 2 Prawdziwka Street, 02-973 Warsaw, Poland;
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, 2+4 Koenigin-Luise Street, 14195 Berlin, Germany;
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
4
|
Tanguler H, Sener S. Production of naturally flavoured and carbonated beverages using Williopsis saturnus yeast and cold fermentation process. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Staszak K, Wieszczycka K. Membrane techniques in the production of beverages. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The most important developments in membrane techniques used in the beverage industry are discussed. Particular emphasis is placed on the production of fruit and vegetable juices and nonalcoholic drinks, including beer and wine. This choice was dictated by the observed consumer trends, who increasingly appreciate healthy food and its taste qualities.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| |
Collapse
|
6
|
Parveez Zia M, Alibas I. The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chem 2021; 364:130358. [PMID: 34186484 DOI: 10.1016/j.foodchem.2021.130358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Cornelian cherry was dehydrated using different drying techniques: namely natural, microwave, convective, and combined drying. The moisture content of cornelian cherry was reduced from 72.56% to 10.27%. The color parameters closest to the fresh samples were measured at 50 °C, 70 °C, 90 °C, and at 100 and 300 W. Both fresh and dried cornelian cherries show high antioxidant capacity and comprise of various polyphenolic compounds. TEACCUPRAC is the most suitable method for determining the total antioxidant capacity of cornelian cherry. We measured the total anthocyanin content closest to the fresh cornelian cherry with 2.62 and 2.11 mg (CDE) g-1 (dw) at 70 °C and 300 W. Also, we found the closest vitamin C to the fresh ones with values of 25.02 and 20.08 mg 100 g-1 (fw) at 300 and 500 W. Generally, the suitable drying technique in terms of physical parameters and phytochemical compounds was the microwave drying at 300 W.
Collapse
Affiliation(s)
- Mahrukh Parveez Zia
- Bursa Uludag University, Institute of Natural Sciences, Department of Biosystems Engineering, 16059, Nilufer, Bursa, Turkey
| | - Ilknur Alibas
- Bursa Uludag University, Faculty of Agriculture, Department of Biosystems Engineering, 16059, Nilüfer, Bursa, Turkey.
| |
Collapse
|
7
|
Study on microbial communities and higher alcohol formations in the fermentation of Chinese Xiaoqu Baijiu produced by traditional and new mechanical technologies. Food Res Int 2021; 140:109876. [DOI: 10.1016/j.foodres.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023]
|
8
|
Bayram HM, Arda Ozturkcan S. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A comprehensive review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
Starowicz M, Piskuła M, Achrem–Achremowicz B, Zieliński H. Phenolic Compounds from Apples: Reviewing their Occurrence, Absorption, Bioavailability, Processing, and Antioxidant Activity – a Review. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/127635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
10
|
Enache IM, Vasile AM, Enachi E, Barbu V, Stănciuc N, Vizireanu C. Co-Microencapsulation of Anthocyanins from Cornelian Cherry Fruits and Lactic Acid Bacteria in Biopolymeric Matrices by Freeze-Drying: Evidences on Functional Properties and Applications in Food. Polymers (Basel) 2020; 12:polym12040906. [PMID: 32295223 PMCID: PMC7240423 DOI: 10.3390/polym12040906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 11/19/2022] Open
Abstract
Cornus mas was used in this study as a rich source of health-promoting bioactives. The cornelian cherries were used to extract the polyphenols and anthocyanins. The chromatographic profile of the Cornus mas fruit extract revealed the presence of several anthocyanins, mainly delphinidin, cyanidin and pelargonidin glycosides. The extract was co-microencapsulated with Lactobacillus casei ssp. paracasei in a unique combination of whey protein isolates, inulin and chitosan by freeze-drying, with an encapsulation efficiency of 89.16 ± 1.23% for anthocyanins and 80.33 ± 0.44% for lactic acid bacteria. The pink-red colored powder showed a total anthocyanins content of 19.86 ± 1.18 mg cyanidin-3-glucoside/g dry weight (DW), yielding an antioxidant activity of 54.43 ± 0.73 mMol Trolox/g DW. The viable cells were 9.39 × 109 colony forming units (CFU)/g DW. The confocal microscopy analysis revealed the microencapsulated powder as a complex one, with several large formations containing smaller aggregates, consisting of the lactic acid bacteria cells, the cornelian cherries’ bioactive compounds and the biopolymers. The powder was tested for stability over 90 days, showing a decrease of 50% in anthocyanins and 37% in flavonoids content, with no significant changes in antioxidant activity and CFU. The powder showed a significant inhibitory effect against the α-amylase of 89.72 ± 1.35% and of 24.13 ± 0.01% for α-glucosidase. In vitro digestibility studies showed a significant release of anthocyanins in gastric juice, followed by a decrease in intestinal simulated conditions. The functional properties of the powder were tested by addition into a yogurt, highlighting a higher and more stable antioxidant activity at storage when compared to the control.
Collapse
|