1
|
Fathipour-Azar Z, Azad A, Akbarfahimi M, Behzadipour S, Taghizadeh G. Symmetric and asymmetric bimanual coordination and freezing of gait in Parkinsonian patients in drug phases. Ann N Y Acad Sci 2022; 1511:244-261. [PMID: 35194819 DOI: 10.1111/nyas.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 11/29/2022]
Abstract
Freezing of gait (FOG) is a debilitating symptom in patients with Parkinson's disease (PD), which may be associated with motor control impairments in tasks other than gait. This study aimed to examine whether symmetric and asymmetric bimanual coordination is impaired in PD with FOG (PD +FOG) patients and whether dual-task and drug phases may affect bimanual coordination in these patients. Twenty PD +FOG patients, 20 PD patients without FOG (PD -FOG) performed symmetric and asymmetric functional bimanual tasks (reach to and pick up a box and open a drawer to press a pushbutton inside it, respectively) under single-task and dual-task conditions. PD patients were evaluated during on- and off-drug phases. Kinematic and coordination measures were calculated for each task. PD +FOG patients demonstrated exacerbated impairments of bimanual coordination while performing goal-directed bimanual tasks, which was more evident in the asymmetric bimanual task and under dual-task conditions, highlighting the need for rehabilitation interventions for bimanual tasks that include different cognitive loads in these patients. Interestingly, 25% and 5% of participants in the PD +FOG and -FOG groups developed upper limb freezing 2 years later, respectively. This study aimed to examine whether symmetric and asymmetric bimanual coordination is impaired in Parkinson's disease with freezing of gait (PD +FOG) patients and whether dual-task and drug phases may affect bimanual coordination in these patients. PD +FOG patients demonstrated exacerbated impairment of bimanual coordination while performing goal-directed bimanual tasks, highlighting the need for rehabilitation interventions for bimanual tasks that include different cognitive loads in these patients.
Collapse
Affiliation(s)
- Zeinab Fathipour-Azar
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Azad
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Malahat Akbarfahimi
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Behzadipour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.,Djavad Mowafaghian Research Center for Intelligent Neuro-rehabilitation Technologies, Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Fasano A, Mazzoni A, Falotico E. Reaching and Grasping Movements in Parkinson's Disease: A Review. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1083-1113. [PMID: 35253780 PMCID: PMC9198782 DOI: 10.3233/jpd-213082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Parkinson's disease (PD) is known to affect the brain motor circuits involving the basal ganglia (BG) and to induce, among other signs, general slowness and paucity of movements. In upper limb movements, PD patients show a systematic prolongation of movement duration while maintaining a sufficient level of endpoint accuracy. PD appears to cause impairments not only in movement execution, but also in movement initiation and planning, as revealed by abnormal preparatory activity of motor-related brain areas. Grasping movement is affected as well, particularly in the coordination of the hand aperture with the transport phase. In the last fifty years, numerous behavioral studies attempted to clarify the mechanisms underlying these anomalies, speculating on the plausible role that the BG-thalamo-cortical circuitry may play in normal and pathological motor control. Still, many questions remain open, especially concerning the management of the speed-accuracy tradeoff and the online feedback control. In this review, we summarize the literature results on reaching and grasping in parkinsonian patients. We analyze the relevant hypotheses on the origins of dysfunction, by focusing on the motor control aspects involved in the different movement phases and the corresponding role played by the BG. We conclude with an insight into the innovative stimulation techniques and computational models recently proposed, which might be helpful in further clarifying the mechanisms through which PD affects reaching and grasping movements.
Collapse
Affiliation(s)
- Alessio Fasano
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Correspondence to: Alessio Fasano and Egidio Falotico, The BioRobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio, 34, 56025 Pontedera (PI), Italy. Tel.: +39 050 883 457; E-mails: and
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Correspondence to: Alessio Fasano and Egidio Falotico, The BioRobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio, 34, 56025 Pontedera (PI), Italy. Tel.: +39 050 883 457; E-mails: and
| |
Collapse
|
3
|
Nodehi Z, Mehdizadeh H, Azad A, Mehdizadeh M, Reyhanian E, Saberi ZS, Meimandi M, Soltanzadeh A, Roohi-Azizi M, Vasaghi-Gharamaleki B, Parnianpour M, Khalaf K, Taghizadeh G. Anxiety and cognitive load affect upper limb motor control in Parkinson's disease during medication phases. Ann N Y Acad Sci 2021; 1494:44-58. [PMID: 33476067 DOI: 10.1111/nyas.14564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
Anxiety is among the most debilitating nonmotor symptoms of Parkinson's disease (PD). This study aimed to determine how PD patients with low and high levels of anxiety (LA-PD and HA-PD, respectively) compare with age- and sex-matched controls at the level of motor control of reach-to-grasp movements during single- and dual-task conditions with varying complexity. Reach-to-grasp movement kinematics were assessed in 20 LA-PD, 20 HA-PD, and 20 sex- and age-matched healthy controls under single- as well as easy and difficult dual-task conditions. Assessment of PD patients was performed during both the on- and off-drug phases. The results obtained during dual-task conditions reveal deficits in both reach and grasp components for all three groups (e.g., decreased peak velocity and delayed maximum hand opening). However, these deficits were significantly greater in the PD groups, especially in the HA-PD group. Although dopaminergic medication improved reach kinematics, it had no effect on grasp kinematics. The results of our study indicated that high levels of anxiety may enhance the inefficiency of upper limb motor control in PD patients, especially during high demanding cognitive conditions, and should, therefore, be considered in the assessment and planning of interventions for upper limb function in these patients.
Collapse
Affiliation(s)
- Zahra Nodehi
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hajar Mehdizadeh
- Department of Neurosciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Azad
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mehdizadeh
- Department of Neurosciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Reyhanian
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zakieh Sadat Saberi
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Meimandi
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltanzadeh
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Roohi-Azizi
- Rehabilitation Research Center, Department of Rehabilitation Basic Sciences, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Vasaghi-Gharamaleki
- Rehabilitation Research Center, Department of Rehabilitation Basic Sciences, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Parnianpour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kinda Khalaf
- Department of Biomedical Engineering, Health Engineering Innovation Center, Khalifa University of Science, Abu Dhabi, UAE
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Flindall JW, Doan JB, Gonzalez CLR. Manual asymmetries in the kinematics of a reach-to-grasp action. Laterality 2013; 19:489-507. [PMID: 24350797 DOI: 10.1080/1357650x.2013.862540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the present study, we manipulated the perceived demand of an ecologically valid task to investigate the possible presence of manual asymmetries in a reach-to-grasp action. Participants reached, grasped and sipped from a water glass under low (nearly empty) and high (nearly full) demand conditions. Participants reached to grasp in closed-loop, open-loop and delay visual conditions. Manual asymmetries were found in movement time, peak velocity and maximum grip aperture variability. Consistent with reach-to-point literature: (1) right-handed actions were completed in less time than left-handed actions in visually and memory-guided conditions; (2) right-handed movements were more accurate (i.e., produced more consistent maximum grip apertures) than left-handed movements in visually guided conditions. The results support a theory of left-hemisphere specialization for visual control of action.
Collapse
Affiliation(s)
- Jason W Flindall
- a The Brain in Action Laboratory, Department of Kinesiology and Physical Education , University of Lethbridge , Lethbridge , Canada
| | | | | |
Collapse
|
5
|
Obstacle Avoidance amongst Parkinson Disease Patients Is Challenged in a Threatening Context. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:787861. [PMID: 26316998 PMCID: PMC4437341 DOI: 10.1155/2013/787861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/01/2013] [Accepted: 04/03/2013] [Indexed: 11/23/2022]
Abstract
We examined whether people with Parkinson disease (PD) have difficulty negotiating a gait obstruction in threatening (gait path and obstacle raised above floor) and nonthreatening (gait path and obstacle at floor level) contexts. Ten PD patients were tested in both Meds OFF and Meds ON states, along with 10 age-matched controls. Participants completed 18 gait trials, walking 4.7 m at a self-selected speed while attempting to cross an obstacle 0.15 m in height placed near the centre point of the walkway. Kinematic and kinetic parameters were measured, and obstacle contact errors were tallied. Results indicated that PD patients made more obstacle contacts than control participants in the threatening context. Successful crossings by PD patients in the threatening condition also exhibited kinematic differences, with Meds OFF PD patients making shorter crossing steps, with decreased initiation and crossing velocities. The findings from this study lend support to the theory that PD patients rely on directed attention to initiate and control movement, while providing indication that the motor improvements provided by current PD pharmacotherapy may be limited by contextual interference. These movement patterns may be placing PD patients at risk of obstacle contact and falling.
Collapse
|
6
|
de Lima-Pardini AC, Papegaaij S, Cohen RG, Teixeira LA, Smith BA, Horak FB. The interaction of postural and voluntary strategies for stability in Parkinson's disease. J Neurophysiol 2012; 108:1244-52. [PMID: 22673326 PMCID: PMC3544957 DOI: 10.1152/jn.00118.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022] Open
Abstract
This study assessed the effects of stability constraints of a voluntary task on postural responses to an external perturbation in subjects with Parkinson's disease (PD) and healthy elderly participants. Eleven PD subjects and twelve control subjects were perturbed with backward surface translations while standing and performing two versions of a voluntary task: holding a tray with a cylinder placed with the flat side down [low constraint (LC)] or with the rolling, round side down [high constraint (HC)]. Participants performed alternating blocks of LC and HC trials. PD participants accomplished the voluntary task as well as control subjects, showing slower tray velocity in the HC condition compared with the LC condition. However, the latency of postural responses was longer in the HC condition only for control subjects. Control subjects presented different patterns of hip-shoulder coordination as a function of task constraint, whereas PD subjects had a relatively invariant pattern. Initiating the experiment with the HC task led to 1) decreased postural stability in PD subjects only and 2) reduced peak hip flexion in control subjects only. These results suggest that PD impairs the capacity to adapt postural responses to constraints imposed by a voluntary task.
Collapse
|
7
|
Sacrey LAR, Travis SG, Whishaw IQ. Drug treatment and familiar music aids an attention shift from vision to somatosensation in Parkinson's disease on the reach-to-eat task. Behav Brain Res 2011; 217:391-8. [DOI: 10.1016/j.bbr.2010.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/16/2022]
|
8
|
Sacrey LAR, Clark CAM, Whishaw IQ. Music attenuates excessive visual guidance of skilled reaching in advanced but not mild Parkinson's disease. PLoS One 2009; 4:e6841. [PMID: 19718260 PMCID: PMC2729398 DOI: 10.1371/journal.pone.0006841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) results in movement and sensory impairments that can be reduced by familiar music. At present, it is unclear whether the beneficial effects of music are limited to lessening the bradykinesia of whole body movement or whether beneficial effects also extend to skilled movements of PD subjects. This question was addressed in the present study in which control and PD subjects were given a skilled reaching task that was performed with and without accompanying preferred musical pieces. Eye movements and limb use were monitored with biomechanical measures and limb movements were additionally assessed using a previously described movement element scoring system. Preferred musical pieces did not lessen limb and hand movement impairments as assessed with either the biomechanical measures or movement element scoring. Nevertheless, the PD patients with more severe motor symptoms as assessed by Hoehn and Yahr (HY) scores displayed enhanced visual engagement of the target and this impairment was reduced during trials performed in association with accompanying preferred musical pieces. The results are discussed in relation to the idea that preferred musical pieces, although not generally beneficial in lessening skilled reaching impairments, may normalize the balance between visual and proprioceptive guidance of skilled reaching.
Collapse
Affiliation(s)
- Lori-Ann R Sacrey
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta.
| | | | | |
Collapse
|
9
|
Submovements during pointing movements in Parkinson’s disease. Exp Brain Res 2008; 193:529-44. [PMID: 19048238 DOI: 10.1007/s00221-008-1656-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
|
10
|
Doan JB, Melvin KG, Whishaw IQ, Suchowersky O. Bilateral impairments of skilled reach-to-eat in early Parkinson's disease patients presenting with unilateral or asymmetrical symptoms. Behav Brain Res 2008; 194:207-13. [DOI: 10.1016/j.bbr.2008.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 07/10/2008] [Accepted: 07/13/2008] [Indexed: 10/21/2022]
|
11
|
Foroud A, Whishaw IQ. Changes in the kinematic structure and non-kinematic features of movements during skilled reaching after stroke: a Laban Movement Analysis in two case studies. J Neurosci Methods 2007; 158:137-49. [PMID: 16766042 DOI: 10.1016/j.jneumeth.2006.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 04/14/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to adapt a universal language for human movement, Laban Movement Analysis (LMA), to capture the kinematic and non-kinematic aspects of movement in a reach-for-food task by subjects whose movements had been affected by stroke. Two control subjects, one stroke subject with internal capsule damage, and one subject with right posterior parietal stroke were video recorded while performing the reaching task. The movements of limb advancement, grasping the food, and limb withdrawal to place the food in the mouth, were notated using LMA. A scale, the Expressive Reaching Scale (ERS), was derived from the notation. All subjects completed the task; however, the stroke subjects displayed abnormalities in both the kinematic and non-kinematic aspects of movements during reaching with either limb. The most extensive impairments were in the contralateral-to-stroke limb and were most severe in the subject with internal capsule damage. The ERS rating scale may be a useful diagnosis and assessment tool.
Collapse
Affiliation(s)
- Afra Foroud
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alta., Canada.
| | | |
Collapse
|