1
|
Acute Respiratory Infection in Human Dipeptidyl Peptidase 4-Transgenic Mice Infected with Middle East Respiratory Syndrome Coronavirus. J Virol 2019; 93:JVI.01818-18. [PMID: 30626685 PMCID: PMC6401458 DOI: 10.1128/jvi.01818-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments. Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest as a mild illness, acute respiratory distress, organ failure, or death. Several animal models have been established to study disease pathogenesis and to develop vaccines and therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these mice was almost equivalent to that in human tissues, including kidney and lung; however, hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led to infection of the lower respiratory tract and pathological evidence of acute multifocal interstitial pneumonia within 7 days, with only transient loss of body weight. However, the immunopathology in young and adult Tg mice was different. On day 5 or 7 postinoculation, lungs of adult Tg mice contained higher levels of proinflammatory cytokines and chemokines associated with migration of macrophages. These results suggest that the immunopathology of MERS-CoV infection in the Tg mouse is age dependent. The mouse model described here will increase our understanding of disease pathogenesis and host mediators that protect against MERS-CoV infection. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments.
Collapse
|
2
|
Dawson P, Malik MR, Parvez F, Morse SS. What Have We Learned About Middle East Respiratory Syndrome Coronavirus Emergence in Humans? A Systematic Literature Review. Vector Borne Zoonotic Dis 2019; 19:174-192. [PMID: 30676269 PMCID: PMC6396572 DOI: 10.1089/vbz.2017.2191] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in humans in 2012. A systematic literature review was conducted to synthesize current knowledge and identify critical knowledge gaps. MATERIALS AND METHODS We conducted a systematic review on MERS-CoV using PRISMA guidelines. We identified 407 relevant, peer-reviewed publications and selected 208 of these based on their contributions to four key areas: virology; clinical characteristics, outcomes, therapeutic and preventive options; epidemiology and transmission; and animal interface and the search for natural hosts of MERS-CoV. RESULTS Dipeptidyl peptidase 4 (DPP4/CD26) was identified as the human receptor for MERS-CoV, and a variety of molecular and serological assays developed. Dromedary camels remain the only documented zoonotic source of human infection, but MERS-like CoVs have been detected in bat species globally, as well as in dromedary camels throughout the Middle East and Africa. However, despite evidence of camel-to-human MERS-CoV transmission and cases apparently related to camel contact, the source of many primary cases remains unknown. There have been sustained health care-associated human outbreaks in Saudi Arabia and South Korea, the latter originating from one traveler returning from the Middle East. Transmission mechanisms are poorly understood; for health care, this may include environmental contamination. Various potential therapeutics have been identified, but not yet evaluated in human clinical trials. At least one candidate vaccine has progressed to Phase I trials. CONCLUSIONS There has been substantial MERS-CoV research since 2012, but significant knowledge gaps persist, especially in epidemiology and natural history of the infection. There have been few rigorous studies of baseline prevalence, transmission, and spectrum of disease. Terms such as "camel exposure" and the epidemiological relationships of cases should be clearly defined and standardized. We strongly recommend a shared and accessible registry or database. Coronaviruses will likely continue to emerge, arguing for a unified "One Health" approach.
Collapse
Affiliation(s)
- Patrick Dawson
- 1 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Mamunur Rahman Malik
- 2 Infectious Hazard Management, Department of Health Emergency, World Health Organization Eastern Mediterranean Regional Office (WHO/EMRO), Cairo, Egypt
| | - Faruque Parvez
- 3 Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Stephen S Morse
- 1 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
3
|
Retrospective, epidemiological cluster analysis of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic using open source data. Epidemiol Infect 2017; 145:3106-3114. [PMID: 29061208 DOI: 10.1017/s0950268817002345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a novel coronavirus discovered in 2012. Since then, 1806 cases, including 564 deaths, have been reported by the Kingdom of Saudi Arabia (KSA) and affected countries as of 1 June 2016. Previous literature attributed increases in MERS-CoV transmission to camel breeding season as camels are likely the reservoir for the virus. However, this literature review and subsequent analysis indicate a lack of seasonality. A retrospective, epidemiological cluster analysis was conducted to investigate increases in MERS-CoV transmission and reports of household and nosocomial clusters. Cases were verified and associations between cases were substantiated through an extensive literature review and the Armed Forces Health Surveillance Branch's Tiered Source Classification System. A total of 51 clusters were identified, primarily nosocomial (80·4%) and most occurred in KSA (45·1%). Clusters corresponded temporally with the majority of periods of greatest incidence, suggesting a strong correlation between nosocomial transmission and notable increases in cases.
Collapse
|
4
|
Houser KV, Broadbent AJ, Gretebeck L, Vogel L, Lamirande EW, Sutton T, Bock KW, Minai M, Orandle M, Moore IN, Subbarao K. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog 2017; 13:e1006565. [PMID: 28817732 PMCID: PMC5574614 DOI: 10.1371/journal.ppat.1006565] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/29/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV. New Zealand white rabbits display an increase in lung inflammation following reinfection with MERS-CoV that is associated with non-neutralizing antibodies and complement proteins. The development of neutralizing antibodies resulted in protection from infection. These findings may have implications for individuals that fail to develop a neutralizing antibody response, or for those whose response wanes over time, upon re-exposure to MERS-CoV.
Collapse
Affiliation(s)
- Katherine V. Houser
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Andrew J. Broadbent
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Lisa Gretebeck
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Leatrice Vogel
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Elaine W. Lamirande
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Troy Sutton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Kevin W. Bock
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Mahnaz Minai
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Marlene Orandle
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Ian N. Moore
- Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: ,
| |
Collapse
|