1
|
Expansion of a Specific Plasmodium falciparum PfMDR1 Haplotype in Southeast Asia with Increased Substrate Transport. mBio 2020; 11:mBio.02093-20. [PMID: 33262257 PMCID: PMC7733942 DOI: 10.1128/mbio.02093-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms. Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.
Collapse
|
2
|
Foguim Tsombeng F, Gendrot M, Robert MG, Madamet M, Pradines B. Are k13 and plasmepsin II genes, involved in Plasmodium falciparum resistance to artemisinin derivatives and piperaquine in Southeast Asia, reliable to monitor resistance surveillance in Africa? Malar J 2019; 18:285. [PMID: 31443646 PMCID: PMC6708145 DOI: 10.1186/s12936-019-2916-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in the propeller domain of Plasmodium falciparum kelch 13 (Pfk13) gene are associated with artemisinin resistance in Southeast Asia. Artemisinin resistance is defined by increased ring survival rate and delayed parasite clearance half-life in patients. Additionally, an amplification of the Plasmodium falciparum plasmepsin II gene (pfpm2), encoding a protease involved in hemoglobin degradation, has been found to be associated with reduced in vitro susceptibility to piperaquine in Cambodian P. falciparum parasites and with dihydroartemisinin–piperaquine failures in Cambodia. The World Health Organization (WHO) has recommended the use of these two genes to track the emergence and the spread of the resistance to dihydroartemisinin–piperaquine in malaria endemic areas. Although the resistance to dihydroartemisinin–piperaquine has not yet emerged in Africa, few reports on clinical failures suggest that k13 and pfpm2 would not be the only genes involved in artemisinin and piperaquine resistance. It is imperative to identify molecular markers or drug resistance genes that associate with artemisinin and piperaquine in Africa. K13 polymorphisms and Pfpm2 copy number variation analysis may not be sufficient for monitoring the emergence of dihydroartemisinin–piperaquine resistance in Africa. But, these markers should not be ruled out for tracking the emergence of resistance.
Collapse
Affiliation(s)
- Francis Foguim Tsombeng
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marie Gladys Robert
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Centre National de Référence du Paludisme, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
3
|
Pasupureddy R, Atul, Seshadri S, Pande V, Dixit R, Pandey KC. Current scenario and future strategies to fight artemisinin resistance. Parasitol Res 2018; 118:29-42. [PMID: 30478733 DOI: 10.1007/s00436-018-6126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
Despite several setbacks in the fight against malaria such as insecticide and drug resistance as well as low efficacy of available vaccines, considerable success in reducing malaria burden has been achieved in the past decade. Artemisinins (ARTs and their combination therapies, ACTs), the current frontline drugs against uncomplicated malaria, rapidly kill plasmodial parasites and are non-toxic at short exposures. Though the exact mode of action remains unclear, the endoperoxide bridge, indispensable for ART activity, is thought to react with heme released from hemoglobin hydrolysis and generate free radicals that alkylate multiple protein targets, thereby disrupting proteostasis pathways. However, rapid development of ART resistance in recent years with no potential alternatives on the horizon threaten the elimination efforts. The Greater Mekong Subregion in South-East Asia continues to churn out mutants resistant to multiple ACTs and detected in increasingly expanding geographies. Extensive research on ART-resistant strains have identified a potential candidate Kelch13, crucial for mediating ART resistance. Parasites with mutations in the propeller domains of Plasmodium falciparum Kelch13 protein were shown to have enhanced phosphatidylinositol 3-kinase levels that were concomitant with delayed parasite clearance. Current research focused on understanding the mechanism of Kelch13-mediated ART resistance could provide better insights into Plasmodium resistome. This review covers the current proposed mechanisms of ART activity, resistance strategies adopted by the parasite in response to ACTs and possible future approaches to mitigate the spread of resistance from South-East Asia.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India.,Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Atul
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
| | - Kailash C Pandey
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India. .,Department of Biochemistry, Indian Council of Medical Research, National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
4
|
Gil JP, Krishna S. pfmdr1 (Plasmodium falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Rev Anti Infect Ther 2017; 15:527-543. [DOI: 10.1080/14787210.2017.1313703] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J. Pedro Gil
- Physiology and Pharmacology Department, Karolinska Institutet, Stockholm, Sweden
| | - S. Krishna
- St George’s University Hospital, Institute for Infection and Immunity, London, United Kingdom
| |
Collapse
|
5
|
Role of Pfmdr1 in in vitro Plasmodium falciparum susceptibility to chloroquine, quinine, monodesethylamodiaquine, mefloquine, lumefantrine, and dihydroartemisinin. Antimicrob Agents Chemother 2014; 58:7032-40. [PMID: 25199781 DOI: 10.1128/aac.03494-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174 Plasmodium falciparum isolates from Dakar, Senegal. The Pfmdr1 86Y mutation was identified in 14.9% of the samples, and the 184F mutation was identified in 71.8% of the isolates. No 1034C, 1042N, or 1246Y mutations were detected. The Pfmdr1 86Y mutation was significantly associated with increased susceptibility to MDAQ (P = 0.0023), LMF (P = 0.0001), DHA (P = 0.0387), and MQ (P = 0.00002). The N86Y mutation was not associated with CQ (P = 0.214) or QN (P = 0.287) responses. The Pfmdr1 184F mutation was not associated with various susceptibility responses to the 6 antimalarial drugs (P = 0.168 for CQ, 0.778 for MDAQ, 0.324 for LMF, 0.961 for DHA, 0.084 for QN, and 0.298 for MQ). The Pfmdr1 86Y-Y184 haplotype was significantly associated with increased susceptibility to MDAQ (P = 0.0136), LMF (P = 0.0019), and MQ (P = 0.0001). The additional Pfmdr1 86Y mutation increased significantly the in vitro susceptibility to MDAQ (P < 0.0001), LMF (P < 0.0001), MQ (P < 0.0001), and QN (P = 0.0026) in wild-type Pfcrt K76 parasites. The additional Pfmdr1 86Y mutation significantly increased the in vitro susceptibility to CQ (P = 0.0179) in Pfcrt 76T CQ-resistant parasites.
Collapse
|