1
|
Moraes SN, Becker JT, Moghadasi SA, Shaban NM, Auerbach AA, Cheng AZ, Harris RS. Evidence linking APOBEC3B genesis and evolution of innate immune antagonism by gamma-herpesvirus ribonucleotide reductases. eLife 2022; 11:83893. [PMID: 36458685 DOI: 10.7554/elife.83893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses have evolved diverse mechanisms to antagonize host immunity such as direct inhibition and relocalization of cellular APOBEC3B (A3B) by the ribonucleotide reductase (RNR) of Epstein-Barr virus. Here, we investigate the mechanistic conservation and evolutionary origin of this innate immune counteraction strategy. First, we find that human gamma-herpesvirus RNRs engage A3B via largely distinct surfaces. Second, we show that RNR-mediated enzymatic inhibition and relocalization of A3B depend upon binding to different regions of the catalytic domain. Third, we show that the capability of viral RNRs to antagonize A3B is conserved among gamma-herpesviruses that infect humans and Old World monkeys that encode this enzyme but absent in homologous viruses that infect New World monkeys that naturally lack the A3B gene. Finally, we reconstruct the ancestral primate A3B protein and demonstrate that it is active and similarly engaged by the RNRs from viruses that infect humans and Old World monkeys but not by the RNRs from viruses that infect New World monkeys. These results combine to indicate that the birth of A3B at a critical branchpoint in primate evolution may have been a driving force in selecting for an ancestral gamma-herpesvirus with an expanded RNR functionality through counteraction of this antiviral enzyme.
Collapse
Affiliation(s)
- Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Nadine M Shaban
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Ashley A Auerbach
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States
| | - Adam Z Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States.,Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, United States
| |
Collapse
|
2
|
Grewer A, Bleyer M, Mätz-Rensing K, Hahn AS, Rüggeberg T, Babaryka G, Zimmermann A, Pöhlmann S, Kaul A. Kaposi Sarcoma in Mantled Guereza. Emerg Infect Dis 2019; 25:1552-1555. [PMID: 31310216 PMCID: PMC6649314 DOI: 10.3201/eid2508.181804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We identified a novel Kaposi’s sarcoma herpesvirus–related rhadinovirus (Colobine gammaherpesvirus 1) in a mantled guereza (Colobus guereza kikuyensis). The animal had multiple oral tumors characterized by proliferation of latent nuclear antigen 1–positive spindle cells and was not co-infected with immunosuppressive simian viruses, suggesting that it had Kaposi sarcoma caused by this novel rhadinovirus.
Collapse
|