1
|
Clilverd H, Martín-Valls GE, Li Y, Domingo-Carreño I, Martín M, Cortey M, Mateu E. A single recall vaccination lapse in sows triggers PRRSV resurgence and boosts viral genetic diversity. Porcine Health Manag 2025; 11:26. [PMID: 40340928 PMCID: PMC12063453 DOI: 10.1186/s40813-025-00433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/19/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) persists on certain farms despite vaccination and control efforts, with genetic diversity suspected as a contributing factor. This study examined the evolution and persistence dynamics of PRRSV-1 on a farrow-to-fattening farm with 1,700 sows vaccinated quarterly, focusing on a summer vaccination lapse. RESULTS Over eight months, three farrowing batches were monitored from birth to nine weeks of age using virological (RT-qPCR, whole-genome, and ORF5 sequencing) and serological (ELISA and neutralizing antibody) analyses. An incident related to elevated temperatures during the summer involving unproper vaccine handling occurred during the last blanket vaccination, before sampling the third batch. Viral circulation was primarily confined to the nurseries, with a notable surge of incidence and mortality in this last batch, linked to lower maternal antibody levels likely due to vaccination failure. Phylogenetic analyses showed the persistence of the same viral strain throughout the study, with increased genetic diversity in Batch 3 driven by selection and recombination. Ultimately, reestablishing the vaccination program led to a PRRSV-positive-stable with vaccination status. CONCLUSIONS Overall, a single vaccination lapse caused increased PRRSV-1 incidence and genetic diversity in weaners, linked to declining maternal antibody levels, underscoring the importance of strict vaccination adherence.
Collapse
Affiliation(s)
- H Clilverd
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Bellaterra, Spain
| | - G E Martín-Valls
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Bellaterra, Spain
| | - Y Li
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Bellaterra, Spain
| | - I Domingo-Carreño
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Bellaterra, Spain
| | - M Martín
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Bellaterra, Spain
| | - M Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Bellaterra, Spain
| | - E Mateu
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Bellaterra, Spain.
| |
Collapse
|
2
|
Zhao M, Zhang P, Zhang X, Luo S, Yuan Z, Huang Y, Wang G, Xiang H, Huang Y, Jin Y, Chen J, Wang X. Immune Protection Gap Between Porcine Reproductive and Respiratory Syndrome Subunit Vaccine (N Protein) and Live Vaccine. Vaccines (Basel) 2025; 13:441. [PMID: 40432053 PMCID: PMC12115480 DOI: 10.3390/vaccines13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Objectives: To evaluate the immunoprotective effect of a PRRSV N protein subunit vaccine on piglets using a live PRRSV vaccine as a control. Methods: The HEK-293T eukaryotic expression system was used to produce PRRSV N protein, and then PRRSV N protein was immunized with a commercial live PRRS vaccine. The immunoprotective effect of the PRRSV N protein subunit vaccine on piglets was evaluated by detecting the antibody level in the immunized piglets, and the clinical symptoms, pathological changes, and survival rate of the immunized piglets. Results: At 21 and 28 days after immunization, the serum N protein-specific antibody levels of piglets in the live PRRSV vaccine group were higher than those in the N protein group. After PRRSV infection, piglets in the N protein group and the DMEM group showed more severe clinical symptoms such as respiratory distress, loss of appetite, skin redness, and diarrhea than those in the live vaccine group. The rectal temperature of piglets in the live vaccine group remained below 40 °C, and only one piglet died on day 11 post-infection; in the PRRSV N protein group, the rectal temperature of some piglets exceeded 41 °C, and four piglets died on days 9, 11, 14, and 20 post-infection. In addition, pathologic damage to organs such as lungs, liver, lymph nodes, spleen, and kidneys was more severe in the N protein group than in the live vaccine group. Furthermore, histopathology and immunohistochemistry showed more pronounced organ damage (lungs, liver, lymph nodes, spleen, and kidneys) and higher viral loads in the N protein group compared to the live vaccine group. Conclusions: The PRRS subunit vaccine (N protein) expressed in the HEK-293T eukaryotic system did not protect piglets from heterologous PRRSV infection compared with the PRRS live vaccine.
Collapse
Grants
- (2023A1111110001 and 2021B1212050021), (2024CXTD15),(2023QZ-NK13, ZQQZ-55), (2023B04J0137 and 2023E04J1256), (2021YFD1801400, 2021YFD1801404), (2023B1212060040). This work was supported by the Planning Funds for Science and Technology of Guangdong Province, Modern Agricultural Research System Innovation Team Project of Guangdong Province , State Key Laboratory of Swine and Poultry Breeding Industry , the Scientifi
- (2023A1111110001 and 2021B1212050021), (2024CXTD15),(2023QZ-NK13, ZQQZ-55), (2023B04J0137 and 2023E04J1256), (2021YFD1801400, 2021YFD1801404), (2023B1212060040). Planning Funds for Science and Technology of Guangdong Province . Modern Agricultural Research System Innovation Team Project of Guangdong Province. State Key Laboratory of Swine and Poultry Breeding Industry . the Scientific and Technological Plan Proje
Collapse
Affiliation(s)
- Mengpo Zhao
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China;
| | - Pian Zhang
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
| | - Xiaoxiao Zhang
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
| | - Shengjun Luo
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China;
| | - Yanju Huang
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China;
| | - Gang Wang
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
| | - Hua Xiang
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
| | - Yuan Huang
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
| | - Yuzhu Jin
- Jiaozuo City Product Quality Inspection and Testing Center, Jiaozuo 454000, China;
| | - Jing Chen
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
| | - Xiaohu Wang
- Guangdong Province Key Laboratory of Livestock Disease Prevention, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China; (M.Z.); (P.Z.); (X.Z.); (S.L.); (Y.H.); (G.W.); (H.X.); (Y.H.)
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China;
| |
Collapse
|
3
|
Yim-Im W, Anderson TK, Böhmer J, Baliellas J, Stadejek T, Gauger PC, Krueger KM, Vermeulen CJ, Buter R, Kazlouski A, An T, Zhang J. Refining genetic classification of global porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) and investigating their geographic and temporal distributions. Vet Microbiol 2025; 302:110413. [PMID: 39904077 DOI: 10.1016/j.vetmic.2025.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) primarily circulates in Europe but is also detected in North America and Asia. Based on ORF5 sequences, previous studies classified PRRSV-1 into four subtypes. Subtype 1 was further classified into 12 clades (A-L) or into three lineages with lineage 1 including clades 1A-1G and lineage 3 including clades 3A-3G, but the systems are inconsistent and have not been adopted. In this study, we proposed a statistically supported PRRSV-1 genetic classification system based on 10,446 global PRRSV-1 ORF5 sequences spanning 1991-2023. We replaced the colloquial "subtype" designation with "lineage" to reflect evolutionary history and, subsequently, PRRSV-1 was classified into four lineages (L1-L4) with L1 including 18 sublineages (L1.1 to L1.18). The proposed classification system is flexible and may be amended if additional lineages, sublineages, or more granular classifications are needed to reflect contemporary PRRSV-1 detections and evolution. Geographic distributions of PRRSV-1 at lineage and sublineage levels were distinct, with L1 globally distributed and L2, L3 and L4 more restricted. Temporal dynamic changes in some countries were quantified. Classification and ORF5 nucleotide identity of six commercial PRRSV-1 vaccines to each lineage and sublineage and detection frequency of vaccine-like viruses were determined. The phylogenies based on whole-genome and ORF5 sequences demonstrated slightly different tree topologies. Recombination of PRRSV-1 was observed at within-sublineage and between-sublineage levels. A set of ORF5 reference sequences representing the refined classification is available for future diagnostic and epidemiological applications. This study provides a benchmark delineating the current genetic diversity of PRRSV-1 and introduces a refined classification system to support the global standardization and application of ORF5-based genetic classification for PRRSV-1.
Collapse
Affiliation(s)
- Wannarat Yim-Im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Jan Böhmer
- IVD Gesellschaft für Innovative Veterinaerdiagnostik mbH, Seelzer-Letter, Germany
| | | | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Phillip C Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Karen M Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | - Rianne Buter
- Royal GD (GD Animal Health), P.O. Box 9, Deventer 7400 AA, the Netherlands
| | | | - Tongqing An
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.
| |
Collapse
|
4
|
Mebumroong S, Lin H, Jermsutjarit P, Tantituvanont A, Nilubol D. Field Investigation Evaluating the Efficacy of Porcine Reproductive and Respiratory Syndrome Virus Type 2 (PRRSV-2) Modified Live Vaccines in Nursery Pigs Exposed to Multiple Heterologous PRRSV Strains. Animals (Basel) 2025; 15:428. [PMID: 39943198 PMCID: PMC11815747 DOI: 10.3390/ani15030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study was conducted to evaluate the protective efficacy of modified live vaccines (MLVs) against porcine reproductive and respiratory syndrome (PRRS) in nursery pigs in a worst case scenario where MLV does not match the genetic profile of the field isolate, different MLVs are used for sows and piglets, and piglets are naturally exposed to genetically distinct heterologous PRRS virus (PRRSV) isolates. We divided 76,075, 2-week-old piglets from a seropositive sow herd vaccinated with US1-MLV into four groups. US1-MLV, US2-MLV, and US3-MLV groups were vaccinated with PRRSV-2 MLV including Ingelvac® PRRS MLV (Boehringer Ingelheim, Ingelheim am Rhein, Germany), HP-PRRSV-2 based MLV (Harbin Veterinary Research Institute, CAAS, Harbin, China), and Prime Pac® PRRS (MSD Animal Health, Rahway, NJ, USA), respectively. The NonVac group was left unvaccinated. At 0, 14, 28, and 56 days post-vaccination (DPV), sera were assayed for the presence of PRRSV-specific antibodies using ELISA and serum neutralization (SN), and PRRSV RNA using PCR. Average daily gain (ADG) and survival rates were compared between treatment groups. The results demonstrated vaccinated groups significantly improved in ADG compared to the non-vaccinated control group. Only US1-MLV and US3-MLV were able to significantly reduce mortality associated with field PRRSV infection in nursery pigs. Pigs vaccinated with US3-MLV displayed significantly lower mortality and higher ADG compared to all other groups. Field isolates were isolated and genetically compared to all three MLV vaccines at the start of the trial. The MLV with closest genetic similarity to the field isolate was US2-MLV by ORF5 gene comparison. This provided the lowest protection judging by ADG improvement and mortality reduction, as compared to US1-MLV and US3-MLV. Separately, strains of Thai PRRSV-2 isolates collected in 2017, 2019, and 2020 in the study area were investigated for evolutionary changes. Over time, we observed a shift in PRRSV-2 isolates from lineage 8.7 to lineage 1. The field isolates found shared 82.59-84.42%, 83.75-85.74%, and 84.25-85.90% nucleotide identity with the US1-MLV, US3-MLV and US2-MLV based vaccine, respectively. Our findings suggest genetic similarity between field viruses and vaccine strains should not be used as a predictor of field performance. We found that zootechnical performance of piglets was best in US3-MLV, despite sows being treated with a different vaccine The results also support that different MLVs can be used at different stages of production. Finally, we concluded that the shift from lineage 8.7 to lineage 1 was due to shifts in the worldwide prevalence of PRRSV isolates during that period of time and not due to vaccine recombination between isolates. Overall, MLV vaccine selection should be based on production performance and safety profile.
Collapse
Affiliation(s)
- Sunit Mebumroong
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Perahu Road, Singapore 718847, Singapore;
| | - Patumporn Jermsutjarit
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.M.); (P.J.)
| |
Collapse
|
5
|
Jeong H, Eo Y, Lee D, Jang G, Min KC, Choi AK, Won H, Cho J, Kang SC, Lee C. Comparative Genomic and Biological Investigation of NADC30- and NADC34-Like PRRSV Strains Isolated in South Korea. Transbound Emerg Dis 2025; 2025:9015349. [PMID: 40302751 PMCID: PMC12016814 DOI: 10.1155/tbed/9015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally endemic, costly swine arterivirus with wide genetic and antigenic variations, leading to the frequent appearance of novel virulent strains that hampers PRRSV control. Recently, NADC30-like (lineage 1C, L1C) and NADC34-like (lineage 1A, L1A) PRRSV strains were reported to be prevalent in mainland South Korea and became the main epidemic strains persistently attributed to PRRSV outbreaks nationwide, raising great concern in the domestic pork industry. Although the genotypic and pathotypic variability of NADC30- and NADC34-like viruses has been explored in the United States and China, their genomic and biological characteristics have been scarcely studied in South Korea. Here, NADC34-like GNU-2353 and NADC30-like GNU-2377 strains were independently identified from vaccinated swine herds experiencing high piglet mortality. Whole-genome sequencing and phylogenetic analysis revealed that GNU-2353 and GNU-2377 clustered into sublineages L1A (NADC34-like) and L1C (NADC30-like), respectively, sharing high genomic homology with their corresponding lineage-representative strains and harboring the same molecular signatures of continuous 100 and discontinuous 131 amino acid deletions in the nsp2-coding region, respectively. Recombination detection indicated that GNU-2353 and GNU-2377 were recombinants and evolved through natural interlineage recombination between NADC34-like (L1A, major parent) or NADC30-like (L1C, major parent) and RespPRRS modified live virus (MLV)-like (lineage 5, minor parent) strains, respectively. Both viruses displayed homogenous growth kinetics but replicated faster than the prototype VR-2332 in a porcine alveolar macrophage cell line (PAM-KNU). The transcriptional profiles of immune response genes in infected PAM-KNU cells varied between the isolates and VR-2332; particularly, interleukin-10 expression was dramatically upregulated in cells infected with GNU-2353 and GNU-2377. Piglets with GNU-2353 and GNU-2377 infection had high fever; weight loss; increased viremia and nasal shedding; viral distribution in various tissues; thymic atrophy; and apparent macroscopic and microscopic lung lesions, including interstitial pneumonia and viral colonization, compared with control piglets, suggesting that both isolates were virulent to pigs. Remarkably, GNU-2353 caused higher fever, mortality rate (40%) with cyanosis, viremia, and viral shedding within 2 weeks and significantly higher viral loads in several organs than GNU-2377 infection. Thus, NADC34-like GNU-2353 was more pathogenic than NADC30-like GNU-2377. Our findings provide insights into the current epizootic circumstance of NADC30- and NADC34-like PRRSV in South Korea and can aid in tailoring improved control strategies.
Collapse
Affiliation(s)
- Haemin Jeong
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youngjoon Eo
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nawoo Veterinary Group, Yangsan 50573, Republic of Korea
| | - Duri Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyeng-Cheol Min
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - An Kook Choi
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Hokeun Won
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Jungjoon Cho
- SoJung Animal Hospital, Yesan 32416, Republic of Korea
| | | | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Tang J, Hung YF, Yoo D. Genomic RNA recombination of porcine reproductive and respiratory syndrome virus and other arteriviruses. Virology 2025; 601:110284. [PMID: 39531889 DOI: 10.1016/j.virol.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Arteriviruses in the Nidovirales order are single-stranded positive-sense RNA viruses infecting mammals. Arteriviruses are recognized for causing various clinical diseases, ranging from asymptomatic infections to severe conditions like respiratory syndromes and viral hemorrhagic fever. Notably, arteriviruses exhibit a high frequency of RNA recombination, and their robust recombination rates are a crucial factor in recurrent outbreaks. The recombination events also shape the countermeasures employed by arteriviruses during virus-host co-evolution and confer specific evolutionary benefits to viruses, implicating a role as a selective advantage in viral adaptation. This review delves into the molecular basis of RNA recombination in arteriviruses, the bioinformatics tools and methodologies used to visualize evolutionary relationships, and the identification of recombination breakpoints. Significant recombination events are highlighted for PRRSV and other arteriviruses, illustrating the profound implications of recombination for viral evolution and pathogenesis. Recombination between field viruses and between field viruses and vaccine strains can generate new variants with altered antigenic profiles and virulence, leading to diagnostic failure, severe clinical outcomes, and reduced vaccine efficacy. Despite the advances, further research is needed to understand recombination rates and hotspots, as well as to develop potential antiviral strategies and diagnostic approaches for arteriviruses.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
7
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Huang X, Liu G, Chang T, Yang Y, Wang T, Xia D, Qi X, Zhu X, Wei Z, Tian X, Wang H, Tian Z, Cai X, An T. Recombinant characterization and pathogenicity of a novel L1C RFLP-1-4-4 variant of porcine reproductive and respiratory syndrome virus in China. Vet Res 2024; 55:142. [PMID: 39506759 PMCID: PMC11539553 DOI: 10.1186/s13567-024-01401-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide and is caused by the PRRS virus (PRRSV), which has complex genetic variation due to frequent mutations, indels, and recombination. The emergence of PRRSV L1C.5 in 2020 in the United States has raised worldwide concerns about PRRSV with the RFLP 1-4-4 pattern and lineage 1C. However, studies on the pathogenic characteristics, epidemiological distribution, and effectiveness of vaccines against PRRSV with L1C and RFLP1-4-4 pattern in China are still insufficient. In this study, a novel recombinant variant of PRRSV with RFLP 1-4-4 and lineage 1C features, different from L1C.5 in the United States, was isolated in China in 2021. In pathogenicity experiments in specific pathogen-free piglets or farm piglets, 60-100% of artificially infected experimental piglets died with high fever and respiratory symptoms. Inflammatory cytokine and chemokine levels were upregulated in infected piglets. A commercially modified live vaccine against highly pathogenic PRRSV did not provide effective protection when the vaccinated piglets were challenged with the novel L1C-1-4-4 variant. Therefore, this strain merits special attention when devising control and vaccine strategies. These findings suggest that extensive joint surveillance is urgently needed and that vaccine strategies should be updated to prevent the disease from spreading further.
Collapse
Affiliation(s)
- Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Dasong Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xinyu Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xulong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Ziyi Wei
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China.
| |
Collapse
|
9
|
Cui XY, Xia DS, Luo LZ, An TQ. Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions. Viruses 2024; 16:929. [PMID: 38932221 PMCID: PMC11209122 DOI: 10.3390/v16060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.
Collapse
Affiliation(s)
- Xing-Yang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Da-Song Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ling-Zhi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
10
|
Ren J, Tan S, Chen X, Wang X, Lin Y, Jin Y, Niu S, Wang Y, Gao X, Liang L, Li J, Zhao Y, Tian WX. Characterization of a novel recombinant NADC30‑like porcine reproductive and respiratory syndrome virus in Shanxi Province, China. Vet Res Commun 2024; 48:1879-1889. [PMID: 38349546 DOI: 10.1007/s11259-024-10319-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/27/2024] [Indexed: 06/04/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens affecting the swine industry. In this report, a novel PRRSV strain SXht2012 was isolated from Shanxi province in China. To identify genetic characteristics of SXht2012, we conducted phylogenetic and homology analyses after sequencing its complete genome. The results revealed that SXht2012 belonged to NADC30-like strain and shared 91.3% nucleotide (nt) identity with strain NADC30. Notably, sequence alignment showed that a distinctive feature in the NSP2 region, where a 131-amino acid (aa) deletion was found in the hypervariable region (HVR). Additionally, variations were also detected in the GP5 protein, specifically in the decoy peptide, T cell peptide, and a potential glycosylation site (aa 32). Furthermore, we also found that SXht2012 was likely a recombination virus originating from NADC30-like and JXA1-like strains, and three recombination breakpoints were identified in the genome at nt positions 1516, 5280 and 6851, which correspond to the NSP2, NSP3, and NSP7 regions. Overall, these findings have significant implications for understanding the genetic variation and evolutionary dynamics of PRRSV strains.
Collapse
Affiliation(s)
- Jianle Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Shanshan Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xinxin Chen
- Beijing Solarbio Science & Technology Co., Ltd, Beijing, China
| | - Xizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yiting Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yi Jin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Sheng Niu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Xiaolong Gao
- Beijing Animal Disease Prevention and Control Center, Beijing, China
| | - Libin Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Junping Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Yujun Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China
| | - Wen-Xia Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China.
| |
Collapse
|
11
|
Risser J, Ackerman M, Lape D, Jordon J, Puls C. Transition from one commercial porcine reproductive and respiratory syndrome modified-live virus vaccine to another in a breeding herd and impact on productivity. JOURNAL OF SWINE HEALTH AND PRODUCTION 2024; 32:98-104. [DOI: 10.54846/jshap/1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) continues to represent a significant cost to the swine industry and efforts are focused on prevention and mitigation of losses across production phases. Herein describes a PRRS modified-live virus (MLV) vaccinated breeding herd that changed commercial MLV vaccines to improve post-weaning performance. Two whole-herd vaccinations with a new PRRS MLV vaccine, administered 4 weeks apart, occurred without breeding herd production disruptions and with limited changes in diagnostic results. Replacement gilts tested PRRS virus negative 10 weeks post vaccination with the new MLV vaccine. Diagnostics were intermittently positive in the breeding herd and early nursery.
Collapse
|
12
|
Wu Z, Chang T, Wang D, Zhang H, Liu H, Huang X, Tian Z, Tian X, Liu D, An T, Yan Y. Genomic surveillance and evolutionary dynamics of type 2 porcine reproductive and respiratory syndrome virus in China spanning the African swine fever outbreak. Virus Evol 2024; 10:veae016. [PMID: 38404965 PMCID: PMC10890815 DOI: 10.1093/ve/veae016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a serious threat to the pig industry in China. Our previous study demonstrated that PRRSV persists with local circulations and overseas imports in China and has formed a relatively stable epidemic pattern. However, the sudden African swine fever (ASF) outbreak in 2018 caused serious damage to China's pig industry structure, which resulted in about 40 per cent of pigs being slaughtered. The pig yields recovered by the end of 2019. Thus, whether the ASF outbreak reframed PRRSV evolution with changes in pig populations and further posed new threats to the pig industry becomes a matter of concern. For this purpose, we conducted genomic surveillance and recombination, NSP2 polymorphism, population dynamics, and geographical spread analysis of PRRSV-2, which is dominant in China. The results showed that the prevalence of ASF had no significant effects on genetic diversities like lineage composition, recombination patterns, and NSP2 insertion and deletion patterns but was likely to lead to changes in PRRSV-2 recombination frequency. As for circulation of the two major sub-lineages of Lineage 1, there was no apparent transmission of NADC30-like among provinces, while NADC34-like had obvious signs of inter-provincial transmission and foreign importation during the ASF epidemic. In addition, two suspected vaccine recombinant epidemic strains suggest a slight safety issue of vaccine use. Herein, the interference of ASF to the PRRSV-2 evolutionary pattern was evaluated and vaccine safety was analyzed, in order to monitor the potential threat of PRRSV-2 to China's pig industry in the post-epidemic era of ASF.
Collapse
Affiliation(s)
- Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150069, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuchang District, Wuhan 430071, China
| |
Collapse
|
13
|
Anbazhagan S, Himani KM, Karthikeyan R, Prakasan L, Dinesh M, Nair SS, Lalsiamthara J, Abhishek, Ramachandra SG, Chaturvedi VK, Chaudhuri P, Thomas P. Comparative genomics of Brucella abortus and Brucella melitensis unravels the gene sharing, virulence factors and SNP diversity among the standard, vaccine and field strains. Int Microbiol 2024; 27:101-111. [PMID: 37202587 DOI: 10.1007/s10123-023-00374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Brucella abortus and Brucella melitensis are the primary etiological agents of brucellosis in large and small ruminants, respectively. There are limited comparative genomic studies involving Brucella strains that explore the relatedness among both species. In this study, we involved strains (n=44) representing standard, vaccine and Indian field origin for pangenome, single nucleotide polymorphism (SNP) and phylogenetic analysis. Both species shared a common gene pool representing 2884 genes out of a total 3244 genes. SNP-based phylogenetic analysis indicated higher SNP diversity among B. melitensis (3824) strains in comparison to B. abortus (540) strains, and a clear demarcation was identified between standard/vaccine and field strains. The analysis for virulence genes revealed that virB3, virB7, ricA, virB5, ipx5, wbkC, wbkB, and acpXL genes were highly conserved in most of the Brucella strains. Interestingly, virB10 gene was found to have high variability among the B. abortus strains. The cgMLST analysis revealed distinct sequence types for the standard/vaccine and field strains. B. abortus strains from north-eastern India fall within similar sequence type differing from other strains. In conclusion, the analysis revealed a highly shared core genome among two Brucella species. SNP analysis revealed B. melitensis strains exhibit high diversity as compared to B. abortus strains. Strains with absence or high polymorphism of virulence genes can be exploited for the development of novel vaccine candidates effective against both B. abortus and B. melitensis.
Collapse
Affiliation(s)
- S Anbazhagan
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| | - K M Himani
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - R Karthikeyan
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Lakshmi Prakasan
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - M Dinesh
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Sonu S Nair
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Jonathan Lalsiamthara
- Department of Molecular Microbiology & Immunology, SOM, OHSU, Portland, OR, US, 97239, USA
| | - Abhishek
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S G Ramachandra
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| | - V K Chaturvedi
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
14
|
Riccio S, Childs K, Jackson B, Graham SP, Seago J. The Identification of Host Proteins That Interact with Non-Structural Proteins-1α and -1β of Porcine Reproductive and Respiratory Syndrome Virus-1. Viruses 2023; 15:2445. [PMID: 38140685 PMCID: PMC10747794 DOI: 10.3390/v15122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1β modulate host cell responses; however, the underlying molecular mechanisms remain to be fully elucidated. Therefore, we aimed to identify novel PRRSV-1 NSP1-host protein interactions to improve our knowledge of NSP1-mediated immunomodulation. NSP1α and NSP1β from a representative western European PRRSV-1 subtype 1 field strain (215-06) were used to screen a cDNA library generated from porcine alveolar macrophages (PAMs), the primary target cell of PRRSV, using the yeast-2-hybrid system. This identified 60 putative binding partners for NSP1α and 115 putative binding partners for NSP1β. Of those taken forward for further investigation, 3 interactions with NSP1α and 27 with NSP1β were confirmed. These proteins are involved in the immune response, ubiquitination, nuclear transport, or protein expression. Increasing the stringency of the system revealed NSP1α interacts more strongly with PIAS1 than PIAS2, whereas NSP1β interacts more weakly with TAB3 and CPSF4. Our study has increased our knowledge of the PRRSV-1 NSP1α and NSP1β interactomes, further investigation of which could provide detailed insight into PRRSV immunomodulation and aid vaccine development.
Collapse
Affiliation(s)
- Sofia Riccio
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Kay Childs
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Julian Seago
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| |
Collapse
|
15
|
Yim-im W, Anderson TK, Paploski IAD, VanderWaal K, Gauger P, Krueger K, Shi M, Main R, Zhang J. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol Spectr 2023; 11:e0291623. [PMID: 37933982 PMCID: PMC10848785 DOI: 10.1128/spectrum.02916-23] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE In this study, comprehensive analysis of 82,237 global porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) open reading frame 5 sequences spanning from 1989 to 2021 refined PRRSV-2 genetic classification system, which defines 11 lineages and 21 sublineages and provides flexibility for growth if additional lineages, sublineages, or more granular classifications are needed in the future. Geographic distribution and temporal changes of PRRSV-2 were investigated in detail. This is a thorough study describing the molecular epidemiology of global PRRSV-2. In addition, the reference sequences based on the refined genetic classification system are made available to the public for future epidemiological and diagnostic applications worldwide. The data from this study will facilitate global standardization and application of PRRSV-2 genetic classification.
Collapse
Affiliation(s)
- Wannarat Yim-im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Igor A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Karen Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
16
|
Rawal G, Krueger KM, Yim-im W, Li G, Gauger PC, Almeida MN, Aljets EK, Zhang J. Development, Evaluation, and Clinical Application of PRRSV-2 Vaccine-like Real-Time RT-PCR Assays. Viruses 2023; 15:2240. [PMID: 38005917 PMCID: PMC10675446 DOI: 10.3390/v15112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, we developed and validated (1) singleplex real-time RT-PCR assays for specific detection of five PRRSV-2 MLV vaccine viruses (Ingelvac MLV, Ingelvac ATP, Fostera, Prime Pac, and Prevacent) and (2) a four-plex real-time RT-PCR assay (IngelvacMLV/Fostera/Prevacent/XIPC) including the internal positive control XIPC for detecting and distinguishing the three most commonly used vaccines in the USA (Prevacent, Ingelvac MLV, and Fostera). The singleplex and 4-plex vaccine-like PCRs and the reference PCR (VetMAXTM PRRSV NA&EU, Thermo Fisher Scientific, Waltham, MA, USA) did not cross-react with non-PRRSV swine viral and bacterial pathogens. The limits of detection of vaccine-like PCRs ranged from 25 to 50 genomic copies/reactions. The vaccine-like PCRs all had excellent intra-assay and inter-assay repeatability. Based on the testing of 531 clinical samples and in comparison to the reference PCR, the diagnostic sensitivity, specificity, and agreement were in the respective range of 94.67-100%, 100%, and 97.78-100% for singleplex PCRs and 94.94-100%, 100%, and 97.78-100% for the 4-plex PCR, with a CT cutoff of 37. In addition, 45 PRRSV-2 isolates representing different genetic lineages/sublineages were tested with the vaccine-like PCRs and the results were verified with sequencing. In summary, the vaccine-like PCRs specifically detect the respective vaccine-like viruses with comparable performances to the reference PCR, and the 4-plex PCR allows to simultaneously detect and differentiate the three most commonly used vaccine viruses in the same sample. PRRSV-2 vaccine-like PCRs provide an additional tool for detecting and characterizing PRRSV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (K.M.K.); (W.Y.-i.); (G.L.); (P.C.G.); (M.N.A.); (E.K.A.)
| |
Collapse
|
17
|
Luo Q, Zheng Y, He Y, Li G, Zhang H, Sha H, Zhang Z, Huang L, Zhao M. Genetic variation and recombination analysis of the GP5 ( GP5a) gene of PRRSV-2 strains in China from 1996 to 2022. Front Microbiol 2023; 14:1238766. [PMID: 37675419 PMCID: PMC10477998 DOI: 10.3389/fmicb.2023.1238766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been prevalent in China for more than 25 years and remains one of the most significant pathogens threatening the pig industry. The high rate of mutation and frequent recombination of PRRSV have exacerbated its prevalence, particularly with the emergence of highly pathogenic PRRSV (HP-PRRSV) has significantly increased the pathogenicity of PRRSV, posing a serious threat to the development of Chinese pig farming. To monitor the genetic variation of PRRSV-2 in China, the GP5 sequences of 517 PRRSV-2 strains from 1996 to 2022 were analyzed and phylogenetic trees were constructed. Furthermore, a total of 60 PRRSV strains, originating from various lineages, were carefully chosen for nucleotide and amino acid homologies analysis. The results showed that the nucleotide homologies of the PRRSV GP5 gene ranged from 81.4 to 100.0%, and the amino acid homologies ranged from 78.1 to 100.0%. Similarly, the PRRSV GP5a gene showed 78.0 ~ 100.0% nucleotide homologies and 70.2 ~ 100.0% amino acid homologies. Amino acid sequence comparisons of GP5 and GP5a showed that some mutations, such as substitutions, deletions, and insertions, were found in several amino acid sites in GP5, these mutations were primarily found in the signal peptide region, two highly variable regions (HVRs), and near two T-cell antigenic sites, while the mutation sites of GP5a were mainly concentrated in the transmembrane and intramembrane regions. Phylogenetic analysis showed that the prevalent PRRSV-2 strains in China were divided into lineages 1, 3, 5, and 8. Among these, strains from lineage 8 and lineage 1 are currently the main prevalent strains, lineage 5 and lineage 8 have a closer genetic distance. Recombination analysis revealed that one recombination event occurred in 517 PRRSV-2 strains, this event involved recombination between lineage 8 and lineage 1. In conclusion, this analysis enhances our understanding of the prevalence and genetic variation of PRRSV-2 in China. These findings provide significant insights for the development of effective prevention and control strategies for PRRS and serve as a foundation for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
18
|
Angulo J, Yang M, Rovira A, Davies PR, Torremorell M. Infection dynamics and incidence of wild-type porcine reproductive and respiratory syndrome virus in growing pig herds in the U.S. Midwest. Prev Vet Med 2023; 217:105976. [PMID: 37467679 DOI: 10.1016/j.prevetmed.2023.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infections greatly impact the health and productivity of growing pigs. The introduction and persistence of wild-type PRRSV (WT-PRRSV) strains in growing pig populations is poorly understood. In an observational prospective cohort study, we monitored and surveyed 63 wean-to-finish (WTF) herds across 10 companies located in medium to high pig dense areas in the U.S. Midwest. All herds received weaned pigs from PRRSV-negative or positive-stable breeding herds. Herds were monitored monthly using oral fluids collected following a fixed spatial sampling regime and samples were tested by PRRSV ELISA, RT-PCR and ORF5 sequencing. In most (90%) of the herds, pigs were vaccinated with PRRSV modified-live vaccines either at processing, weaning or shortly after weaning. Wild type PRRSV (WT-PRRSV) infections were defined by the criterion of having more than 2% nucleotide differences in the ORF-5 region compared with reference vaccine strain sequences. Wild type PRRSV was detected in 42% of the herds with infections being more prevalent in the mid to late growing period, with a mean of 20 weeks post placement. Nineteen distinct WT-PRRSV were identified in seven out of 10 production companies with an average of 3 distinct WT-PRRSV strains per company. Vaccinated WTF herds with and without WT-PRRSV detection were compared to each other showing different PCR and ELISA infection patterns. Close-out mortality in vaccinated herds with WT-PRRSV was numerically higher (6.5%) than mortality in those sites where WT-PRRSV was not detected (5.0%) (p = 0.07). Mortality was also higher (10.5%) when WT-PRRSV was detected earlier at eight weeks post-placement compared to late finishing at 20 and 25 weeks post-placement, 2.9% and 4.5% respectively (p = 0.017). Overall, this study sheds light on WT-PRRSV infection dynamics in vaccinated populations of growing pigs, reinforces the importance of biosecurity practices in this phase of production and calls for better understanding of risk factors associated with PRRSV introductions in growing pig sites.
Collapse
Affiliation(s)
- Jose Angulo
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; Zoetis Inc, Parsippany, NJ 07054, USA
| | - My Yang
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Albert Rovira
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Peter R Davies
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
19
|
Zhou X, Bian S, Kan E, Zhou L, Zhang X, Xiao M, Lu C, Hua J, Wu Y, Zhang C, Zhou Y, Dong W, Du J, Wang X, Song H. A New Porcine Reproductive and Respiratory Syndrome Virus with N-Linked Glycosylation Site Deletion in GP5 44th Amino Acid from JXA1, NADC30-Like, and JM Triparental Recombination. Transbound Emerg Dis 2023; 2023:4001055. [PMID: 40303699 PMCID: PMC12016986 DOI: 10.1155/2023/4001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 01/05/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen causing substantial financial losses in the global swine industry. The prevention of PRRSV is hampered due to frequent gene recombination among different strains of PRRSV. In this study, a new PRRSV strain, PRRSV-HQ-2020, was identified from nursery piglets in Yunnan Province, China, in 2020. The complete genome analysis revealed that PRRSV-HQ-2020 is highly similar to JXA1-like (lineage 8.7 PRRSV, isolated from China in 2008) in the 5'UTR, nsp1-9, and nsp11 coding regions. Additionally, it has a resemblance to JM (lineage 3 PRRSV, isolated from Taiwan, China, in 2010) in the nsp12-M coding region and NADC30 (lineage 1.8 PRRSV, isolated from North American in 2008) in the nsp10, N, and 3'UTR, suggesting a natural recombination event. Furthermore, recombination analyses showed three interlineage recombination events among lineages 8.7, 1.8, and 3. Notably, the GP5 protein of PRRSV-HQ-2020 exhibited a crucial mutation at position 44, leading to the deletion of a key glycosylation site. These findings provide direct evidence for the natural occurrence of recombination events among three lineages of PRRSV-2 in Chinese swine herds, leading to the emergence of unique genetic properties of PRRSV variants, and providing a theoretical basis for developing better PRRSV prevention strategies.
Collapse
Affiliation(s)
- Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Sushu Bian
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Enxi Kan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lujia Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaohui Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Min Xiao
- Jiangxi Zhengbang Academy of Agricultural Sciences, Nanchang 330029, China
| | - Chang Lu
- Jiangxi Zhengbang Academy of Agricultural Sciences, Nanchang 330029, China
| | - Ji Hua
- Jiangxi Zhengbang Academy of Agricultural Sciences, Nanchang 330029, China
| | - Yuan Wu
- Jinhua Polytechnic, Jinhua 321017, China
| | - Cheng Zhang
- Hangzhou Zhengxing Animal Husbandry Co. Ltd., Hangzhou 311300, China
| | - Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
20
|
Lee MA, You SH, Jayaramaiah U, Shin EG, Song SM, Ju L, Kang SJ, Cho SH, Hyun BH, Lee HS. Evaluation and Determination of a Suitable Passage Number of Codon Pair Deoptimized PRRSV-1 Vaccine Candidate in Pigs. Viruses 2023; 15:v15051071. [PMID: 37243157 DOI: 10.3390/v15051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is major economic problem given its effects on swine health and productivity. Therefore, we evaluated the genetic stability of a codon pair de-optimized (CPD) PRRSV, E38-ORF7 CPD, as well as the master seed passage threshold that elicited an effective immune response in pigs against heterologous virus challenge. The genetic stability and immune response of every 10th passage (out of 40) of E38-ORF7 CPD was analyzed through whole genome sequencing and inoculation in 3-week-old pigs. E38-ORF7 CPD passages were limited to 20 based on the full-length mutation analysis and animal test results. After 20 passages, the virus could not induce antibodies to provide effective immunity and mutations accumulated in the gene, which differed from the CPD gene, presenting a reason for low infectivity. Conclusively, the optimal passage number of E38-ORF7 CPD is 20. As a vaccine, this may help overcome the highly diverse PRRSV infection with substantially enhanced genetic stability.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Sun-Hee Cho
- Department of Animal Veterinary Development, BioPOA, Hwaseong-si 18469, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
21
|
Trevisan G, Magstadt D, Woods A, Sparks J, Zeller M, Li G, Krueger KM, Saxena A, Zhang J, Gauger PC. A recombinant porcine reproductive and respiratory syndrome virus type 2 field strain derived from two PRRSV-2-modified live virus vaccines. Front Vet Sci 2023; 10:1149293. [PMID: 37056231 PMCID: PMC10086154 DOI: 10.3389/fvets.2023.1149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) type 2 (PRRSV-2) isolate was obtained from lung samples collected from a 4.5-month-old pig at a wean-to-finish site in Indiana, USA, although no gross or microscopic lesions suggestive of PRRSV infection were observed in the lung tissue. Phylogenetic and molecular evolutionary analyses based on the obtained virus sequences indicated that PRRSV USA/IN105404/2021 was a natural recombinant isolate from Ingelvac PRRS® MLV and Prevacent® PRRS, which are PRRSV-2-modified live virus vaccines commercially available in the United States. This study is the first to report the detection of a PRRSV-2 recombinant strain consisting entirely of two modified live virus vaccine strains under field conditions. Based on clinical data and the absence of lung lesions, this PRRSV-2 recombinant strain was not virulent in swine, although its pathogenicity needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Giovani Trevisan
| | - Drew Magstadt
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | | | | | - Michael Zeller
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ganwu Li
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Karen M. Krueger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Anugrah Saxena
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
22
|
Wang L. Diagnostics for Viral Pathogens in Veterinary Diagnostic Laboratories. Vet Clin North Am Food Anim Pract 2023; 39:129-140. [PMID: 36731993 DOI: 10.1016/j.cvfa.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Laboratory testing is one part of clinical diagnosis, and quick and reliable testing results provide important data to support treatment decision and develop control strategies. Clinical viral testing has been shifting from traditional virus isolation and electron microscopy to molecular polymerase chain reaction and point-of-care antigen tests. This shift in diagnostic methodology also means change from looking for infectious virions or viral particles to hunting viral antigens and genomes. With technological development, it is predicted that metagenomic sequencing will be commonly used in veterinary clinical diagnosis for unveiling the whole picture of microbes involved in diseases in the future.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Veterinary Clinical Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, VMBSB Room 1222A, Urbana, IL 61802, USA.
| |
Collapse
|
23
|
VanderBurgt JT, Harper O, Garnham CP, Kohalmi SE, Menassa R. Plant production of a virus-like particle-based vaccine candidate against porcine reproductive and respiratory syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1044675. [PMID: 36760639 PMCID: PMC9902946 DOI: 10.3389/fpls.2023.1044675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.
Collapse
Affiliation(s)
- Jordan T. VanderBurgt
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ondre Harper
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | - Christopher P. Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | | | - Rima Menassa
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
24
|
Brake DA. African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses 2022; 14:2619. [PMID: 36560623 PMCID: PMC9788307 DOI: 10.3390/v14122619] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The recent centennial anniversary of R.E. Montgomery's seminal published description of "a form of swine fever" disease transmitted from wild African pigs to European domestic pigs is a call to action to accelerate African Swine Fever (ASF) vaccine research and development. ASF modified live virus (MLV) first-generation gene deleted vaccine candidates currently offer the most promise to meet international and national guidelines and regulatory requirements for veterinary product licensure and market authorization. A major, rate-limiting impediment to the acceleration of current as well as future vaccine candidates into regulatory development is the absence of internationally harmonized standards for assessing vaccine purity, potency, safety, and efficacy. This review summarizes the asymmetrical landscape of peer-reviewed published literature on ASF MLV vaccine approaches and lead candidates, primarily studied to date in the research laboratory in proof-of-concept or early feasibility clinical safety and efficacy studies. Initial recommendations are offered toward eventual consensus of international harmonized guidelines and standards for ASF MLV vaccine purity, potency, safety, and efficacy. To help ensure the successful regulatory development and approval of ASF MLV first generation vaccines by national regulatory associated government agencies, the World Organisation for Animal Health (WOAH) establishment and publication of harmonized international guidelines is paramount.
Collapse
Affiliation(s)
- David A Brake
- BioQuest Associates, LLC, P.O. Box 787, Stowe, VT 05672, USA
| |
Collapse
|
25
|
Cui X, Xia D, Huang X, Sun Y, Shi M, Zhang J, Li G, Yang Y, Wang H, Cai X, An T. Analysis of Recombinant Characteristics Based on 949 PRRSV-2 Genomic Sequences Obtained from 1991 to 2021 Shows That Viral Multiplication Ability Contributes to Dominant Recombination. Microbiol Spectr 2022; 10:e0293422. [PMID: 36073823 PMCID: PMC9602502 DOI: 10.1128/spectrum.02934-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases affecting the pig-raising industry. The PRRS virus (PRRSV) has high genetic diversity, partly owing to viral recombination. Some individual recombinant type 2 PRRSV (PRRSV-2) strains have been detected; however, the sequence composition characteristics of recombination hot spots and potential driving forces for recombinant PRRSV-2 are still unreported. Therefore, all available genomic sequences of PRRSV-2 (n = 949, including 29 genomes sequenced in this study) from 11 countries from 1991 to 2021 were collected and analyzed. The results revealed that the dominant major recombinant parent has been converted from lineage 3 (L3) to L1 since 2012. The recombination hot spots were located at nucleotides (nt) 7900 to 8200 (in NSP9, encoding viral RNA-dependent RNA polymerase) and nt 12500 to nt 13300 (in ORF2-ORF4, mean ORF2 to ORF4); no AU-rich characteristics were found in the recombination hot spots. Based on infectious clones of L1 and L8 PRRSV-2, recombinant PRRSVs were generated by switching complete or partial NSP9 (harboring the recombination hot spot). The results showed that recombinant PRRSVs based on the L1 backbone, but not the L8 backbone, acquired a higher replication capacity in pig primary alveolar macrophages. These findings will help to understand the reason behind the dominance of L1-based recombination in PRRSV-2 strains and provide new clues for an in-depth study of the recombination mechanism of PRRSV-2. IMPORTANCE Recombination is an important driver of the genetic shifts that are tightly linked to the evolution of RNA viruses. Viral recombination contributes substantially to the emergence of new variants, alterations in virulence, and pathogenesis. PRRSV is genetically diverse, partly because of extensive recombination. In this study, we analyzed interlineage recombination based on available genomic sequences of PRRSV-2 from 1991 to 2021. The study revealed the temporal and geographical distribution of recombinant PRRSVs and the recombination hot spot's location and showed that artificially constructed recombinant PRRSVs (harboring a high-frequency region) had more viral genomic copies than their parental virus, indicating that dominant recombination was shaped by a tendency to benefit viral replication. This finding will enrich our understanding of PRRSV recombination and provide new clues for an in-depth study of the recombination mechanism.
Collapse
Affiliation(s)
- Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dasong Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
26
|
Sun Q, Xu H, Li C, Gong B, Li Z, Tian ZJ, Zhang H. Emergence of a novel PRRSV-1 strain in mainland China: A recombinant strain derived from the two commercial modified live viruses Amervac and DV. Front Vet Sci 2022; 9:974743. [PMID: 36157177 PMCID: PMC9505512 DOI: 10.3389/fvets.2022.974743] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) is one of the main pathogens causing porcine reproductive and respiratory syndrome (PRRS). In recent years, the rate of PRRSV-1 detection in China has gradually increased, and the PRRSV-1 strains reported in China belong to subtype I (Global; Clade A-L). In the present study, a novel PRRSV-1 strain, TZJ2134, was found during epidemiological surveillance of PRRSV-1 in Shandong Province in China. We obtained two fragments of the TZJ2134 genome: TZJ2134-L12 (located at nt 1672-nt 2112 in the partial Nsp2 gene) and TZJ2134-(A+B) (located at nt 7463-nt 11272 in the partial Nsp9, complete Nsp10 and partial Nsp11 genes). Phylogenetic and recombination analyses based on the two sequences showed that TZJ2134 is a recombinant strain derived from two commercial PRRSV-1 modified live vaccine (MLV) strains (the Amervac vaccine and DV vaccine strains) that formed a new recombinant subgroup of DV+Amervac-like isolates with other strains. However, PRRSV-1 MLV is not currently allowed for use in China. This study is the first to detected recombinant PRRSV-1 MLV strain in China and provides new data for the epidemiological study of PRRSV-1 in China. The existence of the TZJ2134 strain is a reminder that the swine surveillance at the Chinese customs should be strengthened.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhen Li
- Pingdingshan Center for Animal Disease Control and Prevention, Pingdingshan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Hongliang Zhang
| |
Collapse
|
27
|
Trevisan G, Zeller M, Li G, Zhang J, Gauger P, Linhares DC. Implementing a user-friendly format to analyze PRRSV next-generation sequencing results and associating breeding herd production performance with number of PRRSV strains and recombination events. Transbound Emerg Dis 2022; 69:e2214-e2229. [PMID: 35416426 PMCID: PMC9790532 DOI: 10.1111/tbed.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022]
Abstract
The open reading frames (ORF)5 represents approximately 4% of the porcine reproductive and respiratory syndrome virus (PRRSV)-2 genome (whole-PRRSV) and is often determined by the Sanger technique, which rarely detects >1 PRRSV strain if present in the sample. Next-generation sequencing (NGS) may provide a more appropriate method of detecting multiple PRRSV strains in one sample. This work assessed the effect of PRRSV genetic variability and recombination events, using NGS, on the time-to-low prevalence (TTLP) and total losses in breeding herds (n 20) that detected a PRRSV outbreak and adopted measures to eliminate PRRSV. Serum, lung or live virus inoculation material collected within 3-weeks of outbreak, and subsequently, processing fluids (PFs) were tested for PRRSV by RT-qPCR and NGS. Recovered whole-PRRSV or partial sequences were used to characterize within and between herd PRRSV genetic variability. Whole-PRRSV was recovered in five out of six (83.3%) lung, 16 out of 22 (72.73%) serum and in five out of 95 (5.26%) PF. Whole-PRRSV recovered from serum or lung were used as farm referent strains in 16 out of 20 (80%) farms. In four farms, only partial genome sequences were recovered and used as farm referent strains. At least two wild-type PRRSV strains (wt-PRRSV) were circulating simultaneously in 18 out of 20 (90%) and at least one vaccine-like strain co-circulating in eight out of 20 (40%) farms. PRRSV recombination events were detected in 12 farms (59%), been 10 out of 12 between wt-PRRSV and two out of 12 between wt-PRRSV and vaccine-like strains. Farms having ≥3 strains had a 12-week increase TTLP versus herds ≤2 strains detected. Farms with ≤2 strains (n 10) had 1837 and farms with no recombination events detected (n 8) had 1827 fewer piglet losses per 1000 sows versus farms with ≥3 PRRSV strains (n 8) or detected recombination (n 10), respectively. NGS outcomes and novel visualization methods provided more thorough insight into PRRSV dynamics, genetic variability, detection of multiple strains co-circulating in breeding herds and helped establish practical guidelines for using PRRSV NGS outputs.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA
| | - Michael Zeller
- Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA,Programme in Emerging Infectious DiseasesDuke‐NUS Medical SchoolSingaporeSingapore
| | - Ganwu Li
- Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA
| | - Daniel C.L. Linhares
- Veterinary Diagnostic and Production Animal MedicineIowa State UniversityAmesIowaUSA
| |
Collapse
|
28
|
Cui XY, Xia DS, Huang XY, Tian XX, Wang T, Yang YB, Wang G, Wang HW, Sun Y, Xiao YH, Tian ZJ, Cai XH, An TQ. Recombinant characteristics, pathogenicity, and viral shedding of a novel PRRSV variant derived from twice inter-lineage recombination. Vet Microbiol 2022; 271:109476. [PMID: 35679815 DOI: 10.1016/j.vetmic.2022.109476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
29
|
Rupasinghe R, Lee K, Liu X, Gauger PC, Zhang J, Martínez-López B. Molecular Evolution of Porcine Reproductive and Respiratory Syndrome Virus Field Strains from Two Swine Production Systems in the Midwestern United States from 2001 to 2020. Microbiol Spectr 2022; 10:e0263421. [PMID: 35499352 PMCID: PMC9241855 DOI: 10.1128/spectrum.02634-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses an extensive economic threat to the United States swine industry. The high degree of PRRSV genetic and antigenic variability challenges existing vaccination programs. We evaluated the ORF5 sequence of 1,931 PRRSV-2 strains detected from >300 farms managed by two pork production systems in the midwestern United States from 2001 to 2020 to assess the genetic diversity and molecular characteristics of heterologous PRRSV-2 strains. Phylogenetic analysis was performed on ORF5 sequences and classified using the global PRRSV classification system. N-glycosylation and the global and local selection pressure in the putative GP5 encoded by ORF5 were estimated. The PRRSV-2 sequences were classified into lineage 5 (L5; n = 438[22.7%]) or lineage 1 (L1; n = 1,493[77.3%]). The L1 strains belonged to one of three subclades: L1A (n = 1,225[63.4%]), L1B (n = 69[3.6%]), and L1C/D (n = 199[10.3%]). 10 N-glycosylation sites were predicted, and positions N44 and N51 were detected in most GP5 sequences (n = 1,801[93.3%]). Clade-specific N-glycosylation sites were observed: 57th in L1A, 33rd in L1B, 30th and 34th in L1C/D, and 30th and 33rd in L5. We identified nine and 19 sites in GP5 under significant positive selection in L5 and L1, respectively. The 13th, 151st, and 200th positive selection sites were exclusive to L5. Heterogeneity of N-glycosylation and positive selection sites may contribute to varying the evolutionary processes of PRRSV-2 strains circulating in these swine production systems. L1A and L5 strains denoted excellence in adaptation to the current swine population by their extensive positive selection sites with higher site-specific selection pressure. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is known for its high genetic and antigenic variability. In this study, we evaluated the ORF5 sequences of PRRSV-2 strains circulating in two swine production systems in the midwestern United States from 2001 to 2020. All the field strains were classified into four major groups based on genetic relatedness, where one group is closely related to the Ingelvac PRRS MLV strain. Here, we systematically compared differences in the ORF5 polymorphisms, N-glycosylation sites, and local and global evolutionary dynamics between different groups. Sites 44 and 51 were common for N-glycosylation in most amino acid sequences (n = 1,801, 93.3%). We identified that the L5 sequences had more positive selection pressure compared to the L1 strains. Our findings will provide valuable insights into the evolutionary mechanisms of PRRSV-2 and these molecular changes may lead to suboptimal effectiveness of Ingelvac PRRS MLV vaccine.
Collapse
Affiliation(s)
- Ruwini Rupasinghe
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Xin Liu
- Department of Computer Science, University of California, Davis, California, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
30
|
Recombination between the Fostera MLV-like Strain and the Strain Belonging to Lineage 1 of Porcine Reproductive and Respiratory Syndrome Virus in Korea. Viruses 2022; 14:v14061153. [PMID: 35746625 PMCID: PMC9229315 DOI: 10.3390/v14061153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry worldwide. In Korea, Fostera PRRS commercial modified live virus (MLV) vaccines have been used since 2014 to control the PRRSV infection. In this study, two PRRSV-2 strains (20D160-1 and 21R2-63-1) were successfully isolated, and their complete genomic sequences were determined. Genetic analysis showed that the two isolates have recombination events between the P129-like strain derived from the Fostera PRRS MLV vaccine and the strain of lineage 1. The 20D160-1 indicated that partial ORF2 to partial ORF4 of the minor parental KNU-1902-like strain, which belongs to Korean lineage C (Kor C) of lineage 1, was inserted into the major parental P129-like strain. The 21R2-63-1 revealed that partial ORF1b of the P129-like strain was inserted into the backbone of the NADC30-like strain. This study is the first to report natural recombinant strains between Fostera PRRS MLV-like strain and the field strain in Korea. These results may have significant implications for MLV evolution and the understanding of PRRSV genetic diversity, while highlighting the need for continuous surveillance of PRRSV.
Collapse
|
31
|
Wang H, Cui X, Cai X, An T. Recombination in Positive-Strand RNA Viruses. Front Microbiol 2022; 13:870759. [PMID: 35663855 PMCID: PMC9158499 DOI: 10.3389/fmicb.2022.870759] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
RNA recombination is a major driver of genetic shifts tightly linked to the evolution of RNA viruses. Genomic recombination contributes substantially to the emergence of new viral lineages, expansion in host tropism, adaptations to new environments, and virulence and pathogenesis. Here, we review some of the recent progress that has advanced our understanding of recombination in positive-strand RNA viruses, including recombination triggers and the mechanisms behind them. The study of RNA recombination aids in predicting the probability and outcome of viral recombination events, and in the design of viruses with reduced recombination frequency as candidates for the development of live attenuated vaccines. Surveillance of viral recombination should remain a priority in the detection of emergent viral strains, a goal that can only be accomplished by expanding our understanding of how these events are triggered and regulated.
Collapse
Affiliation(s)
| | | | | | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
32
|
Whole-genome sequencing and genetic characteristics of representative porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Korea. Virol J 2022; 19:66. [PMID: 35410421 PMCID: PMC8996673 DOI: 10.1186/s12985-022-01790-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a macrophage-tropic arterivirus with extremely high genetic and pathogenic heterogeneity that causes significant economic losses in the swine industry worldwide. PRRSV can be divided into two species [PRRSV1 (European) and PRRSV2 (North American)] and is usually diagnosed and genetically differentiated into several lineages based on the ORF5 gene, which constitutes only 5% of the whole genome. This study was conducted to achieve nonselective amplification and whole-genome sequencing (WGS) based on a simplified sequence-independent, single-primer amplification (SISPA) technique with next-generation sequencing (NGS), and to genetically characterize Korean PRRSV field isolates at the whole genome level. Methods The SISPA-NGS method coupled with a bioinformatics pipeline was utilized to retrieve full length PRRSV genomes of 19 representative Korean PRRSV strains by de novo assembly. Phylogenetic analysis, analysis of the insertion and deletion (INDEL) pattern of nonstructural protein 2 (NSP2), and recombination analysis were conducted. Results Nineteen complete PRRSV genomes were obtained with a high depth of coverage by the SISPA-NGS method. Korean PRRSV1 belonged to the Korean-specific subtype 1A and vaccine-related subtype 1C lineages, showing no evidence of recombination and divergent genetic heterogeneity with conserved NSP2 deletion patterns. Among Korean PRRSV2 isolates, modified live vaccine (MLV)-related lineage 5 viruses, lineage 1 viruses, and nation-specific Korean lineages (KOR A, B and C) could be identified. The NSP2 deletion pattern of the Korean lineages was consistent with that of the MN-184 strain (lineage 1), which indicates the common ancestor and independent evolution of Korean lineages. Multiple recombination signals were detected from Korean-lineage strains isolated in the 2010s, suggesting natural interlineage recombination between circulating KOR C and MLV strains. Interestingly, the Korean strain GGYC45 was identified as a recombinant KOR C and MLV strain harboring the KOR B ORF5 gene and might be the ancestor of currently circulating KOR B strains. Additionally, two novel lineage 1 recombinants of NADC30-like and NADC34-like viruses were detected. Conclusion Genome-wide analysis of Korean PRRSV isolates retrieved by the SISPA-NGS method and de novo assembly, revealed complex evolution and recombination in the field. Therefore, continuous surveillance of PRRSV at the whole genome level should be conducted, and new vaccine strategies for more efficient control of the virus are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01790-6.
Collapse
|
33
|
Fang K, Liu S, Li X, Chen H, Qian P. Epidemiological and Genetic Characteristics of Porcine Reproductive and Respiratory Syndrome Virus in South China Between 2017 and 2021. Front Vet Sci 2022; 9:853044. [PMID: 35464348 PMCID: PMC9024240 DOI: 10.3389/fvets.2022.853044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major threat to the swine industry in China and has caused enormous losses every year. To monitor the epidemiological and genetic characteristics of PRRSV in South China, 6,795 clinical samples from diseased pigs were collected between 2017 and 2021, and 1,279 (18.82%) of them were positive for PRRSV by RT-PCR detecting the ORF5 gene. Phylogenetic analysis based on 479 ORF5 sequences revealed that a large proportion of them were highly-pathogenic PRRSVs (409, 85.39%) and PRRSV NADC30-like strains (66, 13.78%). Furthermore, 93.15% of these highly-pathogenic strains were found to be MLV-derived. We next recovered 11 PRRSV isolates from the positive samples and generated the whole genome sequences of them. Bioinformatic analysis showed that seven isolates were MLV-derived. Besides, six isolates were found to be recombinant strains. These eleven isolates contained different types of amino acid mutations in their GP5 and Nsp2 proteins compared to those of the PRRSVs with genome sequences publicly available in GenBank. Taken together, our findings contribute to understanding the prevalent status of PRRSV in South China and provide useful information for PRRS control especially the use of PRRSV MLV vaccines.
Collapse
Affiliation(s)
- Kui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- *Correspondence: Ping Qian
| |
Collapse
|
34
|
Expression of the Heterotrimeric GP2/GP3/GP4 Spike of an Arterivirus in Mammalian Cells. Viruses 2022; 14:v14040749. [PMID: 35458479 PMCID: PMC9030998 DOI: 10.3390/v14040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Equine arteritis virus (EAV), an enveloped positive-strand RNA virus, is an important pathogen of horses and the prototype member of the Arteiviridae family. Unlike many other enveloped viruses, which possess homotrimeric spikes, the spike responsible for cellular tropism in Arteriviruses is a heterotrimer composed of 3 glycoproteins: GP2, GP3, and GP4. Together with the hydrophobic protein E they are the minor components of virus particles. We describe the expression of all 3 minor glycoproteins, each equipped with a different tag, from a multi-cassette system in mammalian BHK-21 cells. Coprecipitation studies suggest that a rather small faction of GP2, GP3, and GP4 form dimeric or trimeric complexes. GP2, GP3, and GP4 co-localize with each other and also, albeit weaker, with the E-protein. The co-localization of GP3-HA and GP2-myc was tested with markers for ER, ERGIC, and cis-Golgi. The co-localization of GP3-HA was the same regardless of whether it was expressed alone or as a complex, whereas the transport of GP2-myc to cis-Golgi was higher when this protein was expressed as a complex. The glycosylation pattern was also independent of whether the proteins were expressed alone or together. The recombinant spike might be a tool for basic research but might also be used as a subunit vaccine for horses.
Collapse
|
35
|
Pamornchainavakul N, Kikuti M, Paploski IAD, Makau DN, Rovira A, Corzo CA, VanderWaal K. Measuring How Recombination Re-shapes the Evolutionary History of PRRSV-2: A Genome-Based Phylodynamic Analysis of the Emergence of a Novel PRRSV-2 Variant. Front Vet Sci 2022; 9:846904. [PMID: 35400102 PMCID: PMC8990846 DOI: 10.3389/fvets.2022.846904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
While the widespread and endemic circulation of porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) causes persistent economic losses to the U.S. swine industry, unusual increases of severe cases associated with the emergence of new genetic variants are a major source of concern for pork producers. Between 2020 and 2021, such an event occurred across pig production sites in the Midwestern U.S. The emerging viral clade is referred to as the novel sub-lineage 1C (L1C) 1-4-4 variant. This genetic classification is based on the open reading frame 5 (ORF5) gene. However, although whole genome sequence (WGS) suggested that this variant represented the emergence of a new strain, the true evolutionary history of this variant remains unclear. To better elucidate the variant's evolutionary history, we conducted a recombination detection analysis, time-scaled phylogenetic estimation, and discrete trait analysis on a set of L1C-1-4-4 WGSs (n = 19) alongside other publicly published WGSs (n = 232) collected over a 26-year period (1995–2021). Results from various methodologies consistently suggest that the novel L1C variant was a descendant of a recombinant ancestor characterized by recombination at the ORF1a gene between two segments that would be otherwise classified as L1C and L1A in the ORF5 gene. Based on analysis of different WGS fragments, the L1C-1-4-4 variant descended from an ancestor that existed around late 2018 to early 2019, with relatively high substitution rates in the proximal ORF1a as well as ORF5 regions. Two viruses from 2018 were found to be the closest relatives to the 2020-21 outbreak strain but had different recombination profiles, suggesting that these viruses were not direct ancestors. We also assessed the overall frequency of putative recombination amongst ORF5 and other parts of the genome and found that recombination events which leave detectable numbers of descendants are not common. However, the rapid spread and high virulence of the L1C-1-4-4 recombinant variant demonstrates that inter-sub-lineage recombination occasionally found amongst the U.S. PRRSV-2 might be an evolutionary mechanisms that contributed to this emergence. More generally, recombination amongst PRRSV-2 accelerates genetic change and increases the chance of the emergence of high fitness variants.
Collapse
|
36
|
Sun YF, Liu Y, Yang J, Li WZ, Yu XX, Wang SY, Li LA, Yu H. Recombination between NADC34-like and QYYZ-like strain of Porcine Reproductive and Respiratory Syndrome virus with high pathogenicity for piglets in China. Transbound Emerg Dis 2022; 69:e3202-e3207. [PMID: 35119777 DOI: 10.1111/tbed.14471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge economic losses to the swine industry worldwide. Here, a novel variant of PRRSV strain named TJnh2021 was isolated from nursery piglets with morbidity rate (75%) and mortality rate (40%) in Tianjin Province of China in 2021. Phylogenetic and molecular evolutionary analyses revealed that TJnh2021 was highly similar to NADC34-like (lineage1.5, isolated in North America in 2014) in the ORF1ab-ORF2 and ORF6-ORF7 coding regions, as well as to QYYZ-like (lineage3, isolated in China in 2010) in the ORF3-ORF5, suggestive of a natural recombination event. Recombination analyses revealed that recombination events occurred in two inter-lineage recombination events between lineages 1.5 and 3, and two breakpoints in ORF2 (nt12196) and ORF5(nt13628) (with reference to the VR-2332 strain). Animal experiments demonstrated that TJnh2021 caused mortality rates of 40% and exhibited higher pathogenicity in piglets compared to other lineage 1.5 strains reported in China. Taken altogether, NADC34-like PRRSV has undergone genetic exchange with Chinese local PRRSV strains and recombination might be responsible for the variations in pathogenicity and highlight the importance of surveillance of this lineage in China. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ying-Feng Sun
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ye Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Jing Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Wen-Zhong Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiao-Xue Yu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Shuai-Yong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Liu-An Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
37
|
Anderson TK, Inderski B, Diel DG, Hause BM, Porter EG, Clement T, Nelson EA, Bai J, Christopher-Hennings J, Gauger PC, Zhang J, Harmon KM, Main R, Lager KM, Faaberg KS. The United States Swine Pathogen Database: integrating veterinary diagnostic laboratory sequence data to monitor emerging pathogens of swine. Database (Oxford) 2021; 2021:6462938. [PMID: 35165687 PMCID: PMC8903347 DOI: 10.1093/database/baab078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Veterinary diagnostic laboratories derive thousands of nucleotide sequences from clinical samples of swine pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A and swine enteric coronaviruses. In addition, next generation sequencing has resulted in the rapid production of full-length genomes. Presently, sequence data are released to diagnostic clients but are not publicly available as data may be associated with sensitive information. However, these data can be used for field-relevant vaccines; determining where and when pathogens are spreading; have relevance to research in molecular and comparative virology; and are a component in pandemic preparedness efforts. We have developed a centralized sequence database that integrates private clinical data using PRRSV data as an exemplar, alongside publicly available genomic information. We implemented the Tripal toolkit, a collection of Drupal modules that are used to manage, visualize and disseminate biological data stored within the Chado database schema. New sequences sourced from diagnostic laboratories contain: genomic information; date of collection; collection location; and a unique identifier. Users can download annotated genomic sequences using a customized search interface that incorporates data mined from published literature; search for similar sequences using BLAST-based tools; and explore annotated reference genomes. Additionally, custom annotation pipelines have determined species, the location of open reading frames and nonstructural proteins and the occurrence of putative frame shifts. Eighteen swine pathogens have been curated. The database provides researchers access to sequences discovered by veterinary diagnosticians, allowing for epidemiological and comparative virology studies. The result will be a better understanding on the emergence of novel swine viruses and how these novel strains are disseminated in the USA and abroad. Database URLhttps://swinepathogendb.org.
Collapse
Affiliation(s)
- Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Blake Inderski
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Diego G Diel
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,Diego G. Diel, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Benjamin M Hause
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Elizabeth G Porter
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Travis Clement
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Eric A Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Jane Christopher-Hennings
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
38
|
Madapong A, Saeng-Chuto K, Tantituvanont A, Nilubol D. Safety of PRRSV-2 MLV vaccines administrated via the intramuscular or intradermal route and evaluation of PRRSV transmission upon needle-free and needle delivery. Sci Rep 2021; 11:23107. [PMID: 34845289 PMCID: PMC8629989 DOI: 10.1038/s41598-021-02444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Two distinct experiments (Exp) were conducted to evaluate the shedding and efficacy of 2 modified live porcine reproductive and respiratory syndrome virus (PRRSV) type 2 vaccines (MLV) when administered intramuscularly (IM) or intradermally (ID) (Exp A), and the potential of PRRSV transmission using a needle-free device (Exp B). One-hundred fifty-four, 3-week-old castrated-male, pigs were procured from a PRRSV-free herd. In Exp A, 112 pigs were randomly allocated into 4 groups of 21 pigs including IM/Ingelvac MLV (G1), IM/Prime Pac (G2), ID/Prime Pac (G3), and non-vaccination (G4). Twenty-eight remaining pigs were served as non-vaccination, age-matched sentinel pigs. G1 was IM vaccinated once with Ingelvac PRRS MLV (Ing) (Boehringer Ingelheim, Germany). G2 and G3 were IM and ID vaccinated once with a different MLV, Prime Pac PRRS (PP) (MSD Animal Health, The Netherlands), respectively. Following vaccination, an antibody response, IFN-γ-SC, and IL-10 secretion in supernatants of stimulated PBMC were monitored. Sera, tonsils, nasal swabs, bronchoalveolar lavage, urines, and feces were collected from 3 vaccinated pigs each week to 42 days post-vaccination (DPV) and assayed for the presence of PRRSV using virus isolation and qPCR. Age-matched sentinel pigs were used to evaluate the transmission of vaccine viruses and were introduced into vaccinated groups from 0 to 42 DPV. Seroconversion was monitored. In Exp B, 42 pigs were randomly allocated into 5 groups of 3 pigs each including IM/High (T1), ID/High (T2), IM/Low (T3), ID/Low (T4), and NoChal. Twenty-seven remaining pigs were left as non-challenge, age-matched sentinel pigs. The T1 and T2, and T3 and T4 groups were intranasally challenged at approximately 26 days of age with HP-PRRSV-2 at high (106) and low (103 TCID50/ml) doses, respectively. At 7 days post-challenge, at the time of the highest viremia levels of HP-PRRSV-2, T1 and T2, and T3 and T4 groups were IM and ID injected with Diluvac Forte using needles and a need-less device (IDAL 3G, MSD Animal Health, The Netherlands), respectively. Same needles or needle-less devices were used to inject the same volume of Diluvac Forte into sentinel pigs. Seroconversion of sentinels was evaluated. The results demonstrated that PP vaccinated groups (G2 and G3), regardless of the route of vaccination, had ELISA response significantly lower than G1 at 7 and 14 DPV. PP-vaccinated groups (G2 and G3) had significantly higher IFN-γ-SC and lower IL-10 secretion compared to the Ing-vaccinated group (G1). The two different MLV when administered intramuscularly demonstrated the difference in virus distribution and shedding patterns. PP-vaccinated pigs had significantly shortened viremia than the Ing-vaccinated pigs. However, ID-vaccinated pigs had lower virus distribution in organs and body fluids without virus shedding to sentinel pigs. In Exp B, regardless of the challenge dose, sentinel pigs intradermally injected with the same needle-less device used to inject challenged pigs displayed no seroconversion. In contrast, sentinel pigs intramuscularly injected with the same needle used to inject challenged pigs displayed seroconversion. The results demonstrated the transmission of PRRSV by using a needle, but not by using a needle-less device. In conclusion, our results demonstrated that ID vaccination might represent an alternative to improve vaccine efficacy and safety, and may be able to reduce the shedding of vaccine viruses and reduce the iatrogenic transfer of pathogens between animals with shared needles.
Collapse
Affiliation(s)
- Adthakorn Madapong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
39
|
Risser J, Ackerman M, Evelsizer R, Wu S, Kwon B, Hammer JM. Porcine reproductive and respiratory syndrome virus genetic variability a management and diagnostic dilemma. Virol J 2021; 18:206. [PMID: 34663367 PMCID: PMC8522131 DOI: 10.1186/s12985-021-01675-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
As genetic analysis becomes less expensive, more comprehensive diagnostics such as whole genome sequencing (WGS) will become available to the veterinary practitioner. The WGS elucidates more about porcine reproductive and respiratory syndrome virus (PRRSV) beyond the traditional analysis of open reading frame (ORF) 5 Sanger sequencing. The veterinary practitioner will require a more complete understanding of the mechanics and consequences of PRRSV genetic variability to interpret the WGS results. More recently, PRRSV recombination events have been described in the literature. The objective of this review is to provide a comprehensive outlook for swine practitioners that PRRSV mutates and recombines naturally causing genetic variability, review the diagnostic cadence when suspecting recombination has occurred, and present theory on how, why, and where industry accepted management practices may influence recombination. As practitioners, it is imperative to remember that PRRS viral recombination is occurring continuously in swine populations. Finding a recombinant by diagnostic analysis does not ultimately declare its significance. The error prone replication, mutation, and recombination of PRRSV means exact clones may exist; but a quasispecies swarm of variable strains also exist adding to the genetic diversity. PRRSV nonstructural proteins (nsps) are translated from ORF1a and ORF1b. The arterivirus nsps modulate the hosts' immune response and are involved in viral pathogenesis. The strains that contribute the PRRSV replicase and transcription complex is driving replication and possibly recombination in the quasispecies swarm. Furthermore, mutations favoring the virus to evade the immune system may result in the emergence of a more fit virus. More fit viruses tend to become the dominant strains in the quasispecies swarm. In theory, the swine management practices that may exacerbate or mitigate recombination include immunization strategies, swine movements, regional swine density, and topography. Controlling PRRSV equates to managing the quasispecies swarm and its interaction with the host. Further research is warranted on the frequency of recombination and the genome characteristics impacting the recombination rate. With a well-defined understanding of these characteristics, the clinical implications from recombination can be detected and potentially reduced; thus, minimizing recombination and perhaps the emergence of epidemic strains.
Collapse
|
40
|
Chang YH, Lin MW, Chien MC, Ke GM, Wu IE, Lin RL, Lin CY, Hu YC. Polyplex nanomicelle delivery of self-amplifying RNA vaccine. J Control Release 2021; 338:694-704. [PMID: 34509585 DOI: 10.1016/j.jconrel.2021.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Self-amplifying RNA (SaRNA) is a burgeoning platform that exploits the replication machinery of alphaviruses such as Venezuelan equine encephalitis (VEE) virus or Sindbis virus (SIN). SaRNA has been used for development of human vaccines, but has not been evaluated for porcine vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) causes tremendous economic losses to the worldwide pork industry, but current vaccines trigger delayed neutralizing antibody response and confer only partial protection. Here we first compared two SaRNA systems based on VEE and SIN, and demonstrated that in vitro transcribed VEE-based SaRNA conferred prolonged reporter gene expression and RNA amplification in pig cells with low cytotoxicity, but SIN-based SaRNA imparted evident cytotoxicity and limited gene expression in pig cells. Transfection of VEE-based SaRNA that encodes the major PRRSV antigen dNGP5 (SaRNA-dNGP5) conferred persistent expression for at least 28 days in pig cells. We next complexed SaRNA-dNGP5 with the polyaspartamide block copolymer PEG-PAsp(TEP) to form polyplex nanomicelle with high packaging efficiency and narrow size distribution. The polyplex nanomicelle enabled sustained dNGP5 expression and secretion in vitro. Compared with the commercial PRRS vaccine, nanomicelle delivery of SaRNA-dNGP5 into animal models accelerated the induction of potent neutralizing antibodies with minimal side effects, and elicited stronger IL-4 and IFN-γ responses against homologous and heterologous PRRSV. These properties tackle the problems of current vaccines and implicate the potential of SaRNA-dNGP5 nanomicelle as an effective PRRS vaccine.
Collapse
Affiliation(s)
- Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Ming-Chen Chien
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, National Ping Tung University of Science and Technology, Pingtung, Taiwan 912
| | - I-En Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ren-Li Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan.
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
41
|
Ding Y, Wubshet AK, Ding X, Zhang Z, Li Q, Dai J, Hou Q, Hu Y, Zhang J. Evaluation of Four Commercial Vaccines for the Protection of Piglets against the Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (hp-PRRSV) QH-08 Strain. Vaccines (Basel) 2021; 9:vaccines9091020. [PMID: 34579257 PMCID: PMC8471949 DOI: 10.3390/vaccines9091020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination is the best way to prevent economic losses from highly pathogenic porcine reproductive and respiratory syndrome virus (hp-PRRSV) disease. However, the commercially available vaccines need to periodically evaluate their efficacy against infections caused by new hp-PRRSV variants. Therefore, the objective of this study was to evaluate the efficacy of four (two modified live vaccines (MLV) and two inactivated) PRRSV commercial vaccines in piglets challenged with QH-08 and to estimate the genetic distance of the vaccine strains from recently isolated (QH-08) filed strain. Randomly, piglets (n = 5) allocated in groups 1–4 were immunized with Ingelvac PRRS MLV, CH-1a, JXA1, and JXA1-RMLV vaccines, whereas the infected and non-infected control piglets in groups 5 and 6 (n = 3), respectively, were subjected to PBS. Results indicated that JXA1 and JXA1-R MLV vaccines showed complete protection, but Ingelvac PRRS MLV and CH-1α vaccines revealed partial protection against the QH-08 PRRSV challenge. Similarly, vaccinated and challenged pigs showed lower macroscopic and microscopic lesions than the pigs in group 5. Our findings demonstrated a new insight that the variation in ORF1a and 1b coding sequence could significantly affect PRRSV vaccines efficacy. In conclusion, QH-08 is a good candidate for the design and development of an innovative PRRSV vaccine that ultimately helps in the control and prevention strategies.
Collapse
Affiliation(s)
- Yaozhong Ding
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (Y.D.); (J.Z.)
| | - Ashenafi Kiros Wubshet
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle 280, Ethiopia
| | - Xiaolong Ding
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Qian Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Junfei Dai
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Qian Hou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (A.K.W.); (X.D.); (Z.Z.); (Q.L.); (J.D.); (Q.H.)
- Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (Y.D.); (J.Z.)
| |
Collapse
|
42
|
Complete Coding Genome Sequence of a Novel Porcine Reproductive and Respiratory Syndrome Virus 2 Restriction Fragment Length Polymorphism 1-4-4 Lineage 1C Variant Identified in Iowa, USA. Microbiol Resour Announc 2021; 10:e0044821. [PMID: 34042485 PMCID: PMC8213044 DOI: 10.1128/mra.00448-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A porcine reproductive and respiratory syndrome virus 2 strain was identified in lung samples from nursery piglets associated with a 17.15% mortality rate on a swine farm in Iowa. Open reading frame 5 (ORF5) sequencing indicated that this strain is a restriction fragment length polymorphism (RFLP) 1-4-4 lineage 1C variant strain, and its complete coding genome sequence was determined.
Collapse
|
43
|
Porcine Reproductive and Respiratory Syndrome Virus: Immune Escape and Application of Reverse Genetics in Attenuated Live Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050480. [PMID: 34068505 PMCID: PMC8150910 DOI: 10.3390/vaccines9050480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.
Collapse
|
44
|
Gut microbiome associations with outcome following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) in pigs immunized with a PRRS modified live virus vaccine. Vet Microbiol 2021; 254:109018. [PMID: 33639341 DOI: 10.1016/j.vetmic.2021.109018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most significant pathogens affecting swine. Co-infections are common and result in respiratory disease and reduced weight gain in growing pigs. Although PRRS modified live virus (MLV) vaccines are widely used to decrease PRRS-associated losses, they are generally considered inadequate for disease control. The gut microbiome provides an alternative strategy to enhance vaccine efficacy and improve PRRS control. The objective of this study was to identify gut microbiome characteristics associated with improved outcome in pigs immunized with a PRRS MLV and co-challenged with PRRSV and PCV2b. Twenty-eight days after vaccination and prior to co-challenge, fecal samples were collected from an experimental population of 50 nursery pigs. At 42 days post-challenge, 20 pigs were retrospectively identified as having high or low growth outcomes during the post-challenge period. Gut microbiomes of the two outcome groups were compared using the Lawrence Livermore Microbial Detection Array (LLMDA) and 16S rDNA sequencing. High growth outcomes were associated with several gut microbiome characteristics, such as increased bacterial diversity, increased Bacteroides pectinophilus, decreased Mycoplasmataceae species diversity, higher Firmicutes:Bacteroidetes ratios, increased relative abundance of the phylum Spirochaetes, reduced relative abundance of the family Lachnospiraceae, and increased Lachnospiraceae species C6A11 and P6B14. Overall, this study identifies gut microbiomes associated with improved outcomes in PRRS vaccinated pigs following a polymicrobial respiratory challenge and provides evidence towards the gut microbiome playing a role in PRRS vaccine efficacy.
Collapse
|
45
|
Chen N, Li X, Xiao Y, Li S, Zhu J. Characterization of four types of MLV-derived porcine reproductive and respiratory syndrome viruses isolated in unvaccinated pigs from 2016 to 2020. Res Vet Sci 2020; 134:102-111. [PMID: 33360570 DOI: 10.1016/j.rvsc.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Modified live vaccines (MLVs) have been utilized to combat porcine reproductive and respiratory syndrome (PRRS), which raises a serious concern about the MLV-derived PRRS virus (PRRSV) isolates. During the routine investigation of PRRSV in China, four lung samples collected from unvaccinated diseased pigs from 2016 to 2020 were detected as PRRSV positive. The PRRSVs shared high ORF5 identities to CH-1R, JXA1-R, TJM-F92 and RespPRRS MLV vaccines, respectively. The viruses were isolated in Marc-145 cells and denominated as SD1612-1, JS1703-21, JSTZ1907-714 and JSYC20-05-1. Genome comparison confirmed that these isolates share the highest genomic homologies to CH-1R (97.96%), JXA1-R (99.64%), TJM-F92 (99.00%) and RespPRRS MLV (99.57%) than any other known isolates. Genome-based phylogenetic analysis showed that SD1612-1 and CH-1R, JS1703-21 and JXA1-R, JSTZ1907-714 and TJM-F92, JSYC20-05-1 and RespPRRS MLV were grouped in the same branches. In addition, amino acids unique to corresponding vaccine attenuations were also identified in our isolates. Noticeably, amino-acids potentially associated with the virulence revision from MLV strains to parental virulent viruses were also identified in the MLV-derived isolates. Our results confirm that the four types of MLV-derived isolates are circulating and evolving in Chinese swine herds for years, which highlights the necessity for the fair use of PRRS MLVs.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
46
|
Zhao J, Zhu L, Huang J, Yang Z, Xu L, Gu S, Huang Y, Zhang R, Sun X, Zhou Y, Xu Z. Genetic characterization of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like and TJ-like strains. Vet Med Sci 2020; 7:697-704. [PMID: 33277984 PMCID: PMC8136965 DOI: 10.1002/vms3.402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry, including China. Recently, we successfully isolated a porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue and peripheral blood of piglets at a farm from Dujiangyan in Sichuan, China, and named it the DJY-19 strain. The full-length genome sequence of DJY-19 shared 86.8%-94.1% nucleotide similarity with NADC30-like and NADC30 PRRSV strains. We compared the open reading frame (ORF) 5 gene of DJY-19 with 34 PRRSV strains from Genbank. Phylogenetic analysis showed that DJY-19 clustered with NADC30 strains, characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. The results of homology analysis showed that the homology between DJY-19 and NADC30 (JN654459.1) strains was the highest (95.9%), whereas homology with other domestic strains was lower (80.9%-92.6%). Furthermore, we identified four recombination breakpoints in the DJY-19 genome; they separated the DJY-19 genome into four regions. The 8106-9128 nucleotide (nt) region of DIY-19 was highly similar to the TJ strain, and the 12106-12580 nt region of DIY-19 was highly similar to the JXA1-R strain. Our findings demonstrate that DJY-19 arose from the recombination of North America NADC30 strain and TJ strain and JXA1-R in China. The application of multiple attenuated vaccine strains has led to complex recombination of PRRSV strains in China. This study provides a theoretical basis for making a more reasonable PRRS virus control and prevention strategy.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rubo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
47
|
Whole-Genome Sequencing of Porcine Reproductive and Respiratory Syndrome Virus from Field Clinical Samples Improves the Genomic Surveillance of the Virus. J Clin Microbiol 2020; 58:JCM.00097-20. [PMID: 32817228 DOI: 10.1128/jcm.00097-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major economic concern worldwide. There are currently large data sets available about the ORF5 gene of the virus, with thousands of sequences available, but little data are currently available on the full-length genome of PRRSV. We hypothesized that whole-genome sequencing (WGS) of the PRRSV genome would allow better epidemiological monitoring than ORF5 gene sequencing. PRRSV PCR-positive serum, oral fluid, and tissue clinical samples submitted to the diagnostic laboratory for routine surveillance or diagnosis of PRRSV infection in Québec, Canada, swine herds were used. The PRRSV reverse transcription-quantitative PCR Cq values of the processed samples varied between 11.5 and 34.34. PRRSV strain genomes were isolated using a poly (A)-tail method and were sequenced with a MiSeq Illumina sequencer. Ninety-two full-length PRRSV genomes were obtained from 88 clinical samples out of 132 tested samples, resulting in a PRRSV WGS success rate of 66.67%. Three important deletions in ORF1a were found in most wild-type (i.e., not vaccine-like) strains. The importance of these deletions remains undetermined. Two different full-length PRRSV genomes were found in four different samples (three serum samples and one pool of tissues), suggesting a 4.55% PRRSV strain coinfection prevalence in swine. Moreover, six PRRSV whole genomes (6.52% of PRRSV strains) were found to cluster differently than they did under the ORF5 classification method. Overall, WGS of PRRSV enables better strain classification and/or interpretation of results in 9.10% of clinical samples than ORF5 sequencing, as well as allowing interesting research avenues.
Collapse
|
48
|
Assessment of the Impact of the Recombinant Porcine Reproductive and Respiratory Syndrome Virus Horsens Strain on the Reproductive Performance in Pregnant Sows. Pathogens 2020; 9:pathogens9090772. [PMID: 32967283 PMCID: PMC7559163 DOI: 10.3390/pathogens9090772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022] Open
Abstract
This study assessed the impact of a PRRSV (porcine reproductive and respiratory syndrome virus) recombinant strain (Horsens strain) on the reproductive performance of naïve pregnant sows in the last third of gestation. Fifteen sows were included: four negative reproductive controls (NTX), five infected with a PRRSV-1 field strain (Olot/91, T01), and six infected with the recombinant PRRSV-1 strain (Horsens strain, T02). Piglets were monitored until weaning. Reproductive performance was the primary variable. In sows, viremia and nasal shedding (T01 and T02 groups), and, in piglets, viral load in blood and in lungs, as well as macroscopic lung lesions (T01 and T02 groups), were the secondary variables. The reproductive performance results were numerically different between the two challenged groups. Moreover, viral loads in blood were 1.83 × 106 ± 9.05 × 106 copies/mL at farrowing, 1.05 × 107 ± 2.21 × 107 copies/mL at weaning from piglets born from T01 animals and 1.64 × 103 ± 7.62 × 103 copies/mL at farrowing, 1.95 × 103 ± 1.17 × 104 copies/mL at weaning from piglets born from T02 sows. Overall, 68.8% of T01 piglets and 38.1% of T02 piglets presented mild lung lesions. In conclusion, the results suggest that Horsens strain is less virulent than the field strain Olot/91 under these experimental conditions.
Collapse
|
49
|
Wang Y, Yim-Im W, Porter E, Lu N, Anderson J, Noll L, Fang Y, Zhang J, Bai J. Development of a bead-based assay for detection and differentiation of field strains and four vaccine strains of type 2 porcine reproductive and respiratory syndrome virus (PRRSV-2) in the USA. Transbound Emerg Dis 2020; 68:1414-1423. [PMID: 32816334 DOI: 10.1111/tbed.13808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically devastating diseases in swine population in the United States of America. Due to high mutation rate of the PRRS virus (PRRSV) genome, it is difficult to develop an accurate diagnostic assay with high strain coverage. Differentiation of field strains from the four vaccines that have been used in the USA, namely Ingelvac PRRS MLV, Ingelvac ATP, Fostera PRRS and Prime Pac PRRS, adds an additional challenge. It is difficult to use current real-time PCR systems to detect and differentiate the field strains from the vaccine strains. Luminex xTAG technology allows us to detect more molecular targets in a single reaction with a cost similar to a single real-time PCR reaction. By analysing all available 678 type 2 PRRSV (PRRSV-2) complete genome sequences, including the 4 vaccine strains, two pairs of detection primers were designed targeting the conserved regions of ORF4-ORF7, with strain coverage of 98.8% (670/678) based on in silico analysis. The virus strains sharing ≥98% identity of the complete genomes with the vaccine strains were considered vaccine or vaccine-like strains. One pair of primers for each vaccine strain were designed targeting the nsp2 region. In silico analysis showed the assay matched 94.7% (54/57) of Ingelvac PRRS® MLV (MLV) strain and the MLV-like strains, and 100% of the other three vaccine strains. Analytical sensitivity of the Luminex assay was one to two logs lower than that of the reverse transcription real-time PCR assay. Evaluated with 417 PRRSV-2 positive clinical samples, 95% were detected by the Luminex assay. Compared to ORF5 sequencing results, the Luminex assay detected 92.4% (73/79) of MLV strains, 78.3% (18/23) of Fostera strains and 50% (2/4) of ATP strains. None of the 472 samples were the Prime Pac strain tested by either ORF5 sequencing or the Luminex assay.
Collapse
Affiliation(s)
- Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wannarat Yim-Im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Elizabeth Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Bioinformatics Center, Kansas State University, Manhattan, KS, USA
| | - Joe Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Ying Fang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
50
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination. Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|