1
|
Alvarez-Dieppa AC, Griffin K, Cavalier S, Souza RR, Engineer CT, McIntyre CK. Vagus nerve stimulation rescues impaired fear extinction and social interaction in a rat model of autism spectrum disorder. J Affect Disord 2025; 374:505-512. [PMID: 39837463 PMCID: PMC11830517 DOI: 10.1016/j.jad.2025.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/20/2024] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Clinical diagnosis of anxiety disorders is highly prevalent in autism spectrum disorders (ASD). Available treatments for anxiety offer limited efficacy in the ASD population. Vagus nerve stimulation (VNS) has an anxiolytic effect in rats and, when coupled with fear extinction training, VNS enhances extinction of fear in healthy rats. The valproic acid (VPA)-induced rat model of autism shows impaired extinction of fear and deficits in social interaction. This study was designed to test the potential of VNS to rescue extinction learning and influence social behaviors in VPA-exposed rats. After VNS or sham surgery, VPA-exposed rats or controls were subjected to auditory fear conditioning followed by extinction training paired with VNS or sham stimulation. Another cohort was exposed to a social interaction task paired with VNS or sham stimulation. Time spent freezing was not significantly reduced during retention testing 24 h after extinction training in VPA-exposed rats given sham stimulation (p = .26), but freezing levels were significantly lower during the retention test in saline control and in VPA-VNS rats (p < .05), indicating that VNS reverses extinction deficits in VPA-exposed rats. In addition, social interaction scores were significantly lower in VPA-sham rats (p < .0005), but VPA-VNS rats were not significantly different from saline controls (p = .19), suggesting that VNS also alleviates social interaction deficits in VPA-exposed rats. VNS is approved for use in humans for treatment of epilepsy, depression, and stroke. These findings suggest that VNS may be a useful tool for overcoming treatment resistant anxiety in ASD.
Collapse
Affiliation(s)
- Amanda C Alvarez-Dieppa
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Kimberly Griffin
- Molecular and Cell Biology Program, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sheridan Cavalier
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Rimenez R Souza
- Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Crystal T Engineer
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Christa K McIntyre
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
2
|
Kim YE, Kim M, Kim S, Lee R, Ujihara Y, Marquez-Wilkins EM, Jiang YH, Yang E, Kim H, Lee C, Park C, Kim IH. Endothelial SHANK3 regulates tight junctions in the neonatal mouse blood-brain barrier through β-Catenin signaling. Nat Commun 2025; 16:1407. [PMID: 39915488 PMCID: PMC11802743 DOI: 10.1038/s41467-025-56720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability condition arising from a combination of genetic and environmental factors. Despite the blood-brain barrier (BBB) serving as a crucial gatekeeper, conveying environmental influences into the brain parenchyma, the contributions of BBB in ASD pathogenesis remain largely uncharted. Here we report that SHANK3, an ASD-risk gene, expresses in the BBB-forming brain endothelial cells (BECs) and regulates tight junctional (TJ) integrity essential for BBB's barrier function. Endothelium-specific Shank3 (eShank3) knockout (KO) neonatal mice exhibit male-specific BBB-hyperpermeability, reduced neuronal excitability, and impaired ultra-sonic communications. Although BBB permeability is restored during adult age, the male mutant mice display reduced neuronal excitability and impaired sociability. Further analysis reveals that the BBB-hyperpermeability is attributed to the β-Catenin imbalance triggered by eShank3-KO. These findings highlight a pathogenic mechanism stemming from the ASD-risk Shank3, emphasizing the significance of neonatal BECs in the BBB as a potential therapeutic target for ASD.
Collapse
Affiliation(s)
- Yong-Eun Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Minseong Kim
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Sunwhi Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Raham Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Yong-Hui Jiang
- Department of Genetics, Pediatrics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Changhoon Lee
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA, USA.
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Jin T, Yang R, Cheng Y, Cao Z, He Z, Guo S. Causality between Autism Spectrum Disorder and Telomere Length. Brain Behav 2025; 15:e70362. [PMID: 39972993 PMCID: PMC11839737 DOI: 10.1002/brb3.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The association between telomere length (TL) and autism spectrum disorder (ASD) has received much attention. However, previous observational studies have yielded inconclusive evidence regarding this relationship. Our study aims to elucidate the causal relationship between TL and ASD using bidirectional Mendelian randomization (MR). METHODS We employed the largest genome-wide association studies (GWAS) summary statistics for TL (sample size = 472,174) and ASD (sample size = 46,351). The primary MR analysis method was the inverse-variance weighted (IVW) method, complemented by the MR-Egger method, weighted median (WM) method, and MR-PRESSO. Additionally, sensitivity analyses including Cochran's Q test, the intercept of MR-Egger regression, the global test of MR-PRESSO, and the leave-one-out analysis were conducted in our study. RESULTS The primary MR analysis indicated a significant association between ASD and shorter TL (IVW: OR = 0.98, 95% CI: 0.96-0.99, p = 0.03). However, no significant association was found in the reverse direction MR analysis (IVW: OR = 1.06, 95% CI: 0.94-1.23, p = 0.35). Raw and outlier-corrected MR estimates from MR-PRESSO were consistent with the IVW results. Sensitivity analyses confirmed the robustness of these findings. CONCLUSIONS Our study indicated that individuals with ASD have shorter TL, however, shorter TL does not appear to increase the risk of ASD.
Collapse
Affiliation(s)
- Tianyu Jin
- Center for Rehabilitation Medicine, Department of NeurologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Department of Rehabilitation Medicinethe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruiyao Yang
- China Rehabilitation Research CenterBeijing Bo'ai HospitalBeijingChina
| | - Yifan Cheng
- Center for Rehabilitation Medicine, Department of NeurologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zheng Cao
- Department of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Zitian He
- Department of Rehabilitation Medicinethe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shunyuan Guo
- Center for Rehabilitation Medicine, Department of NeurologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
4
|
Qian L, Ding N, Fang H, Xiao T, Sun B, Gao H, Ke X. Pragmatic performance, its relationship with symptom severity, and early clinical predictors of pragmatics in 5 ~ 6-year-old children with autism spectrum disorder. BMC Psychiatry 2025; 25:58. [PMID: 39833750 PMCID: PMC11749432 DOI: 10.1186/s12888-024-06452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pragmatic language refers to using spoken language to convey messages effectively across diverse social communication contexts. However, minimal longitudinal research has focused on defining early predictors of pragmatic development in children with autism spectrum disorder (ASD). METHODS In the present study, 71 children with ASD and 38 age- and gender- matched 24- to 30-month-old typically developing (TD) children were enrolled. Social-communication, language, and parent‒child interaction measures were collected for the ASD group at baseline. Three years later, all subjects were assessed for pragmatic ability via the Chinese version of the Language Use Inventory (LUI-Mandarin). First, the differences in pragmatic performance between the ASD and TD groups at follow-up were analyzed. Second, pragmatic performance was correlated with autism symptomatology at follow-up, as well as the structural language difficulties and joint engagement (JE) levels at baseline in the ASD group. Furthermore, hierarchical multiple regression analyses and machine learning techniques were performed to explore the effects of early potential predictors of pragmatic development in the ASD group. RESULTS First, our results revealed that performance was significantly lower in the ASD than in the TD group with respect to the LUI-Mandarin total scores and subscale scores (except for subscale C). Second, correlation analysis revealed that more severe symptoms of ASD at follow-up were associated with lower LUI-Mandarin total scores and better language performance on the Gesell Developmental Schedules (GDS). Additionally, increased proportions of supported JE (SJE) states were associated with higher LUI-Mandarin total scores. In contrast, increased proportions of unengaged (UE) states were associated with lower LUI-Mandarin total scores in the ASD group. Third, hierarchical multiple regression analyses and machine learning techniques indicated that the proportions of SJE during parent‒child interactions, as well as the degree of social symptoms and structural language impairments, were significant contributors to pragmatic development for the ASD group in the prediction models. CONCLUSION In summary, our findings suggest that pragmatic language difficulties are present in children with ASD as early as preschool age. Additionally, given the close correlation between the LUI-Mandarin score and symptom severity on the ADOS/ADI-R, the LUI-Mandarin might be a good way to triage children who need to wait a long time for a more extensive evaluation. Furthermore, this study provides new insights into potential targets for pragmatic interventions, and interventions can be designed to promote SJE between caregivers and children in future work.
Collapse
Affiliation(s)
- Lu Qian
- Child Mental Health Research Center, Nanjing Brain Hospital affiliated with Nanjing Medical University, Nanjing GuangZhou Road 264#, Nanjing, 210029, China
- Department of Psychiatry, Wuxi Mental Health Center Affiliated with JiangNan University, QianRong Road156#, Wuxi, 214151, China
| | - Ning Ding
- Child Mental Health Research Center, Nanjing Brain Hospital affiliated with Nanjing Medical University, Nanjing GuangZhou Road 264#, Nanjing, 210029, China
| | - Hui Fang
- Child Mental Health Research Center, Nanjing Brain Hospital affiliated with Nanjing Medical University, Nanjing GuangZhou Road 264#, Nanjing, 210029, China
| | - Ting Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital affiliated with Nanjing Medical University, Nanjing GuangZhou Road 264#, Nanjing, 210029, China
| | - Bei Sun
- Child Mental Health Research Center, Nanjing Brain Hospital affiliated with Nanjing Medical University, Nanjing GuangZhou Road 264#, Nanjing, 210029, China
| | - HuiYun Gao
- Child Mental Health Research Center, Nanjing Brain Hospital affiliated with Nanjing Medical University, Nanjing GuangZhou Road 264#, Nanjing, 210029, China
| | - XiaoYan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital affiliated with Nanjing Medical University, Nanjing GuangZhou Road 264#, Nanjing, 210029, China.
| |
Collapse
|
5
|
Bhusri B, Sutheeworapong S, Kittichotirat W, Kusonmano K, Thammarongtham C, Lertampaiporn S, Prommeenate P, Praphanphoj V, Kittitharaphan W, Dulsawat S, Paenkaew P, Cheevadhanarak S. Characterization of gut microbiota on gender and age groups bias in Thai patients with autism spectrum disorder. Sci Rep 2025; 15:2587. [PMID: 39833480 PMCID: PMC11747245 DOI: 10.1038/s41598-025-86740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication and interaction problems. The prevalence of ASD is increasing globally, with a higher ratio of males to females. Gastrointestinal symptoms are common in individuals with ASD, and gut microbiota has been implicated in the disorder's development. This study aimed to investigate the gut microbiota alteration in Thai individuals with ASD compared to healthy controls using 16S rRNA gene sequencing. The influence of gender and age on gut microbiota composition and function was also examined. A total of 65 ASD individuals and 30 neurotypical (NT) individuals were included in the analysis. The results revealed notable differences in gut microbiota composition between the ASD and NT groups, with variations observed in microbial richness and the presence of enriched microbial taxa. These differences were influenced by both gender and age. Fusobacteriota, Fusobacteriaceae, and Fusobacterium were found to be enriched in individuals with ASD. Furthermore, the study identified gender-related taxa, such as Bacteroides plebeius, enriched in ASD females. Age-related taxa, including Veillonella, known to be associated with poor oral hygiene, were also observed in ASD children. The analysis of differentially abundant pathways highlighted the enrichment of various metabolic pathways in individuals with ASD, including those related to endocrine-disrupting chemicals. These findings underscore the importance of considering gender and age when studying gut microbiota in ASD. They provide valuable insights into the potential role of gut microbiota dysbiosis in ASD pathogenesis and highlight the influence of environmental factors.
Collapse
Affiliation(s)
- Benjaporn Bhusri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chinae Thammarongtham
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Supatcha Lertampaiporn
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | | | - Wiranpat Kittitharaphan
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Ministry of Public Health, Samut Prakan, 10270, Thailand
| | - Sudarat Dulsawat
- Fungal Biotechnology Unit, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Prasobsook Paenkaew
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supapon Cheevadhanarak
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Fungal Biotechnology Unit, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
6
|
Ellouk S, Zamstein O, Wainstock T, Sheiner E. The association between preterm delivery and autism spectrum disorder in childhood: A retrospective cohort study. Int J Gynaecol Obstet 2025. [PMID: 39825681 DOI: 10.1002/ijgo.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Prematurity complications are a leading cause of mortality and morbidity in offspring, including adverse neurodevelopmental outcomes. The association between preterm birth (PTB) and autism spectrum disorder (ASD) remains debated. OBJECTIVE To investigate the association between PTB and ASD diagnosis during childhood. METHODS This cohort study analyzed data from community clinics and a tertiary hospital, encompassing deliveries from 2005 to 2017. ASD incidence was compared across gestational age categories: extremely preterm (<28 weeks), very preterm (28-32 weeks), moderate to late preterm (32-37 weeks), and term (≥37 weeks). Additional comparisons were made between all preterm (<37 weeks) and term deliveries (≥37 weeks). Cumulative ASD incidence was assessed using Kaplan-Meier survival curves and a Cox proportional hazards model adjusted for potential confounders. RESULTS Among 114 975 pregnancies, 0.3% delivered at <28 weeks, 0.6% at 28-32 weeks, and 6% at 32-37 weeks, with 6.9% preterm deliveries overall. Univariable analysis revealed a significant association between PTB and ASD (1.6% for <28 weeks vs 0.3% for 28-32 weeks vs 0.8% for 32-37 weeks vs 0.7% for term, P = 0.036). Crude ASD incidence was 0.8% (odds ratio [OR] 1.21, 95% confidence interval [CI] 0.93-1.56, P = 0.15). However, adjusted results showed no significant association: adjusted hazard ratio = 0.74 (95% CI 0.24-2.34, P = 0.61) for <28 weeks, 0.99 (95% CI 0.24-3.99, P = 0.98) for 28-32 weeks, and 1.07 (95% CI 0.81-1.43, P = 0.63) for 32-37 weeks. Kaplan-Meier analysis showed similar cumulative ASD incidence across groups (P = 0.855). CONCLUSION This retrospective cohort study found no significant association between PTB and childhood ASD diagnosis.
Collapse
Affiliation(s)
- Sapir Ellouk
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omri Zamstein
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tamar Wainstock
- Department of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Chilipweli PM, Basinda N, Sabuni PA, Hyera F, Liana U, Leeyio TR, Nyanza EC, Ngowi AV. Mapping neuro-disabilities and their dimensions among under 5 years of age children in the southern agricultural corridor of Tanzania: a preliminary baseline survey. Front Psychol 2025; 15:1426870. [PMID: 39895971 PMCID: PMC11783678 DOI: 10.3389/fpsyg.2024.1426870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025] Open
Abstract
Background Neuro-disabilities involve impairments of the nervous system, affecting brain development and functioning. Due to limited scientific data on neuro-disabilities in Tanzania, this study examines maternal characteristics in high-risk areas, such as the Southern Agricultural Growth Corridor (SAGCOT). Methods This cross-sectional study sampled 286 children aged 0-5 years and their mothers in the SAGCOT region. Each mother selected the youngest child within the specified age range. Multi-stage sampling was used to choose clusters and areas for the study. The Malawi Developmental Assessment Tool (M-DAT) was used to assess the children's developmental levels. Descriptive analysis determined distribution patterns, while multivariate analyses were performed to identify significant factors. Modified Poisson regression with robust standard errors estimated prevalence ratios (PRs) and their 95% confidence intervals (CIs). Results The study included 286 mother-child pairs from four clusters: Ihemi, Kilombero, Ludewa, and Mbarali. The children's median age was 24 months, with the majority aged between 13 and 48 months. Boys constituted a slight majority (59.4%). The majority of mothers were married (72.4%), had primary education (56.6%), and were engaged in non-farming occupations (56.3%). Neurodevelopmental assessments revealed that 11.2% of children were fully developed, while 88.8% exhibited development delays. Adjusted prevalence ratios (aPR) with 95% confidence intervals identified significant associations between developmental domains and demographic variables such as age, gender, marital status, and maternal occupation. Conclusion The study highlights a high prevalence of neuro-disability among children in Tanzania's southern corridor, revealing disparities across regions and the impact of factors such as gender and marital status. Targeted interventions are essential to address these developmental challenges effectively and promote optimal child development and wellbeing.
Collapse
Affiliation(s)
- Peter M. Chilipweli
- Department of Community Medicine, School of Public Health, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Namanya Basinda
- Department of Community Medicine, School of Public Health, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Paul Alikado Sabuni
- Department of Epidemiology, Biostatistics, and Behavior Sciences, School of Public Health, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Fredy Hyera
- Research and Consultancy Unit, Bugando Medical Center (BMC), Mwanza, Tanzania
| | - Upendojackline Liana
- School of Medicine, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Titus Robert Leeyio
- Department of Epidemiology, Biostatistics, and Behavior Sciences, School of Public Health, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Elias C. Nyanza
- Department of Environmental Occupational Health and GIS, School of Public Health, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Awerasia Vera Ngowi
- Department of Occupational and Environmental Health, School of Public Health, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| |
Collapse
|
8
|
Chaldi D, Mourtzouchos K, Lygeros S, Danielides G, Naxakis S. Evaluation of Hearing Thresholds in Infants With Autism Spectrum Disorder Using Auditory Brainstem and Steady-State Responses. Cureus 2025; 17:e77537. [PMID: 39958054 PMCID: PMC11829610 DOI: 10.7759/cureus.77537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction In recent years, most studies on the hearing abilities of children with autism spectrum disorder (ASD) have used the auditory brainstem response (ABR) test alongside other audiological assessments, while only a few have explored the auditory steady-state response (ASSR) test. Moreover, these two electrophysiological methods have not yet been directly compared in this population. This study aims to compare click ABR and chirp ASSR in children with ASD and speech delays to determine whether differences in hearing thresholds can be identified. Methods Children with ASD and speech delays referred to Karamandaneio Children's Hospital between December 13, 2019, and December 6, 2023, were retrospectively identified as cases. Children diagnosed with speech delays but without ASD, who were referred to the same hospital during the same period, were included as controls. Results This study evaluated 30 children (21 males and nine females, totaling 60 ears). Of these, 20 children had been diagnosed with both ASD and speech delay, while 10 were non-ASD children with speech delay and normal hearing, serving as the control group. The participants were aged 19-68 months (median age = 38.5). All ears that responded to the click ABR also responded to each chirp frequency tested by the ASSR. This finding highlights the additional information provided by the ASSR compared to the ABR for threshold estimation, as no instances were observed where a response was obtained for the ABR stimulus but not the ASSR. Click ABR thresholds showed a statistically significant association with chirp ASSR threshold averages at 1,000, 2,000, and 4,000 Hz (rho = 0.316, p = 0.014), as well as at 2,000 and 4,000 Hz (rho = 0.277, p = 0.032). The strongest positive correlation was observed between the two chirp ASSR threshold averages (rho = 0.971, p < 0.001). Conclusions The results suggest that participants diagnosed with ASD exhibit statistically significantly lower mean scores for both click ABR and chirp ASSR threshold averages, with the effect being slightly more pronounced for the chirp ASSR thresholds than for the click ABR.
Collapse
Affiliation(s)
- Dimitra Chaldi
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, GRC
| | | | - Spyridon Lygeros
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, GRC
| | - Gerasimos Danielides
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, GRC
| | - Stefanos Naxakis
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, GRC
| |
Collapse
|
9
|
Gök Dağıdır H, Bukan N, Bahcelioglu M, Çalıkuşu A, Alim E, Dizakar SÖ, Topa E, Bolay H. tVNS alters inflammatory response in adult VPA-induced mouse model of autism: evidence for sexual dimorphism. FEBS Open Bio 2025; 15:69-80. [PMID: 39401991 PMCID: PMC11705413 DOI: 10.1002/2211-5463.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 01/05/2025] Open
Abstract
Autism is a neurodevelopmental disorder with limited treatment alternatives and which incidence is increasing. Some research suggests that vagus nerve simulation might lead to the reduction of certain symptom. Therefore, we aimed to examine the effect of bilateral transcutaneous auricular vagus nerve stimulation (tVNS) on the inflammatory response in an adult valproic acid (VPA) induced mouse (C57BL6) model of autism for the first time. The autism model was induced by oral VPA administration (600 mg·kg-1) to C57BL/6 pregnant mice on E12.5 days. The study included three groups: the VPA Transcutaneous Auricular Stimulation Group (VPA + tVNS), the VPA Control Group (VPA + sham), and the Healthy Control Group (Control + sham). Each group included 16 mice (8 M/8 F). Our results show that serum IL-1β and IL-6 levels were significantly higher in male VPA-exposed mice than controls. However, IL-1β was significantly lower, and IL-6, TNF- α, and IL-22 were not different in female VPA-exposed mice compared to the control group. Brain NLRP3 levels were significantly higher in both sexes in the VPA autism model (P < 0.05). tVNS application increased brain NLRP3 levels in both sexes and reduced serum IL-1β levels in male mice. We conclude that cytokine dysregulation is associated with the VPA-induced adult autism model, and the inflammatory response is more pronounced in male mice. tVNS application altered the inflammatory response and increased brain NLPR3 levels in both sexes. Further studies are needed to understand the beneficial or detrimental role of the inflammatory response in autism and its sexual dimorphism.
Collapse
Affiliation(s)
- Hale Gök Dağıdır
- Department of Medical Biochemistry, Faculty of MedicineGazi UniversityAnkaraTurkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM)Gazi UniversityAnkaraTurkey
| | - Neslihan Bukan
- Department of Medical Biochemistry, Faculty of MedicineGazi UniversityAnkaraTurkey
| | - Meltem Bahcelioglu
- Faculty of Medicine, Department of Anatomy, and Neuroscience and Neurotechnology Center of Excellence NÖROMGazi UniversityAnkaraTurkey
| | - Ayşen Çalıkuşu
- Department of Neuroscience, Institute of Health SciencesGazi UniversityAnkaraTurkey
| | - Ece Alim
- Faculty of Medicine, Department of Anatomy, and Neuroscience and Neurotechnology Center of Excellence NÖROMGazi UniversityAnkaraTurkey
| | - Saadet Özen Dizakar
- Department of Histology and Embryology, Faculty of Medicineİzmir Bakırcay UniversityTurkey
| | - Elif Topa
- Neuropsychiatry Education, Research and Application Center (NPM)Gazi UniversityAnkaraTurkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Neuropsychiatry Education, Research and Application Center (NPM), Neuroscience and Neurotechnology Center of Excellence NÖROMGazi UniversityAnkaraTurkey
| |
Collapse
|
10
|
Salenius K, Väljä N, Thusberg S, Iris F, Ladd-Acosta C, Roos C, Nykter M, Fasano A, Autio R, Lin J. Exploring autism spectrum disorder and co-occurring trait associations to elucidate multivariate genetic mechanisms and insights. BMC Psychiatry 2024; 24:934. [PMID: 39696186 DOI: 10.1186/s12888-024-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a partially heritable neurodevelopmental trait, and people with ASD may also have other co-occurring trait such as ADHD, anxiety disorders, depression, mental health issues, learning difficulty, physical health traits and communication challenges. The concomitant development of ASD and other neurological traits is assumed to result from a complex interplay between genetics and the environment. However, only a limited number of studies have performed multivariate genome-wide association studies (GWAS) for ASD. METHODS We conducted to-date the largest multivariate GWAS on ASD and 8 ASD co-occurring traits (ADHD, ADHD childhood, anxiety stress (ASDR), bipolar (BIP), disruptive behaviour (DBD), educational attainment (EA), major depression, and schizophrenia (SCZ)) using summary statistics from leading studies. Multivariate associations and central traits were further identified. Subsequently, colocalization and Mendelian randomization (MR) analysis were performed on the associations identified with the central traits containing ASD. To further validate our findings, pathway and quantified trait loci (QTL) resources as well as independent datasets consisting of 112 (45 probands) whole genome sequence data from the GEMMA project were utilized. RESULTS Multivariate GWAS resulted in 637 significant associations (p < 5e-8), among which 322 are reported for the first time for any trait. 37 SNPs were identified to contain ASD and one or more traits in their central trait set, including variants mapped to known SFARI ASD genes MAPT, CADPS and NEGR1 as well as novel ASD genes KANSL1, NSF and NTM, associated with immune response, synaptic transmission, and neurite growth respectively. Mendelian randomization analyses found that genetic liability for ADHD childhood, ASRD and DBT has causal effects on the risk of ASD while genetic liability for ASD has causal effects on the risk of ADHD, ADHD childhood, BIP, WA, MDD and SCZ. Frequency differences of SNPs found in NTM and CADPS genes, respectively associated with neurite growth and neural/endocrine calcium regulation, were found between GEMMA ASD probands and controls. Pathway, QTL and cell type enrichment implicated microbiome, enteric inflammation, and central nervous system enrichments. CONCLUSIONS Our study, combining multivariate GWAS with systematic decomposition, identified novel genetic associations related to ASD and ASD co-occurring driver traits. Statistical tests were applied to discern evidence for shared and interpretable liability between ASD and co-occurring traits. These findings expand upon the current understanding of the complex genetics regulating ASD and reveal insights of neuronal brain disruptions potentially driving development and manifestation.
Collapse
Affiliation(s)
- Karoliina Salenius
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Niina Väljä
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Sini Thusberg
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | | | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | | | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
- Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Reija Autio
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Jake Lin
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
11
|
Kumar A, Bhattacharya S. Unveiling autism spectrum disorder in South East Asia through a public health Lens. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2024; 3:1489269. [PMID: 39816604 PMCID: PMC11732031 DOI: 10.3389/frcha.2024.1489269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
Autism spectrum disorder (ASD) is a multifaceted developmental condition characterized by persistent challenges in social communication, restricted interests, and repetitive behaviors. Though there is no cure, early and intensive interventions can significantly improve the quality of life for those affected. The aim of this paper is to examine the complexities of autism spectrum disorder (ASD) from a public health perspective in South East Asian region, highlighting the global rise in prevalence and the compounded challenges posed by the COVID-19 pandemic. The rise in ASD prevalence from 4 to 5 cases per 10,000 children in the 1980s to 11.3 per 1,000 children in 2012 highlights the need for effective interventions. The pandemic exacerbated behavioral issues, anxiety, and screen time-related health problems, underscoring the importance of adjusting strategies for early identification and support. Diagnostic tools like the Modified Checklist for Autism in Toddlers (M-CHAT) and the Social Communication Questionnaire (SCQ) play a critical role in community-based screening. Effective prevention strategies include primary measures such as public awareness campaigns and genetic counseling, secondary measures focusing on early identification and intervention, and tertiary measures involving ongoing support and therapy. Addressing implementation challenges, particularly in low-income countries, requires enhanced public awareness, training of community health workers, and integration of ASD services into primary healthcare systems. Future research should aim to develop and evaluate scalable, culturally relevant interventions and explore the impact of environmental factors on ASD. Comprehensive strategies at the community level, combined with robust public health policies, are crucial for improving outcomes for individuals with ASD and their families.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Deoghar (AIIMS Deoghar), Deoghar, India
| | - Sudip Bhattacharya
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Deoghar (AIIMS Deoghar), Deoghar, India
| |
Collapse
|
12
|
Rajabi P, Noori AS, Sargolzaei J. Autism spectrum disorder and various mechanisms behind it. Pharmacol Biochem Behav 2024; 245:173887. [PMID: 39378931 DOI: 10.1016/j.pbb.2024.173887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental condition characterized by a range of social, communicative, and behavioral challenges. This comprehensive review delves into key aspects of ASD. Clinical Overview and genetic features provide a foundational understanding of ASD, highlighting the clinical presentation and genetic underpinnings that contribute to its complexity. We explore the intricate neurobiological mechanisms at play in ASD, including structural and functional differences that may underlie the condition's hallmark traits. Emerging research has shed light on the role of the immune system and neuroinflammation in ASD. This section investigates the potential links between immunological factors and ASD, offering insights into the condition's pathophysiology. We examine how atypical functional connectivity and alterations in neurotransmitter systems may contribute to the unique cognitive and behavioral features of ASD. In the pursuit of effective interventions, this section reviews current therapeutic strategies, ranging from behavioral and educational interventions to pharmacological approaches, providing a glimpse into the diverse and evolving landscape of ASD treatment. This holistic exploration of mechanisms in ASD aims to contribute to our evolving understanding of the condition and to guide the development of more targeted and personalized interventions for individuals living with ASD.
Collapse
Affiliation(s)
- Parisa Rajabi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
13
|
Ren X, Wang H, Lv X, Zhou Y, Fan Y, Yu Y, Turck CW, Chen Y, Lv L, Hu Y, Li H, Wang W, Qin D, Feng X, Hu X. Establishment of a standardized daily behavior collection and analysis system for brain disease models of rhesus and cynomolgus monkeys and its application in autism spectrum disorder. J Zhejiang Univ Sci B 2024; 25:972-995. [PMID: 39626880 PMCID: PMC11634448 DOI: 10.1631/jzus.b2400294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 12/13/2024]
Abstract
Complex brain diseases seriously endanger human health, and early diagnostic biomarkers and effective treatments are currently lacking. Due to ethical constraints on human research, establishing monkey models is crucial to address these issues. With the rapid development of technology, transgenic monkey models of a range of brain diseases, especially autism spectrum disorder (ASD), have been successfully established. However, to establish practical and effective brain disease models and subsequently apply them to disease mechanism and treatment studies, there is still a lack of a standard tool, i.e., a system for collecting and analyzing the daily behaviors of brain disease model monkeys. Therefore, with the goal of undertaking a comprehensive and quantitative study of behavioral phenotypes, we established a standard daily behavior collection and analysis system, including behavioral data collection protocols and a monkey daily behavior ethogram (MDBE) for rhesus and cynomolgus monkeys, which are the most commonly used non-human primates in model construction. Then, we used ASD as an application example after referring to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR), which is widely used in clinical disease diagnosis to obtain ASD core clinical symptoms. We then established a sub-ethogram (ASD monkey core behavior ethogram (MCBE-ASD)) specifically for quantitative assessment of the core clinical symptoms of an ASD monkey model based on MDBE. Subsequently, we demonstrated the high reproducibility of the system.
Collapse
Affiliation(s)
- Xiaofeng Ren
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Huimin Wang
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xiaoman Lv
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yi Zhou
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yingyin Fan
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yanjun Yu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Christoph W Turck
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuhui Chen
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Longbao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Yingzhou Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China. ,
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China. ,
| | - Hao Li
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China. ,
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China. ,
| | - Wenchao Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China. ,
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China. ,
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China. ,
| | - Xiaoli Feng
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China. ,
| | - Xintian Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
14
|
Pangrazzi L, Cerilli E, Balasco L, Dall’O’ GM, Chelini G, Pastore A, Weinberger B, Bozzi Y. N-Acetylcysteine Counteracts Immune Dysfunction and Autism-Related Behaviors in the Shank3b Mouse Model of Autism Spectrum Disorder. Antioxidants (Basel) 2024; 13:1390. [PMID: 39594532 PMCID: PMC11590982 DOI: 10.3390/antiox13111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (ASD) includes a range of neurodevelopmental disabilities characterized by social interaction deficits, communication impairments, and repetitive behaviors. Previous studies have shown that pro-inflammatory conditions play a key role in ASD. Despite this, how oxidative stress and inflammation may contribute to ASD-related behaviors is still poorly understood. Here, we reported that increased levels of molecules related to inflammation are present in the cerebellum and peripheral blood (PB) of mice lacking Shank3b, an established model of syndromic ASD. In parallel, immune dysfunction was documented in the bone marrow (BM) and spleens of mutant mice. N-acetylcysteine (NAC) treatment rescued inflammation in the cerebellum and PB and impaired the production of pro-inflammatory molecules in the BM and spleen. In addition, social impairment was counteracted in NAC-treated Shank3b-/- animals. Taken together, our results provide clear evidence of the key role of cerebellar oxidative stress and inflammation in the establishment of ASD-related behaviors. Furthermore, our findings underscore the importance of considering ASD as a systemic disorder.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria;
- CIMeC—Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy; (E.C.); (L.B.); (G.M.D.); (G.C.)
| | - Enrica Cerilli
- CIMeC—Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy; (E.C.); (L.B.); (G.M.D.); (G.C.)
| | - Luigi Balasco
- CIMeC—Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy; (E.C.); (L.B.); (G.M.D.); (G.C.)
- Department of Life Sciences and Public Health, Universita’ Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ginevra Matilde Dall’O’
- CIMeC—Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy; (E.C.); (L.B.); (G.M.D.); (G.C.)
| | - Gabriele Chelini
- CIMeC—Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy; (E.C.); (L.B.); (G.M.D.); (G.C.)
- CNR Neuroscience Institute, 56124 Pisa, Italy
| | - Anna Pastore
- Metabolomics and Proteomics Unit, ‘Bambino Gesù’ Children’s Hospital, IRCCS, 00168 Rome, Italy;
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria;
| | - Yuri Bozzi
- CIMeC—Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy; (E.C.); (L.B.); (G.M.D.); (G.C.)
- CNR Neuroscience Institute, 56124 Pisa, Italy
| |
Collapse
|
15
|
Gjoni K, Ren X, Everitt A, Shen Y, Pollard KS. De novo structural variants in autism spectrum disorder disrupt distal regulatory interactions of neuronal genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.621353. [PMID: 39574698 PMCID: PMC11580890 DOI: 10.1101/2024.11.06.621353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Three-dimensional genome organization plays a critical role in gene regulation, and disruptions can lead to developmental disorders by altering the contact between genes and their distal regulatory elements. Structural variants (SVs) can disturb local genome organization, such as the merging of topologically associating domains upon boundary deletion. Testing large numbers of SVs experimentally for their effects on chromatin structure and gene expression is time and cost prohibitive. To address this, we propose a computational approach to predict SV impacts on genome folding, which can help prioritize causal hypotheses for functional testing. We developed a weighted scoring method that measures chromatin contact changes specifically affecting regions of interest, such as regulatory elements or promoters, and implemented it in the SuPreMo-Akita software (Gjoni and Pollard 2024). With this tool, we ranked hundreds of de novo SVs (dnSVs) from autism spectrum disorder (ASD) individuals and their unaffected siblings based on predicted disruptions to nearby neuronal regulatory interactions. This revealed that putative cis-regulatory element interactions (CREints) are more disrupted by dnSVs from ASD probands versus unaffected siblings. We prioritized candidate variants that disrupt ASD CREints and validated our top-ranked locus using isogenic excitatory neurons with and without the dnSV, confirming accurate predictions of disrupted chromatin contacts. This study establishes disrupted genome folding as a potential genetic mechanism in ASD and provides a general strategy for prioritizing variants predicted to disrupt regulatory interactions across tissues.
Collapse
Affiliation(s)
- Ketrin Gjoni
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158
| | - Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
| | - Amanda Everitt
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Katherine S. Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
16
|
Ayash TA, Allard MJ, Chevin M, Sébire G. IL-1 Blockade Mitigates Autism and Cerebral Palsy Traits in Offspring In-Utero Exposed to Group B Streptococcus Chorioamnionitis. Int J Mol Sci 2024; 25:11393. [PMID: 39518945 PMCID: PMC11546968 DOI: 10.3390/ijms252111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Group B Streptococcus (GBS) is one of the most common bacteria responsible for placental and neonatal infection and inflammation resulting in lifelong neurobehavioral impairments. In particular, GBS-induced chorioamnionitis is known in preclinical models to upregulate inflammatory pathways, primarily through the activation of the interleukin-1 (IL-1) pathway, leading to brain injury and subsequent neurodevelopmental issues. Previous studies from our laboratory using Lewis rat pups have shown that male offspring exposed in utero to GBS chorioamnionitis develop brain injuries leading to neurobehavioral impairments such as autistic traits. In the present study, we aimed to explore whether blocking the IL-1 pathway could prevent or mitigate these neurodevelopmental impairments in adulthood. Using our established preclinical model, we administered IL-1 receptor antagonist (IL-1Ra) to dams with GBS-induced chorioamnionitis. Here, we show that IL-1Ra administration to dams reversed autistic and cerebral palsy traits in male adult offspring exposed in utero to GBS. Hence, IL-1 blockade could serve as a therapeutic intervention against pathogen-induced neurodevelopmental disorders. This research supports the need for future human randomized controlled trials to assess IL-1 blockade administered during pregnancy or in newborns as a strategy to reduce the long-term neurobehavioral consequences of prenatal infections, such as autism, cerebral palsy, learning disabilities, and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Taghreed A. Ayash
- Department of Molecular Biology and Genetics, Ibnsina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Marie-Julie Allard
- Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (M.-J.A.); (M.C.)
| | - Mathilde Chevin
- Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (M.-J.A.); (M.C.)
| | - Guillaume Sébire
- Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (M.-J.A.); (M.C.)
| |
Collapse
|
17
|
Chahboun S, Lefstad KT, Pettersen M, Åmot I, Thwala S. Building Bridges! Children with Autism Spectrum Disorder and Their Transition from Kindergarten to School - A Scoping Review. Neuropsychiatr Dis Treat 2024; 20:1823-1835. [PMID: 39355134 PMCID: PMC11444057 DOI: 10.2147/ndt.s466108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
Purpose The goal of this study was to map the research on the transition from kindergarten to school for children with autism spectrum disorder (ASD). Further, the goal was to identify the elements influencing the transition process as well as the variables that would promote a smooth and positive transition experience for the children in question. The study also aimed to identify knowledge gaps on the subject and the current practice in the field. Methods The study is a scoping review that includes peer reviewed articles from the databases ERIC, Google scholar, PsycINFO and Web of Science and the search was restricted to articles in English from 2019 to 2024. The search terms used were autism spectrum disorder, autism, transition, preschool, ECEC, inclusion, education intervention, early childhood, early education and kindergarten. After identifying and screening current articles from the databases, the articles were ascertained for relevance in three stages. In phase one, the title was considered. Phase two consisted of reviewing the abstract, and the final stage was to review the full text. At each stage, articles that did not prove relevant to the goal of the study were excluded. This left us with thirteen articles for inclusion in this article. Results In the selected articles the following elements are necessary for children with autism to have a positive transition from kindergarten to school: 1) School readiness skills and school inclusiveness, 2) Comparable educational opportunities and psychological support, 3) Collaboration and professional competence, 4) A balance to ensure a better transition, and 5) Inclusion and support and 6) Children's perspectives. Conclusion The research gaps identified were: 1) that few studies take the child's perspective into account and 2) that there is an overemphasis on subjective experiences of effectiveness, and a lack of focus on measurable effects within studies on transition and inclusive education.
Collapse
Affiliation(s)
- Sobh Chahboun
- Department of Pedagogy, Queen Maud University College of Early Childhood Education/QMUC, Trondheim, Norway
| | - Kristine Tyldum Lefstad
- Department of Pedagogy, Queen Maud University College of Early Childhood Education/QMUC, Trondheim, Norway
- Department of Health and education, Trøndelag Høyere Yrkesfagskole/THYF, Higher Vocational Education, Stjørdal, Norway
| | - Marit Pettersen
- Department of Pedagogy, Queen Maud University College of Early Childhood Education/QMUC, Trondheim, Norway
| | - Ingvild Åmot
- Department of Pedagogy, Queen Maud University College of Early Childhood Education/QMUC, Trondheim, Norway
| | - S’lungile Thwala
- Faculty of Education, University of Eswatini, Matsapha, Eswatini
| |
Collapse
|
18
|
Sameea AA, Abd El-Wahab EW, Osman SO. Risk of Autism Spectrum Disorder (ASD) Among 18 to 48 Month Old Children: A Multi-Center Study in Qatar. Glob Pediatr Health 2024; 11:2333794X241284476. [PMID: 39323455 PMCID: PMC11423378 DOI: 10.1177/2333794x241284476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Background. Little is known about autism spectrum disorder (ASD) in Qatar. The lack of consensus in ASD screening has led to differences in the reported prevalence with escalating rates over time. Objective(s). To screen for ASD and to identify associate factors among Qatary children aged 18 to 48 months. Methods. A cross-sectional study included 600 eligible children at 10 Primary Health Care Centers (PHCCs) in Qatar. Identification of ASD was based on the M-CHAT™ criteria. Results. The number of ASD screen-positive children in the M-CHAT™ was 25.13 per 10.000, and was significantly associated with older maternal age (10.5%) and history of neonatal hyperbilirubinemia (20.0%) [AOR] = 4.88; 95%[CI]: 1.50-16.30)]. The Odds of detecting ASD was lower in children below 2 years of age (AOR = 0.92; 95% CI: 0.87-0.98]). Conclusion. This study demonstrates the utility of M-CHAT™ for ASD screening in PHCCs. Identification of the factors associated with positive ASD screening can highlight areas suitable for future intervention.
Collapse
Affiliation(s)
| | - Ekram Wassim Abd El-Wahab
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Sherif Omar Osman
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Love C, Sominsky L, O'Hely M, Berk M, Vuillermin P, Dawson SL. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med 2024; 22:393. [PMID: 39278907 PMCID: PMC11404034 DOI: 10.1186/s12916-024-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is globally increasing in prevalence. The rise of ASD can be partially attributed to diagnostic expansion and advocacy efforts; however, the interplay between genetic predisposition and modern environmental exposures is likely driving a true increase in incidence. A range of evidence indicates that prenatal exposures are critical. Infection during pregnancy, gestational diabetes, and maternal obesity are established risk factors for ASD. Emerging areas of research include the effects of maternal use of selective serotonin reuptake inhibitors, antibiotics, and exposure to toxicants during pregnancy on brain development and subsequent ASD. The underlying pathways of these risk factors remain uncertain, with varying levels of evidence implicating immune dysregulation, mitochondrial dysfunction, oxidative stress, gut microbiome alterations, and hormonal disruptions. This narrative review assesses the evidence of contributing prenatal environmental factors for ASD and associated mechanisms as potential targets for novel prevention strategies.
Collapse
Affiliation(s)
- Chloe Love
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Luba Sominsky
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Martin O'Hely
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Samantha L Dawson
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.
- Murdoch Children's Research Institute, Parkville, Australia.
- Food and Mood Centre, Deakin University, Geelong, Australia.
| |
Collapse
|
20
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
21
|
Guaraná BB, Nunes MR, Muniz VF, Diniz BL, Nunes MR, Böttcher AK, Rosa RFM, Mergener R, Zen PRG. Turner syndrome and neuropsychological abnormalities: a review and case series. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 43:e2023199. [PMID: 39258641 PMCID: PMC11385741 DOI: 10.1590/1984-0462/2025/43/2023199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/29/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE The objective of this study was to establish the genotype-phenotype correlation between karyotype results and the neurological and psychiatric alterations presented in patients with Turner syndrome (TS). METHODS A retrospective study was conducted on the medical records of 10/140 patients with TS and neurophysiological abnormalities seen at a university hospital in southern Brazil. In addition, a literature review spanning the period from January 1, 2012 to January 1, 2023 was carried out using the PubMed and Virtual Health Library databases. RESULTS Our study showed a potential correlation between neurological and psychiatric alterations in patients with TS. These findings are in accordance with those described in literature such as a high prevalence of learning or intellectual disabilities. However, our sample found more seizure episodes than those reported in other studies. CONCLUSIONS The correlation established could be due to X chromosome dose-effect, as the review suggests that sex chromosome number and hormonal development can be associated with verbal, social, and cognitive skills or impairments.
Collapse
Affiliation(s)
| | - Marcela Rodrigues Nunes
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Victória Feitosa Muniz
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Lixinski Diniz
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Ana Kalise Böttcher
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael Fabiano Machado Rosa
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafaella Mergener
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Paulo Ricardo Gazzola Zen
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Baghdadli A, Peries M, Loubersac J, Michelon C, Rattaz C, Ferrando L, David A, Munir K, Picot MC. Contributions of the ELENA Cohort to Study Autism Spectrum Disorder in Children and Adolescents from a Biopsychosocial Framework. J Autism Dev Disord 2024:10.1007/s10803-024-06519-8. [PMID: 39230780 DOI: 10.1007/s10803-024-06519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition influenced by a myriad of developmental, biological, psychological, and socio-demographic factors. The ELENA cohort seeks to delineate the intricate interplay of these factors, facilitating the identification of risk factors and the development of targeted interventions. This paper emphasizes the clinical profiles of children and outlines key findings from a biopsychosocial perspective. The ELENA cohort, a multicenter initiative across French regional centers, conducted a systematic prospective analysis on children newly diagnosed with DSM-5 ASD between 2012 and 2019. This encompassed direct assessments and parent-reported questionnaires covering a broad spectrum of developmental, biological, psychological and socio-demographic measures. Embedded case-control studies further examined risk and protective factors, alongside specific environmental and psychosocial influences during pregnancy and early childhood. A subset of participants also contributed biospecimens, with data enhancement via linkage to French National Administrative Healthcare Databases. The study unveils baseline clinical characteristics for 876 children, average age 6 (SD ± 3.3) previously unreported in protocol descriptions. It highlights the study's developmental biopsychosocial approach and its novel findings on children's socio-adaptive functioning, ASD severity, comorbidities, quality of life and interventions. Employing developmental biopsychosocial insights offers a promising pathway to integrating health, social care, and experiential insights, ultimately aiming to enhance the future well-being and outcomes for children with ASD. This approach underscores the need of a holistic, interdisciplinary strategy in encouraging and supporting the ASD community.
Collapse
Affiliation(s)
- Amaria Baghdadli
- Centre de Ressource Autisme Languedoc-Roussillon & Centre d'Excellence sur l'Autisme et les Troubles Neurodéveloppementaux (CeAND), CHU Montpellier, 39 Avenue Charles Flahaut, 34295, Montpellier Cedex 05, France.
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France.
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807, Villejuif, France.
- Faculté de Médecine, Université de Montpellier, Montpellier, France.
| | - Marianne Peries
- Centre de Ressource Autisme Languedoc-Roussillon & Centre d'Excellence sur l'Autisme et les Troubles Neurodéveloppementaux (CeAND), CHU Montpellier, 39 Avenue Charles Flahaut, 34295, Montpellier Cedex 05, France
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807, Villejuif, France
| | - Julie Loubersac
- Centre de Ressource Autisme Languedoc-Roussillon & Centre d'Excellence sur l'Autisme et les Troubles Neurodéveloppementaux (CeAND), CHU Montpellier, 39 Avenue Charles Flahaut, 34295, Montpellier Cedex 05, France
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807, Villejuif, France
| | - Cécile Michelon
- Centre de Ressource Autisme Languedoc-Roussillon & Centre d'Excellence sur l'Autisme et les Troubles Neurodéveloppementaux (CeAND), CHU Montpellier, 39 Avenue Charles Flahaut, 34295, Montpellier Cedex 05, France
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807, Villejuif, France
| | - Cécile Rattaz
- Centre de Ressource Autisme Languedoc-Roussillon & Centre d'Excellence sur l'Autisme et les Troubles Neurodéveloppementaux (CeAND), CHU Montpellier, 39 Avenue Charles Flahaut, 34295, Montpellier Cedex 05, France
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
| | - Laetitia Ferrando
- Centre de Ressource Autisme Languedoc-Roussillon & Centre d'Excellence sur l'Autisme et les Troubles Neurodéveloppementaux (CeAND), CHU Montpellier, 39 Avenue Charles Flahaut, 34295, Montpellier Cedex 05, France
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
| | - Aurore David
- Centre de Ressource Autisme Languedoc-Roussillon & Centre d'Excellence sur l'Autisme et les Troubles Neurodéveloppementaux (CeAND), CHU Montpellier, 39 Avenue Charles Flahaut, 34295, Montpellier Cedex 05, France
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807, Villejuif, France
| | - Kerim Munir
- Developmental Medicine Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marie-Christine Picot
- Centre d'Excellence sur l'Autisme et les Troubles du Neurodéveloppement (CeAND), CHU Montpellier, Montpellier, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807, Villejuif, France
- Clinical Research and Epidemiology Unit (Public Health Department), INSERM, Centre d'Investigation Clinique 1411, CHU Montpellier, Univ Montpellier, 34295, Montpellier Cedex 5, France
| |
Collapse
|
23
|
Reza Naghdi M, Ahadi R, Motamed Nezhad A, Sadat Ahmadi Tabatabaei F, Soleimani M, Hajisoltani R. The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res 2024; 1838:148963. [PMID: 38705555 DOI: 10.1016/j.brainres.2024.148963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental disorder with two core behavioral symptoms restricted/repetitive behavior and social-communication deficit. The unknown etiology of ASD makes it difficult to identify potential treatments. Valproic acid (VPA) is an anticonvulsant drug with teratogenic effects during pregnancy in humans and rodents. Prenatal exposure to VPA induces autism-like behavior in both humans and rodents. This study aimed to investigate the protective effects of Diosgenin in prenatal Valproic acid-induced autism in rats. METHOD pregnant Wister female rats were given a single intraperitoneal injection of VPA (600 mg/kg, i.p.) on gestational day 12.5. The male offspring were given oral Dios (40 mg/kg, p.o.) or Carboxymethyl cellulose (5 mg/kg, p.o.) for 30 days starting from postnatal day 23. On postnatal day 52, behavioral tests were done. Additionally, biochemical assessments for oxidative stress markers were carried out on postnatal day 60. Further, histological evaluations were performed on the prefrontal tissue by Nissl staining and Immunohistofluorescence. RESULTS The VPA-exposed rats showed increased anxiety-like behavior in the elevated plus maze (EPM). They also demonstrated repetitive and grooming behaviors in the marble burying test (MBT) and self-grooming test. Social interaction was reduced, and they had difficulty detecting the novel object in the novel object recognition (NOR) test. Also, VPA-treated rats have shown higher levels of oxidative stress malondialdehyde (MDA) and lower GPX, TAC, and superoxide dismutase (SOD) levels. Furthermore, the number of neurons decreased and the ERK signaling pathway upregulated in the prefrontal cortex (PFC). On the other hand, treatment with Dios restored the behavioral consequences, lowered oxidative stress, and death of neurons, and rescued the overly activated ERK1/2 signaling in the prefrontal cortex. CONCLUSION Chronic treatment with Dios restored the behavioral, biochemical, and histological abnormalities caused by prenatal VPA exposure.
Collapse
Affiliation(s)
| | - Reza Ahadi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mansoureh Soleimani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Wang X, Li C, Zhou L, Liu L, Qiu X, Huang D, Liu S, Zeng X, Wang L. Associations of prenatal exposure to PM 2.5 and its components with offsprings' neurodevelopmental and behavioral problems: A prospective cohort study from China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116739. [PMID: 39029225 DOI: 10.1016/j.ecoenv.2024.116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Prenatal exposure to fine particulate matter (PM2.5) has been linked with increased neurodevelopmental disorders. However, the most detrimental component of PM2.5 and the most vulnerable exposure time windows remain undetermined, especially in areas with high PM2.5 levels. In a prospective cohort study involving 4494 mother-child dyads, we examined the associations of prenatal exposure to PM2.5 and its four main components with children's neurodevelopmental and behavioral problems (NBPs), separately in three pregnancy trimesters. Poisson regression and generalized additive models were used to depict the linear and nonlinear associations, respectively. Weighted quantile sum and Bayesian kernel machine regression models were applied to examine the effects of exposure to both mixed and individual components. Results showed that exposure to PM2.5 and its components throughout the three trimesters increased the risk of children's NBPs (Risk ratio for PM2.5: 1.16, 95 % confidence interval 1.14-1.18 per μg/m3 in the first trimester; 1.15, 1.12-1.17 in the second trimester; 1.06, 1.04-1.08 in the third trimester), with associations gradually diminishing as pregnancy progressed (P values for trends < 0.05). Among the four main components of PM2.5, exposure to SO42- posed the highest risks on children's NBPs, while organic matter contributed the largest proportion to the overall impacts of PM2.5 exposure. These results underscore the significance of mitigating PM2.5 exposure in pregnant women to reduce the risk of neurodevelopmental disorders in offspring. Our findings would inform risk assessment of PM2.5 exposure and facilitate the development of precision preventive strategies targeting specific components of PM2.5 in similar areas with high levels of exposure.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China
| | - Chanhua Li
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China
| | - Lihong Zhou
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China
| | - Lili Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China; Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, Guangxi, PR China.
| | - Lijun Wang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, PR China.
| |
Collapse
|
25
|
Anitha A, Banerjee M, Thanseem I, Prakash A, Melempatt N, Sumitha PS, Iype M, Thomas SV. Rare Pathogenic Variants Identified in Whole Exome Sequencing of Monozygotic Twins With Autism Spectrum Disorder. Pediatr Neurol 2024; 158:113-123. [PMID: 39038432 DOI: 10.1016/j.pediatrneurol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a childhood-onset complex neurodevelopmental disorder characterized by problems with communication and social interaction and restricted, repetitive, stereotyped behavior. The prevalence of ASD is one in 36 children. The genetic architecture of ASD is complex in spite of its high heritability. To identify the potential candidate genes of ASD, we carried out a comprehensive genetic study of monozygotic (MZ) twins concordant or discordant for ASD. METHODS Five MZ twins and their parents were recruited for the study. Four of the twins were concordant, whereas one was discordant for ASD. Whole exome sequencing was conducted for the twins and their parents. The exome DNA was enriched using Twist Human Customized Core Exome Kit, and paired-end sequencing was performed on HiSeq system. RESULTS We identified several rare and pathogenic variants (homozygous recessive, compound heterozygous, de novo) in ASD-affected individuals. CONCLUSION We report novel variants in individuals diagnosed with ASD. Several of these genes are involved in brain-related functions and not previously reported in ASD. Intriguingly, some of the variants were observed in the genes involved in sensory perception (auditory [MYO15A, PLEC, CDH23, UBR3, GPSM2], olfactory [OR9K2], gustatory [TAS2R31], and visual [CDH23, UBR3]). This is the first comprehensive genetic study of MZ twins in an Indian population. Further validation is required to determine whether these variants are associated with ASD.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Palakkad, Kerala, India
| | - P S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India; Department of Pediatric Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sanjeev V Thomas
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India
| |
Collapse
|
26
|
Zhang B, Zhang J, Chen H, Qiao D, Guo F, Hu X, Qin C, Jin X, Zhang K, Wang C, Cui H, Li S. Role of FMRP in AKT/mTOR pathway-mediated hippocampal autophagy in fragile X syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111036. [PMID: 38823765 DOI: 10.1016/j.pnpbp.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Fragile X syndrome (FXS) is caused by epigenetic silencing of the Fmr1 gene, leading to the deletion of the coding protein FMRP. FXS induces abnormal hippocampal autophagy and mTOR overactivation. However, it remains unclear whether FMRP regulates hippocampal autophagy through the AKT/mTOR pathway, which influences the neural behavior of FXS. Our study revealed that FMRP deficiency increased the protein levels of p-ULK-1 and p62 and decreased LC3II/LC3I level in Fmr1 knockout (KO) mice. The mouse hippocampal neuronal cell line HT22 with knockdown of Fmr1 by lentivirus showed that the protein levels of p-ULK-1 and p62 were increased, whereas LC3II/LC3I was unchanged. Further observations revealed that FMRP deficiency obstructed autophagic flow in HT22 cells. Therefore, FMRP deficiency inhibited autophagy in the mouse hippocampus and HT22 cells. Moreover, FMRP deficiency increased reactive oxygen species (ROS) level, decreased the co-localization between the mitochondrial outer membrane proteins TOM20 and LC3 in HT22 cells, and caused a decrease in the mitochondrial autophagy protein PINK1 in HT22 cells and Fmr1 KO mice, indicating that FMRP deficiency caused mitochondrial autophagy disorder in HT22 cells and Fmr1 KO mice. To explore the mechanism by which FMRP deficiency inhibits autophagy, we examined the AKT/mTOR signaling pathway in the hippocampus of Fmr1 KO mice, found that FMRP deficiency caused overactivation of the AKT/mTOR pathway. Rapamycin-mediated mTOR inhibition activated and enhanced mitochondrial autophagy. Finally, we examined whether rapamycin affected the neurobehavior of Fmr1 KO mice. The Fmr1 KO mice exhibited stereotypical behavior, impaired social ability, and learning and memory impairment, while rapamycin treatment improved behavioral disorders in Fmr1 KO mice. Thus, our study revealed the molecular mechanism by which FMRP regulates autophagy function, clarifying the role of hippocampal neuron mitochondrial autophagy in the pathogenesis of FXS, and providing novel insights into potential therapeutic targets of FXS.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Jingbao Zhang
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Huan Chen
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Dan Qiao
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangzhen Guo
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangting Hu
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Chao Qin
- Grade 2021, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Xiaowen Jin
- Grade 2021, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Kaixi Zhang
- Grade 2021, 5+3 Integrated pediatrics, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Chang Wang
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Huixian Cui
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China.
| | - Sha Li
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
27
|
Maeda K, Tanimura M, Masago Y, Horiyama T, Takemoto H, Sasaki T, Koyama R, Ikegaya Y, Ogawa K. Development of an in vitro compound screening system that replicate the in vivo spine phenotype of idiopathic ASD model mice. Front Pharmacol 2024; 15:1455812. [PMID: 39286633 PMCID: PMC11403255 DOI: 10.3389/fphar.2024.1455812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by core symptoms including social difficulties, repetitive behaviors, and sensory abnormalities. Aberrant morphology of dendritic spines within the cortex has been documented in genetic disorders associated with ASD and ASD-like traits. We hypothesized that compounds that ameliorate abnormalities in spine dynamics might have the potential to ameliorate core symptoms of ASD. Because the morphology of the spine is influenced by signal inputs from other neurons and various molecular interactions, conventional single-molecule targeted drug discovery methods may not suffice in identifying compounds capable of ameliorating spine morphology abnormalities. In this study, we focused on spine phenotypes in the cortex using BTBR T + Itpr3 tf /J (BTBR) mice, which have been used as a model for idiopathic ASD in various studies. We established an in vitro compound screening system using primary cultured neurons from BTBR mice to faithfully represent the spine phenotype. The compound library mainly comprised substances with known target molecules and established safety profiles, including those approved or validated through human safety studies. Following screening of this specialized library containing 181 compounds, we identified 15 confirmed hit compounds. The molecular targets of these hit compounds were largely focused on the 5-hydroxytryptamine receptor (5-HTR). Furthermore, both 5-HT1AR agonist and 5-HT3R antagonist were common functional profiles in hit compounds. Vortioxetine, possessing dual attributes as a 5-HT1AR agonist and 5-HT3R antagonist, was administered to BTBR mice once daily for a period of 7 days. This intervention not only ameliorated their spine phenotype but also alleviated their social behavior abnormality. These results of vortioxetine supports the usefulness of a spine phenotype-based assay system as a potent drug discovery platform targeting ASD core symptoms.
Collapse
Affiliation(s)
- Kazuma Maeda
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Miki Tanimura
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Yusaku Masago
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Tsukasa Horiyama
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Hiroshi Takemoto
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd., Osaka, Japan
| |
Collapse
|
28
|
Aldegheri L, Kharrat F, Conti A, Monica F, Busa F, Campisciano G, Zanotta N, Cason C, Comar M. Impact of Human Milk Oligosaccharides and Probiotics on Gut Microbiome and Mood in Autism: A Case Report. Microorganisms 2024; 12:1625. [PMID: 39203467 PMCID: PMC11356532 DOI: 10.3390/microorganisms12081625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Recent evidence has highlighted the role of the gut-brain axis in the progression of autism spectrum disorder (ASD), with significant changes in the gut microbiome of individuals with this condition. This report investigates the effects of probiotics and human milk oligosaccharide (HMO) supplements on the gut microbiome, inflammatory cytokine profile, and clinical outcomes in an ASD adolescent with chronic gastrointestinal dysfunction and cognitive impairment. Following treatment, we observed a decrease in proinflammatory cytokines' concentration alongside Sutterella relative abundance, a bacterium reported to be linked with gastrointestinal diseases. Also, we reported a notable increase in mood stability. The study aims to evaluate the use of gut microbiome-based therapy in selected ASD patients, highlighting its potential to improve related clinical symptoms.
Collapse
Affiliation(s)
- Luana Aldegheri
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Feras Kharrat
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Andrea Conti
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Fabio Monica
- Department of Gastroenterology and Endoscopy, Trieste University Hospital, Strada di Fiume 447, 34149 Trieste, Italy;
| | | | - Giuseppina Campisciano
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Nunzia Zanotta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Carolina Cason
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (L.A.); (F.K.); (A.C.); (G.C.); (N.Z.); (C.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
29
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
30
|
Wang X, Qian C, Yao H. Parental Inflammatory Bowel Disease with Child Autism: A Comprehensive Review and Meta-Analysis. J Autism Dev Disord 2024:10.1007/s10803-024-06458-4. [PMID: 38976104 DOI: 10.1007/s10803-024-06458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Inflammatory bowel disease (IBD) has been shown to be connected to a greater possibility of neurologically developed problems, such as autism spectrum disorders (ASDs). However, the proof linking parental IBD with ASD in offspring is inconclusive. Thus, we carried out a meta-analysis and comprehensive review to elucidate such linking. Prior research was identified through reviewing multiple internet-based sources, including Cochrane, Web of Knowledge, Embase, CINAHL, PubMed, and PsycINFO, from 1960 to December 2022. Pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) were determined employing random-effects models, in spite of the I2 statistic measurement of heterogeneity. Prediction intervals (PIs) have been presented to allow for more useful inferences and to indicate the range of genuine effects that might be predicted in future scenarios. Six studies (two case-control studies and four cohort studies) involving 3,200,199 participants were incorporated into the meta-analysis. The pooled RRs of ASDs among offspring of IBD parents were 1.15 (95% CI, 0.92 to 1.45, P = 0.226; I2 = 81.4%, P = 0.003; PI, 0.53-2.62), indicating no significant connection between parental IBD and the likelihood of ASDs in children. Type of IBD, and sex both also yielded no statistically significant results according to subgroup analysis. Our meta-analysis does not provide evidence that parental IBD is connected with the elevated likelihood of ASDs in their children. To confirm these results and understand their underlying mechanisms, additional research with larger sample sizes and improved study designs is required.
Collapse
Affiliation(s)
- Xingmu Wang
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, P.R. China
| | - Chenfei Qian
- Division of Clinical Nutrition, Shaoxing People's Hospital, Shaoxing, Zhejiang, P.R. China
| | - Huanying Yao
- Department of pediatrics, Shaoxing People's Hospital, No.568, Zhongxing North Road, Yuecheng District, Shaoxing, Zhejiang, 312000, P.R. China.
| |
Collapse
|
31
|
Lilley R, Rapaport H, Poulsen R, Yudell M, Pellicano E. Contributing to an autism biobank: Diverse perspectives from autistic participants, family members and researchers. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:1719-1731. [PMID: 37882180 PMCID: PMC11191664 DOI: 10.1177/13623613231203938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
LAY ABSTRACT A lot of autism research has focused on finding genes that might cause autism. To conduct these genetic studies, researchers have created 'biobanks' - collections of biological samples (such as blood, saliva, urine, stool and hair) and other health information (such as cognitive assessments and medical histories). Our study focused on the Australian Autism Biobank, which collected biological and health information from almost 1000 Australian autistic children and their families. We wanted to know what people thought about giving their information to the Biobank and why they chose to do so. We spoke to 71 people who gave to the Biobank, including 18 autistic adolescents and young adults, 46 of their parents and seven of their siblings. We also spoke to six researchers who worked on the Biobank project. We found that people were interested in giving their information to the Biobank so they could understand why some people were autistic. Some people felt knowing why could help them make choices about having children in the future. People also wanted to be involved in the Biobank because they believed it could be a resource that could help others in the future. They also trusted that scientists would keep their information safe and were keen to know how that information might be used in the future. Our findings show that people have lots of different views about autism biobanks. We suggest researchers should listen to these different views as they develop their work.
Collapse
|
32
|
Parasin N, Amnuaylojaroen T, Saokaew S. Prenatal PM 2.5 Exposure and Its Association with Low Birth Weight: A Systematic Review and Meta-Analysis. TOXICS 2024; 12:446. [PMID: 39058098 PMCID: PMC11280910 DOI: 10.3390/toxics12070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Exposure to PM2.5 while pregnant is associated with negative effects on low birth weight (LBW). This study employed a systematic review and meta-analysis to investigate the impact of PM2.5 exposure during pregnancy on LBW. A search of databases such as Scopus, ScienceDirect, and PubMed identified thirteen appropriate studies. This study used a random-effects model to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs) for each trimester. The findings revealed a significant relationship between PM2.5 exposure and LBW in both the first and second trimesters (OR 1.05, 95% CI 1.00-1.09, p < 0.001). There was no significant difference between trimesters (p = 0.704). The results emphasize the persistent influence of PM2.5 on fetal development throughout all stages of pregnancy. Reducing air pollution is critical for improving pregnancy outcomes and decreasing the incidence of LBW. Further study is needed to improve exposure assessments and investigate the underlying biological pathways.
Collapse
Affiliation(s)
- Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand;
| | - Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Change Research Units, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand;
- Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
33
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
34
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
35
|
Varley AN, Browning KN. Gastrointestinal dysfunction in the valproic acid induced model of social deficit in rats. Auton Neurosci 2024; 253:103161. [PMID: 38461695 PMCID: PMC11128350 DOI: 10.1016/j.autneu.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Autism spectrum disorder (ASD) has increased in incidence over the past several decades, and is associated with a range of co-morbidities including gastrointestinal (GI) dysfunctions including gastroesophageal reflux, abdominal pain, bloating, constipation and/or diarrhea. Several animal models have been used that replicate several aspects of ASD but no single model has been able to replicate the entire disease pathophysiology. In humans, prenatal exposure to valproic acid (VPA) has been identified as a significant risk factor and rodent models have shown that in utero VPA exposure leads to behavioral deficits in offspring. The present study aimed to investigate whether in utero exposure to VPA induces GI dysfunction in rats. Timed pregnant Sprague-Dawley rats were injected with a single dose of VPA at embryonic day 12.5. Both male and female offspring subsequently underwent behavioral studies and assessment of GI function in adulthood. In utero VPA treatment induced social deficits in both male and female offspring, decreasing sociability and social novelty. Histological examination showed that VPA treated offspring had decreased thickness of GI muscle and mucosa, while immunohistochemical studies showed a decrease in myenteric neuron number in the fundus. Functional studies showed that both male and female VPA offspring had a delay in gastric emptying compared to vehicle treated offspring. Results of the current study suggest that the rat VPA model of behavioral deficits may be a convenient model by which both mechanistic and functional insights into GI dysfunction may be studied.
Collapse
Affiliation(s)
- Ashley N Varley
- Department of Comparative Medicine, Penn State College of Medicine, Hershey, PA, United States of America
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States of America.
| |
Collapse
|
36
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
37
|
Nautiyal H, Jaiswar A, Jha PK, Dwivedi S. Exploring key genes and pathways associated with sex differences in autism spectrum disorder: integrated bioinformatic analysis. Mamm Genome 2024; 35:280-295. [PMID: 38594551 DOI: 10.1007/s00335-024-10036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder marked by functional abnormalities in brain that causes social and linguistic difficulties. The incidence of ASD is more prevalent in males compared to females, but the underlying mechanism, as well as molecular indications for identifying sex-specific differences in ASD symptoms remain unknown. Thus, impacting the development of personalized strategy towards pharmacotherapy of ASD. The current study employs an integrated bioinformatic approach to investigate the genes and pathways uniquely associated with sex specific differences in autistic individuals. Based on microarray dataset (GSE6575) extracted from the gene expression omnibus, the dysregulated genes between the autistic and the neurotypical individuals for both sexes were identified. Gene set enrichment analysis was performed to ascertain biological activities linked to the dysregulated genes. Protein-protein interaction network analysis was carried out to identify hub genes. The identified hub genes were examined to determine their functions and involvement in the associated pathways using Enrichr. Additionally, hub genes were validated from autism-associated databases and the potential small molecules targeting the hub genes were identified. The present study utilized whole blood transcriptomic gene expression analysis data and identified 2211 and 958 differentially expressed unique genes in males and females respectively. The functional enrichment analysis revealed that male hub genes were functionally associated with RNA polymerase II mediated transcriptional regulation whereas female hub genes were involved in intracellular signal transduction and cell migration. The top male hub genes exhibited functional enrichment in tyrosine kinase signalling pathway. The pathway enrichment analysis of male hub genes indicates the enrichment of papillomavirus infection. Female hub genes were enriched in androgen receptor signalling pathway and functionally enriched in focal adhesion specific excision repair. Identified drug like candidates targeting these genes may serve as a potential sex specific therapeutics. Wortmannin for males, 5-Fluorouracil for females had the highest scores. Targeted and sex-specific pharmacotherapies may be created for the management of ASD. The current investigation identifies sex-specific molecular signatures derived from whole blood which may serve as a potential peripheral sex-specific biomarkers for ASD. The study also uncovers the possible pharmacological interventions against the selected genes/pathway, providing support in development of therapeutic strategies to mitigate ASD. However, experimental proofs on biological systems are warranted.
Collapse
Affiliation(s)
- Himani Nautiyal
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India
| | - Akanksha Jaiswar
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubham Dwivedi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India.
| |
Collapse
|
38
|
Denisova K. Neurobiology of cognitive abilities in early childhood autism. JCPP ADVANCES 2024; 4:e12214. [PMID: 38827984 PMCID: PMC11143961 DOI: 10.1002/jcv2.12214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/12/2023] [Indexed: 06/05/2024] Open
Abstract
This perspective considers complexities in the relationship between impaired cognitive abilities and autism from a maturational, developmental perspective, and aims to serve as a helpful guide for the complex and growing investigation of cognitive abilities and Autism Spectrum Disorder (ASD). Low Intelligence Quotient (IQ) and ASD are frequently co-occurring. About 37% of 8-year old children and 48% of 4-year old children diagnosed with ASD also have Intellectual Disability, with IQ below 70. And, low IQ in early infancy, including below 1 year of age, carries a 40% greater chance of receiving ASD diagnosis in early childhood. We consider the evidence that may explain this co-occurrence, including the possibility that high IQ may "rescue" the social communication issues, as well as the possible role of critical periods during growth and development. We consider how early low IQ may subsume a part of a subgroup of individuals with ASD, in particular, those diagnosed with autism in very early childhood, and we provide neurobiological evidence in support of this subtype. Moreover, we distinguish the concept of early low IQ from the delay in speech onset in preschool and school-aged children, based on (i) age and (ii) impairments in both verbal and non-verbal domains. The etiology of these early-diagnosed, early low IQ ASD cases is different from later-diagnosed, average or higher-IQ cases, and from children with speech delay onset. Given recent interest in formulating new subtypes of autism, rather than continuing to conceive of ASD as a spectrum, as well as new subtypes that vary in the degree of severity along the spectrum, we identify gaps in knowledge and directions for future work in this complex and growing area.
Collapse
Affiliation(s)
- Kristina Denisova
- Division of Math and Natural SciencesDepartment of PsychologyAutism Origins LabCity University of New YorkQueens College and Graduate CenterQueensNew YorkUSA
| |
Collapse
|
39
|
Jin T, Huang W, Pang Q, Cao Z, Xing D, Guo S, Zhang T. Genetically identified mediators associated with increased risk of stroke and cardiovascular disease in individuals with autism spectrum disorder. J Psychiatr Res 2024; 174:172-180. [PMID: 38640796 DOI: 10.1016/j.jpsychires.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Growing evidence suggested that individuals with autism spectrum disorder (ASD) associated with stroke and cardiovascular disease (CVD). However, the causal association between ASD and the risk of stroke and CVD remains unclear. To validate this, we performed two-sample Mendelian randomization (MR) and two-step mediation MR analyses, using relevant genetic variants sourced from the largest genome-wide association studies (GWASs). Two-sample MR evidence indicated causal relationships between ASD and any stroke (OR = 1.1184, 95% CI: 1.0302-1.2142, P < 0.01), ischemic stroke (IS) (OR = 1.1157, 95% CI: 1.0237-1.2160, P = 0.01), large-artery atherosclerotic stroke (LAS) (OR = 1.2902, 95% CI: 1.0395-1.6013, P = 0.02), atrial fibrillation (AF) (OR = 1.0820, 95% CI: 1.0019-1.1684, P = 0.04), and heart failure (HF) (OR = 1.1018, 95% CI: 1.0007-1.2132, P = 0.05). Additionally, two-step mediation MR suggested that type 2 diabetes mellitus (T2DM) partially mediated this effect (OR = 1.14, 95%CI: 1.02-1.28, P = 0.03). The mediated proportion were 10.96% (95% CI: 0.58%-12.10%) for any stroke, 11.77% (95% CI: 10.58%-12.97%) for IS, 10.62% (95% CI: 8.04%-13.20%) for LAS, and 7.57% (95% CI: 6.79%-8.36%) for HF. However, no mediated effect was observed between ASD and AF risk. These findings have implications for the development of prevention strategies and interventions for stroke and CVD in patients with ASD.
Collapse
Affiliation(s)
- Tianyu Jin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China; Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Huang
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Qiongyi Pang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Zheng Cao
- Department of Medicine and Health, University of Sydney, Sydney, Australia
| | - Dalin Xing
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Shunyuan Guo
- Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tong Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.
| |
Collapse
|
40
|
Shinsato RN, Correa CG, Herai RH. Genetic network analysis indicate that individuals affected by neurodevelopmental conditions have genetic variations associated with ophthalmologic alterations: A critical review of literature. Gene 2024; 908:148246. [PMID: 38325665 DOI: 10.1016/j.gene.2024.148246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Changes in the nervous system are related to a wide range of mental disorders, which include neurodevelopmental disorders (NDD) that are characterized by early onset mental conditions, such as schizophrenia and autism spectrum disorders and correlated conditions (ASD). Previous studies have shown distinct genetic components associated with diverse schizophrenia and ASD phenotypes, with mostly focused on rescuing neural phenotypes and brain activity, but alterations related to vision are overlooked. Thus, as the vision is composed by the eyes that itself represents a part of the brain, with the retina being formed by neurons and cells originating from the glia, genetic variations affecting the brain can also affect the vision. Here, we performed a critical systematic literature review to screen for all genetic variations in individuals presenting NDD with reported alterations in vision. Using these restricting criteria, we found 20 genes with distinct types of genetic variations, inherited or de novo, that includes SNP, SNV, deletion, insertion, duplication or indel. The variations occurring within protein coding regions have different impact on protein formation, such as missense, nonsense or frameshift. Moreover, a molecular analysis of the 20 genes found revealed that 17 shared a common protein-protein or genetic interaction network. Moreover, gene expression analysis in samples from the brain and other tissues indicates that 18 of the genes found are highly expressed in the brain and retina, indicating their potential role in adult vision phenotype. Finally, we only found 3 genes from our study described in standard public databanks of ophthalmogenetics, suggesting that the other 17 genes could be novel target for vision diseases.
Collapse
Affiliation(s)
- Rogério N Shinsato
- Unisalesiano, Araçatuba, São Paulo, Brazil; Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil.
| | - Camila Graczyk Correa
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil
| | - Roberto H Herai
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil; Research Division, Buko Kaesemodel Institute (IBK), Curitiba, Paraná 80240-000, Brazil; Research Division, 9p Brazil Association (A9pB), Santa Maria, Rio Grande do Sul 97060-580, Brazil.
| |
Collapse
|
41
|
Zheng W, Wang M, Cui Y, Xu Q, Chen Y, Xian P, Yang Q, Wu S, Wang Y. Establishment of a two-hit mouse model of environmental factor induced autism spectrum disorder. Heliyon 2024; 10:e30617. [PMID: 38774072 PMCID: PMC11107098 DOI: 10.1016/j.heliyon.2024.e30617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental diseases characterized by social dysfunction and repetitive stereotype behaviors. Besides genetic mutations, environmental factors play important roles in the development of ASD. Valproic acid (VPA) is widely used for modeling environmental factor induced ASD in rodents. However, traditional VPA modeling is low-in-efficiency and the phenotypes often vary among different batches of experiments. To optimize this ASD-modeling method, we tested "two-hit" hypothesis by single or double exposure of VPA and poly:IC at the critical time points of embryonic and postnatal stage. The autistic-like behaviors of mice treated with two-hit schemes (embryonic VPA plus postnatal poly:IC, embryonic poly:IC plus postnatal VPA, embryonic VPA plus poly: IC, or postnatal VPA plus poly:IC) were compared with mice treated with traditional VPA protocol. The results showed that all single-hit and two-hit schemes produced core ASD phenotypes as VPA single treatment did. Only one group, namely, mice double-hit by VPA and poly:IC simultaneously at E12.5 showed severe impairment of social preference, social interaction and ultrasonic communication, as well as significant increase of grooming activity and anxiety-like behaviors, in comparation with mice treated with the traditional VPA protocol. These data demonstrated that embryonic two-hit of VPA and poly:IC is more efficient in producing ASD phenotypes in mice than the single-hit of VPA, indicating this two-hit scheme could be utilized for modeling environmental factors induced ASD.
Collapse
Affiliation(s)
- Wei'an Zheng
- School of Life Science, Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, PR China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Mengmeng Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Yi Cui
- Dalian Rehabilitation Recuperation Center of Joint Logistics Support Force of PLA, No.30, Binhaixiroad, Xigang District, Dalian, 116013, PR China
| | - Qing Xu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Yujiang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Panpan Xian
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Qinghu Yang
- School of Life Science, Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, PR China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| |
Collapse
|
42
|
Maw KJ, Beattie G, Burns EJ. Cognitive strengths in neurodevelopmental disorders, conditions and differences: A critical review. Neuropsychologia 2024; 197:108850. [PMID: 38467371 DOI: 10.1016/j.neuropsychologia.2024.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Neurodevelopmental disorders are traditionally characterised by a range of associated cognitive impairments in, for example, sensory processing, facial recognition, visual imagery, attention, and coordination. In this critical review, we propose a major reframing, highlighting the variety of unique cognitive strengths that people with neurodevelopmental differences can exhibit. These include enhanced visual perception, strong spatial, auditory, and semantic memory, superior empathy and theory of mind, along with higher levels of divergent thinking. Whilst we acknowledge the heterogeneity of cognitive profiles in neurodevelopmental conditions, we present a more encouraging and affirmative perspective of these groups, contrasting with the predominant, deficit-based position prevalent throughout both cognitive and neuropsychological research. In addition, we provide a theoretical basis and rationale for these cognitive strengths, arguing for the critical role of hereditability, behavioural adaptation, neuronal-recycling, and we draw on psychopharmacological and social explanations. We present a table of potential strengths across conditions and invite researchers to systematically investigate these in their future work. This should help reduce the stigma around neurodiversity, instead promoting greater social inclusion and significant societal benefits.
Collapse
|
43
|
Pall ML. Central Causation of Autism/ASDs via Excessive [Ca 2+]i Impacting Six Mechanisms Controlling Synaptogenesis during the Perinatal Period: The Role of Electromagnetic Fields and Chemicals and the NO/ONOO(-) Cycle, as Well as Specific Mutations. Brain Sci 2024; 14:454. [PMID: 38790433 PMCID: PMC11119459 DOI: 10.3390/brainsci14050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The roles of perinatal development, intracellular calcium [Ca2+]i, and synaptogenesis disruption are not novel in the autism/ASD literature. The focus on six mechanisms controlling synaptogenesis, each regulated by [Ca2+]i, and each aberrant in ASDs is novel. The model presented here predicts that autism epidemic causation involves central roles of both electromagnetic fields (EMFs) and chemicals. EMFs act via voltage-gated calcium channel (VGCC) activation and [Ca2+]i elevation. A total of 15 autism-implicated chemical classes each act to produce [Ca2+]i elevation, 12 acting via NMDA receptor activation, and three acting via other mechanisms. The chronic nature of ASDs is explained via NO/ONOO(-) vicious cycle elevation and MeCP2 epigenetic dysfunction. Genetic causation often also involves [Ca2+]i elevation or other impacts on synaptogenesis. The literature examining each of these steps is systematically examined and found to be consistent with predictions. Approaches that may be sed for ASD prevention or treatment are discussed in connection with this special issue: The current situation and prospects for children with ASDs. Such approaches include EMF, chemical avoidance, and using nutrients and other agents to raise the levels of Nrf2. An enriched environment, vitamin D, magnesium, and omega-3s in fish oil may also be helpful.
Collapse
Affiliation(s)
- Martin L Pall
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
44
|
Maisterrena A, de Chaumont F, Longueville JE, Balado E, Ey E, Jaber M. Female mice prenatally exposed to valproic acid exhibit complex and prolonged social behavior deficits. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110948. [PMID: 38244714 DOI: 10.1016/j.pnpbp.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized mainly by deficits in social communication and stereotyped and restricted behavior and interests with a male to female bias of 4.2/1. Social behavior in ASD animal models is commonly analyzed in males, and seldomly in females, using the widely implemented three-chambers test procedure. Here, we implemented a novel procedure, the Live Mouse Tracker (LMT), combining artificial intelligence, machine learning procedures and behavioral measures. We used it on mice that were prenatally exposed to valproic acid (VPA) (450 mg/kg) at embryonic day 12.5, a widely recognized and potent ASD model that we had previously extensively characterized. We focused on female mice offspring, in which social deficits have been rarely documented when using the 3-CT procedure. We recorded several parameters related to social behavior in these mice, continuously for three days in groups of four female mice. Comparisons were made on groups of 4 female mice with the same treatment (4 saline or 4 VPA) or with different treatments (3 saline and 1 VPA). We report that VPA females show several types of social deficits, which are different in nature and magnitude in relation with time. When VPA mice were placed in the LMT alongside saline mice, their social deficits showed significant improvement as early as 1 h from the start of the experiment, lasting up to 3 days throughout the duration of the experiment. Our findings suggest that ASD may be underdiagnosed in females. They also imply that ASD-related social deficits can be ameliorated by the presence of typical individuals.
Collapse
Affiliation(s)
- Alexandre Maisterrena
- Université de Poitiers, Inserm, Laboratoire de Neurosciences Expérimentales et Cliniques U1084, Poitiers, France
| | - Fabrice de Chaumont
- Institut Pasteur, CNRS, Human Genetics and Cognitive Functions, Paris, France
| | - Jean-Emmanuel Longueville
- Université de Poitiers, Inserm, Laboratoire de Neurosciences Expérimentales et Cliniques U1084, Poitiers, France
| | - Eric Balado
- Université de Poitiers, Inserm, Laboratoire de Neurosciences Expérimentales et Cliniques U1084, Poitiers, France
| | - Elodie Ey
- Université de Strasbourg, CNRS, Inserm, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Mohamed Jaber
- Université de Poitiers, Inserm, Laboratoire de Neurosciences Expérimentales et Cliniques U1084, Poitiers, France; CHU de Poitiers, Poitiers, France.
| |
Collapse
|
45
|
Gale-Grant O, Chew A, Falconer S, França LGS, Fenn-Moltu S, Hadaya L, Harper N, Ciarrusta J, Charman T, Murphy D, Arichi T, McAlonan G, Nosarti C, Edwards AD, Batalle D. Clinical, socio-demographic, and parental correlates of early autism traits in a community cohort of toddlers. Sci Rep 2024; 14:8393. [PMID: 38600134 PMCID: PMC11006842 DOI: 10.1038/s41598-024-58907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Identifying factors linked to autism traits in the general population may improve our understanding of the mechanisms underlying divergent neurodevelopment. In this study we assess whether factors increasing the likelihood of childhood autism are related to early autistic trait emergence, or if other exposures are more important. We used data from 536 toddlers from London (UK), collected at birth (gestational age at birth, sex, maternal body mass index, age, parental education, parental language, parental history of neurodevelopmental conditions) and at 18 months (parents cohabiting, measures of socio-economic deprivation, measures of maternal parenting style, and a measure of maternal depression). Autism traits were assessed using the Quantitative Checklist for Autism in Toddlers (Q-CHAT) at 18 months. A multivariable model explained 20% of Q-CHAT variance, with four individually significant variables (two measures of parenting style and two measures of socio-economic deprivation). In order to address variable collinearity we used principal component analysis, finding that a component which was positively correlated with Q-CHAT was also correlated to measures of parenting style and socio-economic deprivation. Our results show that parenting style and socio-economic deprivation correlate with the emergence of autism traits at age 18 months as measured with the Q-CHAT in a community sample.
Collapse
Affiliation(s)
- Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16, De Crespigny Park, London, SE5 8AF, UK.
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Andrew Chew
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16, De Crespigny Park, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
- Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16, De Crespigny Park, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Laila Hadaya
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nicholas Harper
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Judit Ciarrusta
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16, De Crespigny Park, London, SE5 8AF, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16, De Crespigny Park, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16, De Crespigny Park, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16, De Crespigny Park, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
46
|
Grezenko H, Rodoshi ZN, Mimms CS, Ahmed M, Sabani A, Hlaing MS, Batu BJ, Hundesa MI, Ayalew BD, Shehryar A, Rehman A, Hassan A. From Alzheimer's Disease to Anxiety, Epilepsy to Schizophrenia: A Comprehensive Dive Into Neuro-Psychiatric Disorders. Cureus 2024; 16:e58776. [PMID: 38784315 PMCID: PMC11112393 DOI: 10.7759/cureus.58776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
This comprehensive narrative review endeavors to dissect the intricate web of neuropsychiatric disorders that significantly impact cognition, emotion regulation, behavior, and mental health. With a keen focus on Alzheimer's disease (AD), anxiety disorders, epilepsy, schizophrenia, and autism spectrum disorder (ASD), this article delves into their underlying mechanisms, clinical presentations, diagnostic challenges, and therapeutic interventions. Highlighting the considerable disability and societal costs that these conditions impose, it reflects on the over six million individuals grappling with Alzheimer's, the 19 million American adults living with anxiety disorders, the three million with epilepsy, and the global reach of schizophrenia affecting approximately 20 million people. Furthermore, it examines the emerging landscape of ASD, noting the escalating diagnosis rates and the pressing need for innovative treatments and equitable healthcare access. Through a detailed exploration of current research, technological innovations, and the promise of personalized medicine, this review aims to illuminate the complexities of these conditions, advocate for early intervention strategies, and call for a unified approach to tackling the multifaceted challenges they present. The ultimate goal is to inform and inspire healthcare professionals, researchers, and policymakers to foster advancements that improve outcomes and quality of life for individuals affected by these profound neuropsychiatric disorders, steering towards a future where these conditions are no longer insurmountable.
Collapse
Affiliation(s)
- Han Grezenko
- Medicine and Surgery, Guangxi Medical University, Nanning, CHN
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | | | - Ciara S Mimms
- Medicine, St. George's University, St. George's, USA
| | - Muhammad Ahmed
- Psychiatry and Behavioral Sciences, Dow University of Health Sciences, Karachi, PAK
| | - Astrit Sabani
- Medicine, St. George's University, St. George's, USA
| | - May Su Hlaing
- Geriatrics, United Lincolnshire Hospitals NHS Trust, Boston, GBR
| | - Biniyam J Batu
- General Practice, St. Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | - Muhidin I Hundesa
- Medical Services, Federal Democratic Republic of Ethiopia Ministry of Health, Addis Ababa, ETH
| | - Biruk D Ayalew
- Internal Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | | | | | | |
Collapse
|
47
|
Li H, Dang Y, Yan Y. Serum interleukin-17 A and homocysteine levels in children with autism. BMC Neurosci 2024; 25:17. [PMID: 38475688 DOI: 10.1186/s12868-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that typically emerges early in childhood. This study aimed to explore the potential link between serum levels of vitamin B12 and homocysteine (Hcy) and the severity of ASD symptoms in children. METHODS In this study, 50 children diagnosed with ASD comprised the observation group, while 50 healthy children constituted the control group. Serum levels of IL-17 A, Hcy, folate, and vitamin B12 were compared between the study group and control group, as well as among children with different degrees of ASD severity. The correlation between the Childhood Autism Rating Scale (CARS) score and serum levels of IL-17 A, Hcy, folate, and vitamin B12 was examined. Additionally, the relationship between serum IL-17 A and Hcy levels and their association with the severity ASD were explored. RESULTS Compared to the control group, the observation group demonstrated elevated serum Hcy and IL-17 A levels alongside decreased folate and vitamin B12 levels. Individuals with severe ASD exhibited higher Hcy and IL-17 A levels but lower folate and vitamin B12 levels compared to those with mild to moderate ASD. The CARS score showed negative correlations with serum folate and vitamin B12 levels and positive correlations with serum IL-17 A and Hcy levels in ASD patients. Additionally, serum Hcy and IL-17 A levels were correlated with ASD severity. CONCLUSION Children diagnosed with ASD presented with reduced serum vitamin B12 levels and increased levels of Hcy, potentially contributing to the onset and severity of ASD.
Collapse
Affiliation(s)
- Hui Li
- Department of Child Health Care, Northwest Women's and Children's Hospital, 710061, Xi'an, China.
| | - Yunhao Dang
- Xi'an Mental Health Center, Department of Children and adolescents Psychology, 710061, Xi'an, China
| | - Ying Yan
- Department of Child Health Care, Xi'an Central Hospital, 710004, Xi'an, China
| |
Collapse
|
48
|
Bui HTP, Huy Do D, Ly HTT, Tran KT, Le HTT, Nguyen KT, Pham LTD, Le HD, Le VS, Mukhopadhyay A, Nguyen LT. De novo copy number variations in candidate genomic regions in patients of severe autism spectrum disorder in Vietnam. PLoS One 2024; 19:e0290936. [PMID: 38451970 PMCID: PMC10919600 DOI: 10.1371/journal.pone.0290936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/09/2023] [Indexed: 03/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with a prevalence of around 1% children worldwide and characterized by patient behaviour (communication, social interaction, and personal development). Data on the efficacy of diagnostic tests using copy number variations (CNVs) in candidate genes in ASD is currently around 10% but it is overrepresented by patients of Caucasian background. We report here that the diagnostic success of de novo candidate CNVs in Vietnamese ASD patients is around 6%. We recruited one hundred trios (both parents and a child) where the child was clinically diagnosed with ASD while the parents were not affected. We performed genetic screening to exclude RETT syndrome and Fragile X syndrome and performed genome-wide DNA microarray (aCGH) on all probands and their parents to analyse for de novo CNVs. We detected 1708 non-redundant CNVs in 100 patients and 118 (7%) of them were de novo. Using the filter for known CNVs from the Simons Foundation Autism Research Initiative (SFARI) database, we identified six CNVs (one gain and five loss CNVs) in six patients (3 males and 3 females). Notably, 3 of our patients had a deletion involving the SHANK3 gene-which is the highest compared to previous reports. This is the first report of candidate CNVs in ASD patients from Vietnam and provides the framework for building a CNV based test as the first tier screening for clinical management.
Collapse
Affiliation(s)
- Hoa Thi Phuong Bui
- High Technology Center, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
- Translational Medicine Laboratory, Biomedical Research Centre, University of Salford, Salford, United Kingdom
| | - Duong Huy Do
- High Technology Center, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Ha Thi Thanh Ly
- High Technology Center, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Kien Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Huong Thi Thanh Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Kien Trung Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Linh Thi Dieu Pham
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Hau Duc Le
- Big Data Institute, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| | - Vinh Sy Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
- University of Engineering and Technology, Vietnam National University Hanoi, Cau Giay, Hanoi, Vietnam
| | - Arijit Mukhopadhyay
- Translational Medicine Laboratory, Biomedical Research Centre, University of Salford, Salford, United Kingdom
| | - Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hai Ba Trung, Ha Noi, Vietnam
| |
Collapse
|
49
|
Thanseem I, Banerjee M, Melempatt N, Prakash A, Iype M, Anitha A. Comprehensive Genetic Study of a Monozygotic Triplet Discordant for Autism Spectrum Disorder. Neurol India 2024; 72:384-387. [PMID: 38817175 DOI: 10.4103/ni.ni_349_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2024]
Abstract
There are a few comprehensive genetic studies on autism spectrum disorders (ASD) in India. Children of multiple births are valuable for genomics studies of complex disorders such as ASD. We report whole-exome sequencing (WES) in a triplet family in which only one among the triplet has ASD. The objective of this study was to identify potential candidate genes for ASD. Exome DNA was enriched using a twist human customized core exome kit, and paired-end sequencing was performed. Proband-specific de novo variants included 150 single nucleotide polymorphisms (SNPs) and 74 indels. Thirteen SNPs were in exonic regions, 7 of them being missense variations. Seventeen variants were previously reported in ASD. Genes harboring variants have functions in the development and maintenance of the central nervous system and are enriched in biological processes involving cell adhesion. This is the first comprehensive genetic study of a monozygotic triplet in ASD.
Collapse
Affiliation(s)
- Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad, Kerala, India
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Shoranur, Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad, Kerala, India
| |
Collapse
|
50
|
Zhang Q, Wang Y, Tao J, Xia R, Zhang Y, Liu Z, Cheng J. Sex-biased single-cell genetic landscape in mice with autism spectrum disorder. J Genet Genomics 2024; 51:338-351. [PMID: 37703921 DOI: 10.1016/j.jgg.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Autistic spectrum disorder (ASD) is a male-biased, heterogeneous neurodevelopmental disorder that affects approximately 1%-2% of the population. Prenatal exposure to valproic acid (VPA) is a recognized risk factor for ASD, but the cellular and molecular basis of VPA-induced ASD at the single-cell resolution is unclear. Here, we aim to compare the cellular and molecular differences in the hippocampus between male and female prenatal mice with ASD at the single-cell transcriptomic level. The transcriptomes of more than 45,000 cells are assigned to 12 major cell types, including neurons, glial cells, vascular cells, and immune cells. Cell type-specific genes with altered expression after prenatal VPA exposure are analyzed, and the largest number of differentially expressed genes (DEGs) are found in neurons, choroid plexus epithelial cells, and microglia. In microglia, several pathways related to inflammation are found in both males and females, including the tumor necrosis factor (TNF), nuclear factor kappa B (NF-κB), toll-like receptor (TLR), and mitogen-activated protein kinase (MAPK) signaling pathways, which are important for the induction of autistic-like behavior. Additionally, we note that several X-linked genes, including Bex1, Bex3, and Gria3, were among the male-specific DEGs of neurons. This pioneering study describes the landscape of the transcriptome in the hippocampus of autistic mice. The elucidation of sexual differences could provide innovative strategies for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ruixue Xia
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475099, China
| | - Yijie Zhang
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan 475099, China
| | - Zhirui Liu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|