1
|
Budimir I, Giampieri E, Saccenti E, Suarez-Diez M, Tarozzi M, Dall'Olio D, Merlotti A, Curti N, Remondini D, Castellani G, Sala C. Intraspecies characterization of bacteria via evolutionary modeling of protein domains. Sci Rep 2022; 12:16595. [PMID: 36198716 PMCID: PMC9534902 DOI: 10.1038/s41598-022-21036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
The ability to detect and characterize bacteria within a biological sample is crucial for the monitoring of infections and epidemics, as well as for the study of human health and its relationship with commensal microorganisms. To this aim, a commonly used technique is the 16S rRNA gene targeted sequencing. PCR-amplified 16S sequences derived from the sample of interest are usually clustered into the so-called Operational Taxonomic Units (OTUs) based on pairwise similarities. Then, representative OTU sequences are compared with reference (human-made) databases to derive their phylogeny and taxonomic classification. Here, we propose a new reference-free approach to define the phylogenetic distance between bacteria based on protein domains, which are the evolving units of proteins. We extract the protein domain profiles of 3368 bacterial genomes and we use an ecological approach to model their Relative Species Abundance distribution. Based on the model parameters, we then derive a new measurement of phylogenetic distance. Finally, we show that such model-based distance is capable of detecting differences between bacteria in cases in which the 16S rRNA-based method fails, providing a possibly complementary approach , which is particularly promising for the analysis of bacterial populations measured by shotgun sequencing.
Collapse
Affiliation(s)
- Iva Budimir
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Enrico Giampieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Martina Tarozzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Daniele Dall'Olio
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Alessandra Merlotti
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Nico Curti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy 'Augusto Righi', University of Bologna, 40127, Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy.
| | - Claudia Sala
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
2
|
Fujita H, Osaku A, Sakane Y, Yoshida K, Yamada K, Nara S, Mukai T, Su’etsugu M. Enzymatic Supercoiling of Bacterial Chromosomes Facilitates Genome Manipulation. ACS Synth Biol 2022; 11:3088-3099. [PMID: 35998348 PMCID: PMC9486964 DOI: 10.1021/acssynbio.2c00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The physical stability of bacterial chromosomes is important for their in vitro manipulation, while genetic stability is important in vivo. However, extracted naked chromosomes in the open circular form are fragile due to nicks and gaps. Using a nick/gap repair and negative supercoiling reaction (named SCR), we first achieved the negative supercoiling of the whole genomes extracted from Escherichia coli and Vibrio natriegens cells. Supercoiled chromosomes of 0.2-4.6 megabase (Mb) were separated by size using a conventional agarose gel electrophoresis and served as DNA size markers. We also achieved the enzymatic replication of 1-2 Mb chromosomes using the reconstituted E. coli replication-cycle reaction (RCR). Electroporation-ready 1 Mb chromosomes were prepared by a modified SCR performed at a low salt concentration (L-SCR) and directly introduced into commercial electrocompetent E. coli cells. Since successful electroporation relies on the genetic stability of a chromosome in cells, genetically stable 1 Mb chromosomes were developed according to a portable chromosome format (PCF). Using physically and genetically stabilized chromosomes, the democratization of genome synthetic biology will be greatly accelerated.
Collapse
|
3
|
Abstract
Cholera, an acute diarrheal disease, is caused by pathogenic strains of Vibrio cholerae generated by the lysogenization of the filamentous cholera toxin phage CTXΦ. Although CTXΦ phage in the classical biotype are usually integrated solitarily or with a truncated copy, those in El Tor biotypes are generally found in tandem and/or with related genetic elements. Due to this structural difference in the CTXΦ prophage array, the prophage in the classical biotype strains does not yield extrachromosomal CTXΦ DNA and does not produce virions, whereas the El Tor biotype strains can replicate the CTXΦ genome and secrete infectious CTXΦ phage particles. However, information on the CTXΦ prophage array structure of pathogenic V. cholerae is limited. Therefore, we investigated the complete genomic sequences of five clinical V. cholerae isolates obtained in Kolkata (India) during 2007 to 2011. The analysis revealed that recent isolates possessed an altered CTXΦ prophage array of the prototype El Tor strain. These strains were defective in replicating the CTXΦ genome. All recent isolates possessed identical rstA and intergenic sequence 1 (Ig-1) sequences and comparable rstA expression in the prototype El Tor strain, suggesting that the altered CTXΦ array was responsible for the defective replication of the prophage. Therefore, CTXΦ structures available in the database and literatures can be classified as replicative and nonreplicative. Furthermore, V. cholerae epidemic strains became capable of producing CTXΦ phage particles since the 1970s. However, V. cholerae epidemic strains again lost the capacity for CTXΦ production around the year 2010, suggesting that a significant change in the dissemination pattern of the current cholera pandemic occurred. IMPORTANCE Cholera is an acute diarrheal disease caused by pathogenic strains of V. cholerae generated by lysogenization of the filamentous cholera toxin phage CTXΦ. The analysis revealed that recent isolates possessed altered CTXΦ prophage array of prototype El Tor strain and were defective in replicating the CTXΦ genome. Classification of CTXΦ structures in isolated years suggested that V. cholerae epidemic strains became capable of producing CTXΦ phage particles since the 1970s. However, V. cholerae epidemic strains again lost the capacity for CTXΦ production around the year 2010, suggesting that a critical change had occurred in the dissemination pattern of the current cholera pandemic.
Collapse
|
4
|
Zheng L, Zhu LW, Jing J, Guan JY, Lu GJ, Xie LH, Ji X, Chu D, Sun Y, Chen P, Guo XJ. Pan-Genome Analysis of Vibrio cholerae and Vibrio metschnikovii Strains Isolated From Migratory Birds at Dali Nouer Lake in Chifeng, China. Front Vet Sci 2021; 8:638820. [PMID: 34136552 PMCID: PMC8202012 DOI: 10.3389/fvets.2021.638820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Migratory birds are recently recognized as Vibrio disease vectors, but may be widespread transporters of Vibrio strains. We isolated Vibrio cholerae (V. cholerae) and Vibrio metschnikovii (V. metschnikovii) strains from migratory bird epidemic samples from 2017 to 2018 and isolated V. metschnikovii from migratory bird feces in 2019 from bird samples taken from the Inner Mongolia autonomous region of China. To investigate the evolution of these two Vibrio species, we sequenced the genomes of 40 V. cholerae strains and 34 V. metschnikovii strains isolated from the bird samples and compared these genomes with reference strain genomes. The pan-genome of all V. cholerae and V. metschnikovii genomes was large, with strains exhibiting considerable individual differences. A total of 2,130 and 1,352 core genes were identified in the V. cholerae and V. metschnikovii genomes, respectively, while dispensable genes accounted for 16,180 and 9,178 of all genes for the two strains, respectively. All V. cholerae strains isolated from the migratory birds that encoded T6SS and hlyA were non-O1/O139 serotypes without the ability to produce CTX. These strains also lacked the ability to produce the TCP fimbriae nor the extracellular matrix protein RbmA and could not metabolize trimetlylamine oxide (TMAO). Thus, these characteristics render them unlikely to be pandemic-inducing strains. However, a V. metschnikovii isolate encoding the complete T6SS system was isolated for the first time. These data provide new molecular insights into the diversity of V. cholerae and V. metschnikovii isolates recovered from migratory birds.
Collapse
Affiliation(s)
- Lin Zheng
- School of Food and Engineering, Jilin Agricultural University, Changchun, China.,The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ling-Wei Zhu
- The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jie Jing
- The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jia-Yao Guan
- The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ge-Jin Lu
- The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Lin-Hong Xie
- Wild Animal Sources and Diseases Inspection Station, National Forestry and Grassl and Bureau, Beijing, China
| | - Xue Ji
- The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Dong Chu
- Wild Animal Sources and Diseases Inspection Station, National Forestry and Grassl and Bureau, Beijing, China
| | - Yang Sun
- The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ping Chen
- School of Food and Engineering, Jilin Agricultural University, Changchun, China
| | - Xue-Jun Guo
- The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| |
Collapse
|
5
|
Ryan MP, Slattery S, Pembroke JT. A Novel Arsenate-Resistant Determinant Associated with ICEpMERPH, a Member of the SXT/R391 Group of Mobile Genetic Elements. Genes (Basel) 2019; 10:genes10121048. [PMID: 31888308 PMCID: PMC6947025 DOI: 10.3390/genes10121048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
ICEpMERPH, the first integrative conjugative element (ICE) of the SXT/R391 family isolated in the United Kingdom and Europe, was analyzed to determine the nature of its adaptive functions, its genetic structure, and its homology to related elements normally found in pathogenic Vibrio or Proteus species. Whole genome sequencing of Escherichia coli (E. coli) isolate K802 (which contains the ICEpMERPH) was carried out using Illumina sequencing technology. ICEpMERPH has a size of 110 Kb and 112 putative open reading frames (ORFs). The “hotspot regions” of the element were found to contain putative restriction digestion systems, insertion sequences, and heavy metal resistance genes that encoded resistance to mercury, as previously reported, but also surprisingly to arsenate. A novel arsenate resistance system was identified in hotspot 4 of the element, unrelated to other SXT/R391 elements. This arsenate resistance system was potentially linked to two genes: orf69, encoding an organoarsenical efflux major facilitator superfamily (MFS) transporter-like protein related to ArsJ, and orf70, encoding nicotinamide adenine dinucleotide (NAD)-dependent glyceraldehyde-3-phosphate dehydrogenase. Phenotypic analysis using isogenic strains of Escherichia coli strain AB1157 with and without the ICEpMERPH revealed resistance to low levels of arsenate in the range of 1–5 mM. This novel, low-level resistance may have an important adaptive function in polluted environments, which often contain low levels of arsenate contamination. A bioinformatic analysis on the novel determinant and the phylogeny of ICEpMERPH was presented.
Collapse
|
6
|
Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, Qadri F, Thomson NR. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci Rep 2019; 9:5865. [PMID: 30971707 PMCID: PMC6458141 DOI: 10.1038/s41598-019-41883-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Toxigenic Vibrio cholerae of the O139 serogroup have been responsible for several large cholera epidemics in South Asia, and continue to be of clinical and historical significance today. This serogroup was initially feared to represent a new, emerging V. cholerae clone that would lead to an eighth cholera pandemic. However, these concerns were ultimately unfounded. The majority of clinically relevant V. cholerae O139 isolates are closely related to serogroup O1, biotype El Tor V. cholerae, and comprise a single sublineage of the seventh pandemic El Tor lineage. Although related, these V. cholerae serogroups differ in several fundamental ways, in terms of their O-antigen, capsulation phenotype, and the genomic islands found on their chromosomes. Here, we present four complete, high-quality genomes for V. cholerae O139, obtained using long-read sequencing. Three of these sequences are from toxigenic V. cholerae, and one is from a bacterium which, although classified serologically as V. cholerae O139, lacks the CTXφ bacteriophage and the ability to produce cholera toxin. We highlight fundamental genomic differences between these isolates, the V. cholerae O1 reference strain N16961, and the prototypical O139 strain MO10. These sequences are an important resource for the scientific community, and will improve greatly our ability to perform genomic analyses of non-O1 V. cholerae in the future. These genomes also offer new insights into the biology of a V. cholerae serogroup that, from a genomic perspective, is poorly understood.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
| | - Daryl Domman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
| | - Muhammad Ikhtear Uddin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Salma Sharmin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mokibul Hassan Afrad
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom.
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|