1
|
Mastrangelo AM, Roncallo P, Matny O, Čegan R, Steffenson B, Echenique V, Šafář J, Battaglia R, Barabaschi D, Cattivelli L, Özkan H, Mazzucotelli E. A new wild emmer wheat panel allows to map new loci associated with resistance to stem rust at seedling stage. THE PLANT GENOME 2023:e20413. [PMID: 38087443 DOI: 10.1002/tpg2.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 01/21/2024]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide. A collection of 283 wild emmer wheat [Triticum turgidum L. subsp. dicoccoides (Körn. ex Asch. & Graebn.) Thell] accessions, representative of the entire Fertile Crescent region where wild emmer naturally occurs, was assembled, genotyped, and characterized for population structure, genetic diversity, and rate of linkage disequilibrium (LD) decay. Then, the collection was employed for mapping Pgt resistance genes, as a proof of concept of the effectiveness of genome-wide association studies in wild emmer. The collection was evaluated in controlled conditions for reaction to six common Pgt pathotypes (TPMKC, TTTTF, JRCQC, TRTTF, TTKSK/Ug99, and TKTTF). Most resistant accessions originated from the Southern Levant wild emmer lineage, with some showing a resistance reaction toward three to six tested races. Association analysis was conducted considering a 12K polymorphic single-nucleotide polymorphisms dataset, kinship relatedness between accessions, and population structure. Eleven significant marker-trait associations (MTA) were identified across the genome, which explained from 17% to up to 49% of phenotypic variance with an average 1.5 additive effect (based on the 1-9 scoring scale). The identified loci were either effective against single or multiple races. Some MTAs colocalized with known Pgt resistance genes, while others represent novel resistance loci useful for durum and bread wheat prebreeding. Candidate genes with an annotated function related to plant response to pathogens were identified at the regions linked to the resistance and defined according to the estimated small LD (about 126 kb), as typical of wild species.
Collapse
Affiliation(s)
- Anna Maria Mastrangelo
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Foggia, Italy
| | - Pablo Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Radim Čegan
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Jan Šafář
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Raffaella Battaglia
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Fiorenzuola d'Arda, Italy
| | - Delfina Barabaschi
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Fiorenzuola d'Arda, Italy
| | - Luigi Cattivelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Fiorenzuola d'Arda, Italy
| | - Hakan Özkan
- Faculty of Agriculture, Department of Field Crops, University of Çukurova, Adana, Turkey
| | - Elisabetta Mazzucotelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Fiorenzuola d'Arda, Italy
| |
Collapse
|
2
|
Wang F, Zhang M, Hu Y, Gan M, Jiang B, Hao M, Ning S, Yuan Z, Chen X, Chen X, Zhang L, Wu B, Liu D, Huang L. Pyramiding of Adult-Plant Resistance Genes Enhances All-Stage Resistance to Wheat Stripe Rust. PLANT DISEASE 2023; 107:879-885. [PMID: 36044366 DOI: 10.1094/pdis-07-22-1716-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases in wheat production. Pyramiding of adult-plant resistance (APR) genes is a promising strategy to increase durability of resistance. The stripe rust resistance (R) genes Yr18, Yr28, and Yr36 encode different protein families which confer partial resistance to a broad array of P. striiformis f. sp. tritici races. Here, we developed BC3F5 wheat lines representing all possible combinations of Yr18, Yr28, and Yr36 in a genetic background of the highly P. striiformis f. sp. tritici-susceptible wheat line SY95-71 that is widely used in stripe rust analysis. These lines enabled us to accurately evaluate these genes singly and in combination in a common genetic background. The adult plant resistance experiments were analyzed in the field, where stripe rust epidemics occurred frequently. The field results indicated that these partial R genes act additively in enhancing the levels of resistance, and a minimum of two-gene combinations can generate adequate stripe rust resistance. The Yr28 + Yr36 and Yr18 + Yr28 + Yr36 combinations also showed adequate resistance at the seedling stage, implying that APR gene pyramiding can achieve all-stage resistance. Meanwhile, the three genes were simultaneously introduced into elite wheat lines through gene-based marker selection. Elite lines exhibited strong all-stage resistance to stripe rust. This work provides valuable insights and resources for developing durable P. striiformis f. sp. tritici-resistant varieties and for elucidating the regulation mechanism of partial R gene pyramiding.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Meijuan Gan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
3
|
Liu T, Fedak G, Zhang L, Zhou R, Chi D, Fetch T, Hiebert C, Chen W, Liu B, Liu D, Zhang H, Zhang B. Molecular Marker Based Design for Breeding Wheat Lines with Multiple Resistance and Superior Quality. PLANT DISEASE 2020; 104:2658-2664. [PMID: 32749944 DOI: 10.1094/pdis-02-20-0420-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There has not been a major wheat stem rust epidemic worldwide since the 1970s, but the emergence of race TTKSK of Puccinia graminis f. sp. tritici in 1998 presented a great threat to the world wheat production. Single disease-resistance genes are usually effective for only several years before the pathogen changes genetically to overcome the resistance. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most common and persistent wheat diseases worldwide. The development of varieties with multiple resistance is the most economical and effective strategy for preventing stripe rust and stem rust, the two main rust diseases constraining wheat production. Plateau 448 has been widely used in the spring wheat growing region in northwest China, but it has become susceptible to stripe rust and is susceptible to TTKSK. To produce more durable resistance to race TTKSK as well as to stripe rust, four stem rust resistance genes (Sr33, Sr36, Sr-Cad, and Sr43) and three stripe rust resistance genes (Yr5, Yr18, and Yr26) were simultaneously introgressed into Plateau 448 to improve its stem rust (Ug99) and stripe rust resistance using a marker-assisted backcrossing strategy combined with phenotypic selection. We obtained 131 BC1F5 lines that pyramided two to four Ug99 resistance genes and one to two Pst resistance genes simultaneously. Thirteen of these lines were selected for their TTKSK resistance, and all of them exhibited near immunity or high resistance to TTKSK. Among the 131 pyramided lines, 95 showed high resistance to mixed Pst races. Nine lines exhibited not only high resistance to TTKSK and Pst but also better agronomic traits and high-molecular-weight glutenin subunit compositions than Plateau 448.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Lianquan Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Rangrang Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawn Chi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Tom Fetch
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Colin Hiebert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, Qinghai 810008, China
| |
Collapse
|
4
|
Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement. Int J Mol Sci 2018; 19:ijms19040923. [PMID: 29561750 PMCID: PMC5979310 DOI: 10.3390/ijms19040923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022] Open
Abstract
Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS), is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides) accession D97 into the common wheat (Triticum aestivum) cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS) sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.
Collapse
|
5
|
Mitrofanova OP, Khakimova AG. New genetic resources in wheat breeding for increased grain protein content. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717040062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Huang L, Sela H, Feng L, Chen Q, Krugman T, Yan J, Dubcovsky J, Fahima T. Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:921-34. [PMID: 26847646 DOI: 10.1007/s00122-016-2672-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/09/2016] [Indexed: 05/18/2023]
Abstract
The wheat stripe rust resistance gene Yr36 ( WKS1 ) with a unique kinase-START domain architecture is highly conserved in wild emmer wheat natural populations. Wild emmer wheat (Triticum dicoccoides) populations have developed various resistance strategies against the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). The wild emmer gene, Yr36 (WKS1), which confers partial resistance to a broad spectrum of Pst races, is composed of a kinase and a START lipid-binding domain, a unique gene architecture found only in the Triticeae tribe. The analysis of 435 wild emmer accessions from a broad range of natural habitats revealed that WKS1 and its paralogue WKS2 are present only in the southern distribution range of wild emmer in the Fertile Crescent, supporting the idea that wheat domestication occurred in the northern populations. An analysis of full-length WKS1 sequence from 54 accessions identified 15 different haplotypes and very low-nucleotide diversity (π = 0.00019). The high level of WKS1 sequence conservation among wild emmer populations is in contrast to the high level of diversity previously observed in NB-LRR genes (e.g., Lr10 and Pm3). This phenomenon may reflect the different resistance mechanisms and different evolutionary pathways that shaped these genes, and may shed light on the evolution of genes that confer partial resistance to stripe rust. Only five WKS1 coding sequence haplotypes were revealed among all tested accessions, encoding four different putative WKS1 proteins (designated P0, P1, P2, and P3). Infection tests showed that P0, P1, and P3 haplotypes display a resistance response, while P2 displayed a susceptible response. These results show that the WKS1 proteins (P0, P1, and P3) can be useful to improve wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Lin Huang
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Hanan Sela
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Lihua Feng
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Qijiao Chen
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Tamar Krugman
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Jun Yan
- Faculty of Industrial Biotechnology, Chengdu University, Chengdu, 610106, China
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tzion Fahima
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
7
|
Segovia V, Hubbard A, Craze M, Bowden S, Wallington E, Bryant R, Greenland A, Bayles R, Uauy C. Yr36 confers partial resistance at temperatures below 18°C to U.K. isolates of Puccinia striiformis. PHYTOPATHOLOGY 2014; 104:871-8. [PMID: 24601983 DOI: 10.1094/phyto-10-13-0295-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wheat yellow (stripe) rust, caused by the obligate biotrophic fungus Puccinia striiformis f. sp. tritici, is a continual threat to wheat fields worldwide. New isolates with increased virulence have recently emerged driving breeding efforts to incorporate disease resistance genes which confer potentially more durable, albeit partial, resistance. Yr36 is one such locus which was recently cloned (WKS1) and described as a high-temperature adult-plant gene being effective only at temperatures above 25°C. We examined the potential use of Yr36 at temperatures below 25°C. Field experiments in the United Kingdom across 2 years show that lines carrying Yr36 provide slow rusting resistance to the yellow rust pathogen. Juvenile and adult Yr36 isogenic lines showed partial resistance at temperatures below 18°C under control environment conditions in tetraploid and hexaploid genetic backgrounds, but not at seedling stage, when inoculated with U.K. P. striiformis isolates. This partial resistance phenotype was similar to that observed previously at temperatures ≥25°C. Transgenic complementation tests and ethyl methanesulfonate mutants showed that the low-temperature partial resistance was due to the WKS1 gene. This study indicates that Yr36 has the potential to be an effective source of partial resistance in temperate wheat growing regions.
Collapse
|