1
|
Zhang F, Shao Y, Zhang X, Zhang H, Tan Y, Yang G, Wang X, Jia Z, Gong Q, Zhang H. Neuropsychological insights into exercise addiction: the role of brain structure and self-efficacy in middle-older individuals. Cereb Cortex 2024; 34:bhad514. [PMID: 38186007 DOI: 10.1093/cercor/bhad514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
This study aimed to investigate the relationship between exercise addiction and brain structure in middle-older individuals, and to examine the role of self-efficacy in mediating physiological changes associated with exercise addiction. A total of 133 patients exhibiting symptoms of exercise addiction were recruited for this study (male = 43, age 52.86 ± 11.78 years). Structural magnetic resonance imaging and behavioral assessments were administered to assess the study population. Voxel-based morphological analysis was conducted using SPM12 software. Mediation analysis was employed to explore the potential neuropsychological mechanism of self-efficacy in relation to exercise addiction. The findings revealed a positive correlation between exercise addiction and gray matter volume in the right inferior temporal region and the right hippocampus. Conversely, there was a negative correlation with gray matter volume in the left Rolandic operculum. Self-efficacy was found to indirectly influence exercise addiction by affecting right inferior temporal region gray matter volume and acted as a mediating variable in the relationship between the gray matter volume of right inferior temporal region and exercise addiction. In summary, this study elucidates the link between exercise addiction and brain structure among middle-older individuals. It uncovers the intricate interplay among exercise addiction, brain structure, and psychological factors. These findings enhance our comprehension of exercise addiction and offer valuable insights for the development of interventions and treatments.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiaonan Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Haoyu Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Guoqiang Yang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
2
|
Li Q, Kang X, Liu L, Xiao Y, Xu D, Zhuang H, Liu H, Zhao J, Zou H, Yang J, Zhan X, Li T, Wang X, Liu L. Adult mice with noise-induced hearing loss exhibited temporal ordering memory deficits accompanied by microglia-associated neuroplastic changes in the medial prefrontal cortex. Neurobiol Dis 2023:106181. [PMID: 37271287 DOI: 10.1016/j.nbd.2023.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
Acquired peripheral hearing loss in midlife is considered the primary modifiable risk factor for dementia, while the underlying pathological mechanism remains poorly understood. Excessive noise exposure is the most common cause of acquired peripheral hearing loss in modern society. This study was designed to investigate the impact of noise-induced hearing loss (NIHL) on cognition, with a focus on the medial prefrontal cortex (mPFC), a brain region that is involved in both auditory and cognitive processes and is highly affected in patients with cognitive impairment. Adult C57BL/6 J mice were randomly assigned to a control group and seven noise groups: 0HPN, 12HPN, 1DPN, 3DPN, 7DPN, 14DPN, and 28DPN, which were exposed to broadband noise at a 123 dB sound pressure level (SPL) for 2 h and sacrificed immediately (0 h), 12 h, or 1, 3, 7, 14, or 28 days post-noise exposure (HPN, DPN), respectively. Hearing assessment, behavioral tests, and neuromorphological studies in the mPFC were performed in control and 28DPN mice. All experimental animals were included in the time-course analysis of serum corticosterone (CORT) levels and mPFC microglial morphology. The results illustrated that noise exposure induced early-onset transient serum CORT elevation and permanent moderate-to-severe hearing loss in mice. 28DPN mice, in which permanent NIHL has been verified, exhibited impaired performance in temporal order object recognition tasks concomitant with reduced structural complexity of mPFC pyramidal neurons. The time-course immunohistochemical analysis in the mPFC revealed significantly higher morphological microglial activation at 14 and 28 DPN, preceded by a remarkably higher amount of microglial engulfed postsynaptic marker PSD95 at 7 DPN. Additionally, lipid accumulation in microglia was observed in 7DPN, 14DPN and 28DPN mice, suggesting a driving role of lipid handling deficits following excessive phagocytosis of synaptic elements in delayed and sustained microglial abnormalities. These findings provide fundamentally novel information concerning mPFC-related cognitive impairment in mice with NIHL and empirical evidence suggesting the involvement of microglial malfunction in the mPFC neurodegenerative consequences of NIHL.
Collapse
Affiliation(s)
- Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Linchen Liu
- Department of Rheumatology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Haiqing Liu
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Han Zou
- Medical College, Southeast University, Nanjing 210009, China
| | - Jianing Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xindi Zhan
- Medical College, Southeast University, Nanjing 210009, China
| | - Tianxiao Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xinchen Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
3
|
Jiao L, Yu Z, Zhong X, Yao W, Xing L, Ma G, Shen J, Wu Y, Du K, Liu J, Tong J, Fu J, Wei M, Liu M. Cordycepin improved neuronal synaptic plasticity through CREB-induced NGF upregulation driven by MG-M2 polarization: a microglia-neuron symphony in AD. Biomed Pharmacother 2023; 157:114054. [PMID: 36462314 DOI: 10.1016/j.biopha.2022.114054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Microglia-neuron crosstalk is critically involved in synaptic plasticity and degeneration by releasing diverse mediators in Alzheimer's disease (AD). Therefore, determining contributors that modulate the systemic microenvironment is essential. Cordycepin (CCS) is a novel neuroprotective compound obtained from Cordyceps militaris. However, the anti-AD efficacy and potential mechanism of CCS treatment remain unclear. This study aimed to elucidate the microglia-neuron symphony in AD after CCS treatment and to explore the possible mechanisms of its neuroprotective efficacy. METHODS AND RESULTS CCS treatment improved learning and memory impairment in 9-month-old APP/PS1 mice by behavioral tests. CCS polarized the microglia from M1 to M2, inhibited neuronal apoptosis and promoted synaptic remodeling accompanied by in vivo and in vitro upregulation of NGF. The cAMP-response element-binding protein (CREB) was also activated after MG-M2 polarization. Further, we verified that the sg3 promoter region of NGF (-1018 to -1011) is the key binding site for CREB-induced NGF transcription, which increased NGF expression and secretion. Finally, microglia-derived NGF was confirmed as an important mediator in microglia-neuron symphony to improve the neuronal microenvironment after CCS treatment. CONCLUSIONS CCS improved the neuronal synaptic plasticity and senescence by promoting MG-M2 activation driven by CREB-induced NGF upregulation and facilitated symphony communication between the microglia and neuron in AD. This study provides a new perspective on the development of a novel strategy for anti-AD therapy and offers new targets for anti-AD drug development.
Collapse
Affiliation(s)
- Linchi Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhihua Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Lijuan Xing
- Precision Laboratory of Panjin Central Hospital, Panjin, 124000, China.
| | - Guowei Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Jiajia Shen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Yuqiang Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Junxiu Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Junhui Tong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Jia Fu
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110179, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110179, China.
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Xie H, Li X, Huang W, Yin J, Luo C, Li Z, Dou Z. Effects of robot-assisted task-oriented upper limb motor training on neuroplasticity in stroke patients with different degrees of motor dysfunction: A neuroimaging motor evaluation index. Front Neurosci 2022; 16:957972. [PMID: 36188465 PMCID: PMC9523102 DOI: 10.3389/fnins.2022.957972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough robot-assisted task-oriented upper limb (UL) motor training had been shown to be effective for UL functional rehabilitation after stroke, it did not improve UL motor function more than conventional therapy. Due to the lack of evaluation of neurological indicators, it was difficult to confirm the robot treatment parameters and clinical efficacy in a timely manner. This study aimed to explore the changes in neuroplasticity induced by robot-assisted task-oriented UL motor training in different degrees of dysfunction patients and extract neurological evaluation indicators to provide the robot with additional parameter information.Materials and methodsA total of 33 adult patients with hemiplegic motor impairment after stroke were recruited as participants in this study, and a manual muscle test divided patients into muscle strength 0–1 level (severe group, n = 10), 2–3 level (moderate group, n = 14), and 4 or above level (mild group, n = 9). Tissue concentration of oxyhemoglobin and deoxyhemoglobin oscillations in the bilateral prefrontal cortex, dorsolateral prefrontal cortex (DLPFC), superior frontal cortex (SFC), premotor cortex, primary motor cortex (M1), primary somatosensory cortex (S1), and occipital cortex were measured by functional near-infrared spectroscopy (fNIRS) in resting and motor training state. The phase information of a 0.01 −0.08 Hz signal was identified by the wavelet transform method. The wavelet amplitude, lateralization index, and wavelet phase coherence (WPCO) were calculated to describe the frequency-specific cortical changes.ResultsCompared with the resting state, significant increased cortical activation was observed in ipsilesional SFC in the mild group and bilateral SFC in the moderate group during UL motor training. Patients in the mild group demonstrated significantly decreased lateralization of activation in motor training than resting state. Moreover, the WPCO value of motor training between contralesional DLPFC and ipsilesional SFC, bilateral SFC, contralesional, S1, and ipsilesional M1 showed a significant decrease compared with the resting state in the mild group.ConclusionRobot-assisted task-oriented UL motor training could modify the neuroplasticity of SFC and contribute to control movements and continuous learning motor regularity for patients. fNIRS could provide a variety of real-time sensitive neural evaluation indicators for the robot, which was beneficial to formulating more reasonable and effective personalized prescriptions during motor training.
Collapse
Affiliation(s)
- Hui Xie
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yin
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Cailing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zengyong Li
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zulin Dou
| |
Collapse
|
5
|
Bandeira ID, Lins-Silva DH, Barouh JL, Faria-Guimarães D, Dorea-Bandeira I, Souza LS, Alves GS, Brunoni AR, Nitsche M, Fregni F, Lucena R. Neuroplasticity and non-invasive brain stimulation in the developing brain. PROGRESS IN BRAIN RESEARCH 2021; 264:57-89. [PMID: 34167665 DOI: 10.1016/bs.pbr.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain is a dynamic organ whose growth and organization varies according to each subject's life experiences. Through adaptations in gene expression and the release of neurotrophins and neurotransmitters, these experiences induce a process of cellular realignment and neural network reorganization, which consolidate what is called neuroplasticity. However, despite the brain's resilience and dynamism, neuroplasticity is maximized during the first years of life, when the developing brain is more sensitive to structural reorganization and the repair of damaged neurons. This review presents an overview of non-invasive brain stimulation (NIBS) techniques that have increasingly been a focus for experimental research and the development of therapeutic methods involving neuroplasticity, especially Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS). Due to its safety risk profile and extensive tolerability, several trials have demonstrated the benefits of NIBS as a feasible experimental alternative for the treatment of brain and mind disorders in children and adolescents. However, little is known about the late impact of neuroplasticity-inducing tools on the developing brain, and there are concerns about aberrant plasticity. There are also ethical considerations when performing interventions in the pediatric population. This article will therefore review these aspects and also obstacles related to the premature application of NIBS, given the limited evidence available concerning the extent to which these methods interfere with the developing brain.
Collapse
Affiliation(s)
- Igor D Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.
| | - Daniel H Lins-Silva
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Judah L Barouh
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniela Faria-Guimarães
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ingrid Dorea-Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucca S Souza
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Gustavo S Alves
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Charlestown, MA, United States
| | - Rita Lucena
- Department of Neuroscience and Mental Health, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
6
|
Lampignano L, Quaranta N, Bortone I, Tirelli S, Zupo R, Castellana F, Donghia R, Guerra V, Griseta C, Pesole PL, Chieppa M, Logroscino G, Lozupone M, Cisternino AM, De Pergola G, Panza F, Giannelli G, Boeing H, Sardone R. Dietary Habits and Nutrient Intakes Are Associated to Age-Related Central Auditory Processing Disorder in a Cohort From Southern Italy. Front Aging Neurosci 2021; 13:629017. [PMID: 34025388 PMCID: PMC8134698 DOI: 10.3389/fnagi.2021.629017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives Central auditory processing disorder (CAPD) commonly occurs in older age. However, few studies of a possible link between age-related CAPD and diet in an older population have been conducted. The objective of the present study was to investigate the relationship between eating habits and age-related CAPD in a population >65 years, using cross-sectional and retrospective data obtained in the same population-based study about 12 years ago. Methods We selected 734 participants (403 men) from a large population-based study. For age-related CAPD assessment, we used the Synthetic Sentence Identification with Ipsilateral Competitive Message test. Dietary habits were assessed by a Food Frequency Questionnaire. Associations between age-related CAPD and food groups/macro-and micronutrients were explored using adjusted logistic regression models. Results Age-related CAPD subjects consumed more dairy (111 vs. 98 g/d), olives and vegetable oil (63 vs. 52 g/d) and spirits (2 vs.1 g/d), and less fruits (536 vs. 651 g/d) in the cross-sectional analysis. Age-related CAPD subjects had a lower intake of potassium, vitamin C, and a higher fat intake. Further analyses identified dietary fiber as being inversely related to age-related CAPD. Discussion The present study provided evidence that the dietary hypotheses proposed for explaining the development of cognitive disorders in older age might also hold for age-related CAPD. Further data from other large and prospective population-based studies are needed for confirming these findings.
Collapse
Affiliation(s)
- Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Nicola Quaranta
- Otolaryngology Unit, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Sarah Tirelli
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Roberta Zupo
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Rossella Donghia
- Data Analysis Unit, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Vito Guerra
- Data Analysis Unit, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Chiara Griseta
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Pasqua Letizia Pesole
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, "Pia Fondazione Cardinale G. Panico," Lecce, Italy
| | - Madia Lozupone
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Bari, Italy
| | - Anna Maria Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Giovanni De Pergola
- Department of Biomedical Science and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Gianluigi Giannelli
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Heiner Boeing
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy.,Data Analysis Unit, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy.,German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| |
Collapse
|
7
|
Woodward ML, Lin J, Gicas KM, Su W, Hui CLM, Honer WG, Chen EYH, Lang DJ. Medial temporal lobe cortical changes in response to exercise interventions in people with early psychosis: A randomized controlled trial. Schizophr Res 2020; 223:87-95. [PMID: 32487465 DOI: 10.1016/j.schres.2020.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/21/2020] [Accepted: 05/17/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Individuals with early psychosis may have prefrontal-limbic cortical deficits, which are associated with symptom severity and cognitive impairment. This study investigated the impact of an exercise intervention on fronto-temporal cortical plasticity in female participants with early psychosis. METHODS In a cohort of 51 female participants with early psychosis from Hong Kong, we investigated the effects of a 12-week, moderate intensity aerobic or Hatha yoga exercise trial (yoga (N = 21), aerobic (N = 18) or waitlist group (N = 12)) on cortical grey matter. Clinical assessments and structural MRI were completed pre- and post- a 12-week exercise intervention. RESULTS Increases in cortical volume and thickness were observed in the medial temporal cortical regions, primarily in fusiform cortical thickness (F(2, 48) = 4.221, p = 0.020, η2 = 0.150) and volume (F(2, 48) = 3.521, p = 0.037, η2 = 0.128) for participants with early psychosis in the aerobic arm, but not in the yoga and waitlist arms. Increased fusiform cortical thickness (ß = 0.402, p = 0.003) was associated with increased hippocampal volume for all psychosis participants. For the aerobic group only, increases in the entorhinal and fusiform temporal gyri were associated with reduced symptom severity. CONCLUSIONS These findings suggest exercise-induced neuroplasticity in medial temporal cortical regions occurs with aerobic exercise. These changes may be associated with improvements in psychosis symptom severity. People with early psychosis may benefit from exercise interventions, particularly aerobic exercise, as an adjunct treatment to address clinical, physical health, and neuroanatomic concerns. NIH National Library of Medicine ClinicalTrials.gov Registration #: NCT01207219https://clinicaltrials.gov/ct2/show/NCT01207219.
Collapse
Affiliation(s)
| | - Jingxia Lin
- School of Nursing, The University of Hong Kong, Hong Kong
| | | | - Wayne Su
- Department of Psychiatry, University of British Columbia, Canada
| | - Christy L M Hui
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Canada
| | - Eric Y H Chen
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Donna J Lang
- Department of Radiology, University of British Columbia, Canada.
| |
Collapse
|
8
|
Seidel-Marzi O, Ragert P. Neurodiagnostics in Sports: Investigating the Athlete's Brain to Augment Performance and Sport-Specific Skills. Front Hum Neurosci 2020; 14:133. [PMID: 32327988 PMCID: PMC7160821 DOI: 10.3389/fnhum.2020.00133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Enhancing performance levels of athletes during training and competition is a desired goal in sports. Quantifying training success is typically accompanied by performance diagnostics including the assessment of sports-relevant behavioral and physiological parameters. Even though optimal brain processing is a key factor for augmented motor performance and skill learning, neurodiagnostics is typically not implemented in performance diagnostics of athletes. We propose, that neurodiagnostics via non-invasive brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) will offer novel perspectives to quantify training-induced neuroplasticity and its relation to motor behavior. A better understanding of such a brain-behavior relationship during the execution of sport-specific movements might help to guide training processes and to optimize training outcomes. Furthermore, targeted non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) might help to further enhance training outcomes by modulating brain areas that show training-induced neuroplasticity. However, we strongly suggest that ethical aspects in the use of non-invasive brain stimulation during training and/or competition need to be addressed before neuromodulation can be considered as a performance enhancer in sports.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
9
|
Interaction between Age, Sex, and Mental Health Status as Precipitating Factors for Symptom Presentation in Concussed Individuals. JOURNAL OF SPORTS MEDICINE 2020; 2019:9207903. [PMID: 31976333 PMCID: PMC6955124 DOI: 10.1155/2019/9207903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022]
Abstract
Concussions are among the most common neurological conditions, with emergency departments and sports injury clinics seeing hundreds of patients each year. The consideration of risk factors such as age, sex, and comorbid conditions are very important when looking at individual physiological and psychological outcomes after a concussion. The purpose of this study was to look at four comorbid conditions (depression, anxiety, behavioural disorder, or learning disability) and identify any interactions with age and sex in symptom presentation after suffering a concussion. A total of 4,865 participants from the CCMI (Complete Concussion Management Inc.) dataset were used with 1,577 self-identified with a diagnosis of anxiety, depression, a behavioural disorder, or a learning disability. Fixed-factor analyses of variance were used with age and sex as fixed, grouping factors and symptom total and severity as dependent measures. For the individuals who did not have one of the 4 mental health conditions (3,288 control participants), symptom total and symptom severity increased with age (p < 0.05), and females showed more symptoms and a higher symptom severity than males across all ages (p < 0.05). A diagnosis of anxiety or depression exacerbated total symptoms and symptom severity from 25–50% above control levels in the 19 and under age groups, while depression or anxiety exacerbated total symptoms and severity by 10–15% in males more than females over 20. A diagnosis of a behavioural disorder or a learning disability exacerbated symptom severity by approximately 50% above control levels in 13–19–year-old females and in males of 30 years and older. This study highlights how the presence of a mental health condition may alter concussion symptom presentation dependent on age and sex. The identification of risk factors and how they may interact can be of great value to health care providers who manage concussion symptoms and recovery.
Collapse
|
10
|
Carey AN, Gildawie KR, Rovnak A, Thangthaeng N, Fisher DR, Shukitt-Hale B. Blueberry supplementation attenuates microglia activation and increases neuroplasticity in mice consuming a high-fat diet. Nutr Neurosci 2017; 22:253-263. [PMID: 28931353 DOI: 10.1080/1028415x.2017.1376472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Consuming a high-fat diet (HFD) may result in behavioral deficits similar to those observed in aging animals. Blueberries may prevent and even reverse age-related alterations in neurochemistry and behavior. It was previously demonstrated that middle-aged mice fed HFD had impaired memory; however, supplementation of HFD with blueberry reduced these memory deficits. As a follow-up to that study, the brain tissue from HFD-fed mice with and without blueberry supplementation was assessed to determine the neuroprotective mechanism(s) by which blueberry allayed cognitive dysfunction associated with HFD. METHODS Mice were fed HFDs (60% calories from fat) or low-fat diets (LFD) with and without 4% blueberry (freeze-dried, U.S. Highbush Blueberry Council). Microglia activation was assessed ex vivo and in vitro. The hippocampus was assessed for brain-derived neurotrophic factor (BDNF) and neurogenesis by measuring doublecortin (DCX). RESULTS There was significantly less microglia ionized calcium binding adaptor molecule 1 staining and fewer microglia in the brains of mice fed HFD + blueberry compared to mice fed LFD and HFD. BV-2 microglial cells treated with serum collected from the mice fed the diets supplemented with blueberry produced less nitric oxide compared to cells treated with serum from mice fed HFD. BDNF levels were higher and the number of DCX-positive cells was greater in the hippocampus of mice fed HFD + blueberry compared to mice fed HFD. DISCUSSION This study demonstrated that supplementation of a HFD with blueberry reduced indices of microglia activation and increased neuroplasticity, and these changes may underlie the protection against memory deficits in HFD-fed mice supplemented with blueberry.
Collapse
Affiliation(s)
- Amanda N Carey
- a Simmons College , Department of Psychology , Boston , MA , USA
| | | | - Abigail Rovnak
- a Simmons College , Department of Psychology , Boston , MA , USA
| | - Nopporn Thangthaeng
- b USDA Human Nutrition Research Center on Aging, Neuroscience and Aging Laboratory , Boston , MA , USA
| | - Derek R Fisher
- b USDA Human Nutrition Research Center on Aging, Neuroscience and Aging Laboratory , Boston , MA , USA
| | - Barbara Shukitt-Hale
- b USDA Human Nutrition Research Center on Aging, Neuroscience and Aging Laboratory , Boston , MA , USA
| |
Collapse
|
11
|
Reddy P, Dias I, Holland C, Campbell N, Nagar I, Connolly L, Krustrup P, Hubball H. Walking football as sustainable exercise for older adults – A pilot investigation. Eur J Sport Sci 2017; 17:638-645. [DOI: 10.1080/17461391.2017.1298671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Peter Reddy
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Irundika Dias
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Carol Holland
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Niyah Campbell
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Iaysha Nagar
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Luke Connolly
- Sport and Health Sciences, Faculty of Life and Environmental Sciences, Exeter University, Exeter, UK
| | - Peter Krustrup
- Department of Nutrition, Exercise and Sports (NEXS), Copenhagen Centre for Team Sport and Health, University of Copenhagen, Copenhagen N, Denmark
| | - Harry Hubball
- Department of Curriculum and Pedagogy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Rezapour T, DeVito EE, Sofuoglu M, Ekhtiari H. Perspectives on neurocognitive rehabilitation as an adjunct treatment for addictive disorders. PROGRESS IN BRAIN RESEARCH 2016; 224:345-69. [DOI: 10.1016/bs.pbr.2015.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Bamidis P, Vivas A, Styliadis C, Frantzidis C, Klados M, Schlee W, Siountas A, Papageorgiou S. A review of physical and cognitive interventions in aging. Neurosci Biobehav Rev 2014; 44:206-20. [PMID: 24705268 DOI: 10.1016/j.neubiorev.2014.03.019] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 12/26/2022]
|