1
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
2
|
Miyazawa K, Masujin K, Matsuura Y, Iwamaru Y, Okada H. Influence of Interspecies Transmission of Atypical Bovine Spongiform Encephalopathy Prions to Hamsters on Prion Characteristics. Front Vet Sci 2020; 7:94. [PMID: 32195273 PMCID: PMC7062703 DOI: 10.3389/fvets.2020.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 11/30/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease in cattle and is classified into the classical type (C-BSE) and two atypical BSEs, designated as high type (H-BSE) and low type (L-BSE). These classifications are based on the electrophoretic migration of the proteinase K-resistant core (PrPres) of the disease-associated form of the prion protein (PrPd). In a previous study, we succeeded in transmitting the H-BSE prion from cattle to TgHaNSE mice overexpressing normal hamster cellular PrP (PrPC). Further, Western blot analysis demonstrated that PrPres banding patterns of the H-BSE prion were indistinguishable from those of the C-BSE prion in TgHaNSE mice. In addition, similar PrPres glycoprofiles were detected among H-, C-, and L-BSE prions in TgHaNSE mice. Therefore, to better understand atypical BSE prions after interspecies transmission, H-BSE prion transmission from TgHaNSE mice to hamsters was investigated, and the characteristics of classical and atypical BSE prions among hamsters, wild-type mice, and mice overexpressing bovine PrPC (TgBoPrP) were compared in this study using biochemical and neuropathological methods. Identical PrPres banding patterns were confirmed between TgHaNSE mice and hamsters in the case of all three BSE prion strains. However, these PrPres banding patterns differed from those of TgBoPrP and wild-type mice infected with the H-BSE prion. In addition, glycoprofiles of TgHaNSE mice and hamsters infected with the L-BSE prion differed from those of TgBoPrP mice infected with the L-BSE prion. These data indicate that the PrPC amino acid sequences of new host species rather than other host environmental factors may affect some molecular aspects of atypical BSE prions. Although three BSE prion strains were distinguishable based on the neuropathological features in hamsters, interspecies transmission modified some molecular properties of atypical BSE prions, and these properties were indistinguishable from those of C-BSE prions in hamsters. Taken together, PrPres banding patterns and glycoprofiles are considered to be key factors for BSE strain typing. However, this study also revealed that interspecies transmission could sometimes influence these characteristics.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Viral Ecology Unit, National Institute of Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Yuichi Matsuura
- Viral Ecology Unit, National Institute of Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshifumi Iwamaru
- Viral Ecology Unit, National Institute of Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroyuki Okada
- Department of Planning and General Administration, NIAH, NARO, Tsukuba, Japan
| |
Collapse
|
3
|
Simmons MM, Chaplin MJ, Konold T, Casalone C, Beck KE, Thorne L, Everitt S, Floyd T, Clifford D, Spiropoulos J. L-BSE experimentally transmitted to sheep presents as a unique disease phenotype. Vet Res 2016; 47:112. [PMID: 27825366 PMCID: PMC5101820 DOI: 10.1186/s13567-016-0394-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/11/2016] [Indexed: 11/21/2022] Open
Abstract
Apart from prion protein genotype, the factors determining the host range and susceptiblity for specific transmissible spongiform encephalopathy agents remain unclear. It is known that bovine atypical L-BSE can transmit to a range of species including primates and humanised transgenic mice. It is important, therefore, that there is as broad an understanding as possible of how such isolates might present in food animal species and how robust they are on inter- and intra-species transmission to inform surveillance sytems and risk assessments. This paper demonstrates that L-BSE can be intracerebrally transmitted to sheep of several genotypes, with the exception of ARR/ARR animals. Positive animals mostly present with a cataplectic form of disease characterized by collapsing episodes and reduced muscle tone. PrP accumulation is confined to the nervous system, with the exception of one animal with lymphoreticular involvement. In Western blot there was maintenance of the low molecular mass and glycoform profile associated with L-BSE, irrespective of ovine host genotype, but there was a substantially higher N-terminal antibody signal relative to the core-specific antibody, which is similar to the ratio associated with classical scrapie. The disease phenotype was maintained on experimental subpassage, but with a shortened survival time indicative of an original species barrier and subsequent adaptation. Passive surveillance approaches would be unlikely to identify such cases as TSE suspects, but current statutory active screening methods would be capable of detecting such cases and classifying them as unusual and requiring further investigation if they were to occur in the field.
Collapse
Affiliation(s)
- Marion M Simmons
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| | - Melanie J Chaplin
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Timm Konold
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Animal Sciences Unit, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta Sede Centrale di Torino, via Bologna, 148, 10154, Turin, Italy
| | - Katy E Beck
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Leigh Thorne
- Department of Virology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Sharon Everitt
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Tobias Floyd
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Derek Clifford
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Animal Sciences Unit, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - John Spiropoulos
- Department of Pathology, APHA Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
4
|
Chapuis J, Moudjou M, Reine F, Herzog L, Jaumain E, Chapuis C, Quadrio I, Boulliat J, Perret-Liaudet A, Dron M, Laude H, Rezaei H, Béringue V. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions. Acta Neuropathol Commun 2016; 4:10. [PMID: 26847207 PMCID: PMC4743415 DOI: 10.1186/s40478-016-0284-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
Introduction Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrPSc, a misfolded isoform of the host-encoded prion protein PrPC. Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrPSc in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to ‘mutate’ conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrPSc), to transgenic mice overexpressing either human or the VRQ allele of ovine PrPC. Results In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrPSc biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the ‘physical’ cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Conclusions Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of sporadic CJD upon homologous and heterologous transmission. The notion that the environment or matrix where replication is occurring is key to the selection and preferential amplification of prion substrain components raises new questions on the determinants of prion replication within and between species. These data also further interrogate on the interplay between animal and human prions. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0284-9) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Detection and discrimination of classical and atypical L-type bovine spongiform encephalopathy by real-time quaking-induced conversion. J Clin Microbiol 2015; 53:1115-20. [PMID: 25609728 DOI: 10.1128/jcm.02906-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Statutory surveillance of bovine spongiform encephalopathy (BSE) indicates that cattle are susceptible to both classical BSE (C-BSE) and atypical forms of BSE. Atypical forms of BSE appear to be sporadic and thus may never be eradicated. A major challenge for prion surveillance is the lack of sufficiently practical and sensitive tests for routine BSE detection and strain discrimination. The real-time quaking-induced conversion (RT-QuIC) test, which is based on prion-seeded fibrillization of recombinant prion protein (rPrPSen), is known to be highly specific and sensitive for the detection of multiple human and animal prion diseases but not BSE. Here, we tested brain tissue from cattle affected by C-BSE and atypical L-type bovine spongiform encephalopathy (L-type BSE or L-BSE) with the RT-QuIC assay and found that both BSE forms can be detected and distinguished using particular rPrPSen substrates. Specifically, L-BSE was detected using multiple rPrPSen substrates, while C-BSE was much more selective. This substrate-based approach suggests a diagnostic strategy for specific, sensitive, and rapid detection and discrimination of at least some BSE forms.
Collapse
|
6
|
Falcinelli S, Gowen BB, Trost B, Napper S, Kusalik A, Johnson RF, Safronetz D, Prescott J, Wahl-Jensen V, Jahrling PB, Kindrachuk J. Characterization of the host response to pichinde virus infection in the Syrian golden hamster by species-specific kinome analysis. Mol Cell Proteomics 2015; 14:646-57. [PMID: 25573744 DOI: 10.1074/mcp.m114.045443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Syrian golden hamster has been increasingly used to study viral hemorrhagic fever (VHF) pathogenesis and countermeasure efficacy. As VHFs are a global health concern, well-characterized animal models are essential for both the development of therapeutics and vaccines as well as for increasing our understanding of the molecular events that underlie viral pathogenesis. However, the paucity of reagents or platforms that are available for studying hamsters at a molecular level limits the ability to extract biological information from this important animal model. As such, there is a need to develop platforms/technologies for characterizing host responses of hamsters at a molecular level. To this end, we developed hamster-specific kinome peptide arrays to characterize the molecular host response of the Syrian golden hamster. After validating the functionality of the arrays using immune agonists of defined signaling mechanisms (lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α), we characterized the host response in a hamster model of VHF based on Pichinde virus (PICV(1)) infection by performing temporal kinome analysis of lung tissue. Our analysis revealed key roles for vascular endothelial growth factor (VEGF), interleukin (IL) responses, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and Toll-like receptor (TLR) signaling in the response to PICV infection. These findings were validated through phosphorylation-specific Western blot analysis. Overall, we have demonstrated that hamster-specific kinome arrays are a robust tool for characterizing the species-specific molecular host response in a VHF model. Further, our results provide key insights into the hamster host response to PICV infection and will inform future studies with high-consequence VHF pathogens.
Collapse
Affiliation(s)
- Shane Falcinelli
- From the ‡Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian B Gowen
- §Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Brett Trost
- ¶Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- ‡‡Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, ‖Vaccine and Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Kusalik
- ¶Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Reed F Johnson
- From the ‡Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David Safronetz
- **Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Joseph Prescott
- **Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Victoria Wahl-Jensen
- §§Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA; ¶¶National Biodefense Analysis and Countermeasures Center, Frederick, MD 21702, USA
| | - Peter B Jahrling
- From the ‡Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; §§Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Jason Kindrachuk
- §§Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA;
| |
Collapse
|
7
|
Nicot S, Bencsik A, Migliore S, Canal D, Leboidre M, Agrimi U, Nonno R, Baron T. L-type bovine spongiform encephalopathy in genetically susceptible and resistant sheep: changes in prion strain or phenotypic plasticity of the disease-associated prion protein? J Infect Dis 2013; 209:950-9. [PMID: 24218507 DOI: 10.1093/infdis/jit596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sheep with prion protein (PrP) gene polymorphisms QQ171 and RQ171 were shown to be susceptible to the prion causing L-type bovine spongiform encephalopathy (L-BSE), although RQ171 sheep specifically propagated a distinctive prion molecular phenotype in their brains, characterized by a high molecular mass protease-resistant PrP fragment (HMM PrPres), distinct from L-BSE in QQ171 sheep. METHODS The resulting infectious and biological properties of QQ171 and RQ171 ovine L-BSE prions were investigated in transgenic mice expressing either bovine or ovine PrP. RESULTS In both mouse lines, ovine L-BSE transmitted similarly to cattle-derived L-BSE, with respect to survival periods, histopathology, and biochemical features of PrPres in the brain, as well as splenotropism, clearly differing from ovine classic BSE or from scrapie strain CH1641. Nevertheless and unexpectedly, HMM PrPres was found in the spleen of ovine PrP transgenic mice infected with L-BSE from RQ171 sheep at first passage, reminiscent, in lymphoid tissues only, of the distinct PrPres features found in RQ171 sheep brains. CONCLUSIONS The L-BSE agent differs from both ovine classic BSE or CH1641 scrapie maintaining its specific strain properties after passage in sheep, although striking PrPres molecular changes could be found in RQ171 sheep and in the spleen of ovine PrP transgenic mice.
Collapse
Affiliation(s)
- Simon Nicot
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Unité Maladies Neuro-Dégénératives, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Comoy EE, Mikol J, Ruchoux MM, Durand V, Luccantoni-Freire S, Dehen C, Correia E, Casalone C, Richt JA, Greenlee JJ, Torres JM, Brown P, Deslys JP. Evaluation of the zoonotic potential of transmissible mink encephalopathy. Pathogens 2013; 2:520-32. [PMID: 25437205 PMCID: PMC4235697 DOI: 10.3390/pathogens2030520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022] Open
Abstract
Successful transmission of Transmissible Mink Encephalopathy (TME) to cattle supports the bovine hypothesis for the still controversial origin of TME outbreaks. Human and primate susceptibility to classical Bovine Spongiform Encephalopathy (c-BSE) and the transmissibility of L-type BSE to macaques indicate a low cattle-to-primate species barrier. We therefore evaluated the zoonotic potential of cattle-adapted TME. In less than two years, this strain induced in cynomolgus macaques a neurological disease similar to L-BSE but distinct from c-BSE. TME derived from another donor species (raccoon) induced a similar disease with even shorter incubation periods. L-BSE and cattle-adapted TME were also transmissible to transgenic mice expressing human prion protein (PrP). Secondary transmissions to transgenic mice expressing bovine PrP maintained the features of the three tested bovine strains (cattle TME, c-BSE and L-BSE) regardless of intermediate host. Thus, TME is the third animal prion strain transmissible to both macaques and humanized transgenic mice, suggesting zoonotic potentials that should be considered in the risk analysis of animal prion diseases for human health. Moreover, the similarities between TME and L-BSE are highly suggestive of a link between these strains, and therefore the possible presence of L-BSE for many decades prior to its identification in USA and Europe.
Collapse
Affiliation(s)
- Emmanuel E Comoy
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Jacqueline Mikol
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Marie-Madeleine Ruchoux
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Valérie Durand
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Sophie Luccantoni-Freire
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Capucine Dehen
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Evelyne Correia
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Via Bologna 148, 10154 Torino, Italy.
| | - Juergen A Richt
- Kansas State University, College of Veterinary Medicine, K224B Mosier Hall, Manhattan, Kansas 66506-5601 USA.
| | - Justin J Greenlee
- National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, Iowa 50010 USA.
| | - Juan Maria Torres
- Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, Madrid, Spain.
| | - Paul Brown
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| | - Jean-Philippe Deslys
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Route du Panorama, BP6, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|