1
|
Wang G, Deng Q, Zhu P, Punyapornwithaya V, Shi X, Liu Y, Duan X, Li Z, Li W. Genomic sequencing and evolutionary analysis of bovine kobuvirus in Yunnan Province, China. BMC Vet Res 2025; 21:367. [PMID: 40399930 PMCID: PMC12093902 DOI: 10.1186/s12917-025-04811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Bovine Kobuvirus (BKV) is an emerging pathogen associated with diarrhea in cattle. Limited reports on its prevalence and genetic characteristics are available. To determine the epidemiology and genetic evolution of BKV strains circulating in Yunnan Province, China, 204 diarrheal samples were collected from cattle farms across five regions for screening for BKV infection. RESULTS RT-PCR analysis identified 40 BKV-positive samples, yielding an infection rate of 19.6%. Positive samples were inoculated into Vero cells for continuous passage, followed by molecular biology, immunofluorescence, and electron microscopy identification. Two BKV strains, BKV YN-1 2023 and YN-2 2023, were isolated. Whole-genome sequencing revealed genome lengths of 8289 bp and 8291 bp (GenBank No. PV410179 and PV410180), respectively. Phylogenetic analysis demonstrated that both strains belong to genotype B, the dominant genotype circulating in China, and are closely related to the previously reported Chinese strain BKV 13/2021. The genetic similarity of two BKV isolates was analyzed. Genome-wide nucleotide identities ranged from 39.9 to 93.9%, with the highest similarity to BKV13 2021 CHN. ORF analysis showed nucleotide and amino acid similarities of 48.7-93.9% and 29.3-98.5%, respectively. Compared to the BKV13 2021 CHN, both isolates exhibited high conservation in VP0, VP3, and nonstructural proteins (97.8-100%), while the L protein had the lowest similarity (94.7-95.2%). The 5' UTR showed lower conservation than the 3' UTR, suggesting regulatory variations. CONCLUSIONS These findings reveal that the circulating BKV strains in Yunnan belong to the globally prevalent genotype B and are widely distributed. This study provides valuable insights into the molecular epidemiology, genetic diversity and evolutionary dynamics of BKV, offering an important reference for developing diagnostics, vaccines and further studies on its pathogenesis.
Collapse
Affiliation(s)
- Guojun Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Qiuhui Deng
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Peiying Zhu
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Xuseng Shi
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Yan Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinhui Duan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Zailei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Wengui Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Yang D, Ma L, Yang Z, Yang X, Wang J, Ju H, Lu C, Weng Y, Zhao H, Shen H, Li X, Ge F, Wang X, Wu X, Xiang M, Feng G, Tang C, Huang S, Zhao H. Development of a one-step multiplex RT-qPCR method for rapid detection of bovine diarrhea viruses. Front Cell Infect Microbiol 2025; 14:1540710. [PMID: 39935536 PMCID: PMC11810931 DOI: 10.3389/fcimb.2024.1540710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Viral calf diarrhea poses a significant challenge to the cattle industry worldwide due to its high morbidity and mortality rates, leading to substantial economic losses. The clinical symptoms associated with various diarrhea pathogens often overlap, complicating accurate diagnosis; thus, there is an urgent need for rapid and precise diagnostic methods to improve prevention and treatment efforts. In this study, we developed a one-step multiplex reverse-transcription quantitative real-time polymerase chain reaction (mRT-qPCR) that enables the simultaneous detection of three key viral pathogens responsible for calf diarrhea: bovine kobuvirus (BKoV), bovine astrovirus (BoAstV), and bovine torovirus (BToV). However, development of accurate and rapid methods to distinguish these three viruses is helpful for the early detection, disease surveillance, and control of viral calf diarrhea. Methods Specific primers and minor groove binder (MGB)-based probes were designed targeting the 3D region of BKoV, ORF1 region of BoAstV, and N region of BToV. The sensitivity, specificity, and reproducibility ability were evaluated for the mRT-qPCR. Further, 80 bovine fecal samples were subjected to the mRT-qPCR, and the results were verified using conventional reverse-transcription PCR (RT-PCR) or PCR methods and sequencing methods. Results This novel method demonstrated high sensitivity and specificity,achieving a detection limit of 24 copies/mL for each pathogen. Furthermore, the assay exhibited excellent reproducibility, with coefficients of variation below 1.5%, a strong linear correlation (R2 > 0.996), and an amplification efficiency between 90% and 110%. Validation with 80 clinical samples from both diarrheic and non-diarrheic cattle across four farms in Shanghai showed a high degree of concordance with RT-PCR, with positive detection rates for BKoV, BoAstV, and BToV at 28.75%, 8.75%, and 3.75%, respectively, highlighting the predominance of BKoV and BoAstV. Notably, this study represents the first identification of BKoV, BoAstV, and BToV in the Shanghai region. Discussion The mRT-qPCR is a robust, rapid, and simple tool for identifying viral pathogens associated with calf diarrhea, facilitating the development of effective prevention and control measures that are vital for the future sustainability of the cattle industry.
Collapse
Affiliation(s)
- Dequan Yang
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Li Ma
- Department of Technological Research and Development, Hunan Guanmu Biotech Co., Ltd, Changsha, China
| | - Zhongping Yang
- Department of Technological Research and Development, Hunan Guanmu Biotech Co., Ltd, Changsha, China
| | - Xianchao Yang
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Jian Wang
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Houbin Ju
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Chunguang Lu
- Department of Veterinary Laboratory, Jinshan District Animal Disease Control Center, Shanghai, China
| | - Yonggang Weng
- Department of Veterinary Laboratory, Jinshan District Animal Disease Control Center, Shanghai, China
| | - Heping Zhao
- Department of Technological Research and Development, Hunan Guanmu Biotech Co., Ltd, Changsha, China
| | - Haixiao Shen
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Xin Li
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Feifei Ge
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Xiaoxu Wang
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Xiujuan Wu
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Meng Xiang
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Guidan Feng
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Congsheng Tang
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Shixin Huang
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| | - Hongjin Zhao
- Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China
| |
Collapse
|
3
|
Gonzalez FL, Ranaivoson HC, Andrianiaina A, Andry S, Raharinosy V, Randriambolamanantsoa TH, Lacoste V, Dussart P, Héraud JM, Brook CE. Genomic characterization of novel bat kobuviruses in Madagascar: implications for viral evolution and zoonotic risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630179. [PMID: 39763865 PMCID: PMC11703200 DOI: 10.1101/2024.12.24.630179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Kobuviruses (family Picornaviridae, genus Kobuvirus) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, and filoviruses, though much of the bat virome still remains uncharacterized. While most bat virus research has historically focused on immediately recognizable zoonotic clades (e.g. SARS-related coronaviruses), a handful of prior reports catalog kobuvirus infection in bats and posit the role of bats as potential progenitors of downstream kobuvirus evolution. As part of a multi-year study, we carried out metagenomic Next Generation Sequencing (mNGS) on fecal samples obtained from endemic, wild-caught Madagascar fruit bats to characterize potentially zoonotic viruses circulating within these populations. The wild bats of Madagascar represent diverse Asian and African phylogeographic histories, presenting a unique opportunity for viruses from disparate origins to mix, posing significant public health threats. Here, we report detection of kobuvirus RNA in Malagasy fruit bat (Eidolon dupreanum) feces and undertake phylogenetic characterization of one full genome kobuvirus sequence, which nests within the Aichivirus A clade - a kobuvirus clade known to infect a wide range of hosts including humans, rodents, canids, felids, birds, and bats. Given the propensity of kobuviruses for recombination and cross-species infection, further characterization of this clade is critical to accurate evaluation of future zoonotic threats.
Collapse
Affiliation(s)
- Freddy L Gonzalez
- Department of Ecology and Evolution, University of Chicago, IL, United States
- Department of Ecology and Evolutionary Biology, Yale University, CT, United States
| | - Hafaliana Christian Ranaivoson
- Department of Ecology and Evolution, University of Chicago, IL, United States
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Madagascar
- Virology Unit, Institut Pasteur de Madagascar, Anatananarivo, Madagascar
| | - Angelo Andrianiaina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Madagascar
| | - Santino Andry
- Department of Entomology, University of Antananarivo, Madagascar
| | | | | | - Vincent Lacoste
- Virology Unit, Institut Pasteur de Madagascar, Anatananarivo, Madagascar
| | - Philippe Dussart
- Virology Unit, Institut Pasteur de Madagascar, Anatananarivo, Madagascar
| | - Jean-Michel Héraud
- Virology Unit, Institut Pasteur de Madagascar, Anatananarivo, Madagascar
| | - Cara E Brook
- Department of Ecology and Evolution, University of Chicago, IL, United States
| |
Collapse
|
4
|
Chae JB, Shin SU, Kim S, Chae H, Kim WG, Chae JS, Song H, Kang JW. Identification of a new bovine picornavirus ( Boosepivirus) in the Republic of Korea. J Vet Sci 2024; 25:e59. [PMID: 39237364 PMCID: PMC11450388 DOI: 10.4142/jvs.24148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
IMPORTANCE Despite advancements in herd management, feeding, and pharmaceutical interventions, neonatal calf diarrhea (NCD) remains a major global health concern. Bacteria, viruses, and parasites are the major contributors to NCD. Although several pathogens have been identified in the Republic of Korea (ROK), the etiological agents of numerous NCD cases have not been identified. OBJECTIVE To identify, for the first time, the prevalence and impact of Boosepivirus (BooV) on calf diarrhea in the ROK. METHODS Here, the unknown cause of calf diarrhea was determined using metagenomics We then explored the prevalence of certain pathogens, including BooV, that cause NCD. Seventy diarrheal fecal samples from Hanwoo (Bos taurus coreanae) calves were analyzed using reverse transcriptase and quantitative real-time polymerase chain reaction for pathogen detection and BooV isolate sequencing. RESULTS The complete genome of BooV was detected from unknown causes of calf diarrhea. And also, BooV was the most frequently detected pathogen (35.7%) among 8 pathogens in 70 diarrheic feces from Hanwoo calves. Co-infection analyses indicated that most BooV-positive samples were solely infected with BooV, indicating its significance in NCD in the ROK. All isolates were classified as BooV B in phylogenetic analysis. CONCLUSIONS AND RELEVANCE This is the first study to determine the prevalence and molecular characteristics of BooV in calf diarrhea in the ROK, highlighting the potential importance of BooV as a causative agent of calf diarrhea and highlighting the need for further research on its epidemiology and pathogenicity.
Collapse
Affiliation(s)
- Jeong-Byoung Chae
- Bio Team, Animal Industry Data Korea, Seoul 06152, Korea
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seung-Uk Shin
- Bio Team, Animal Industry Data Korea, Seoul 06152, Korea
| | - Serim Kim
- Bio Team, Animal Industry Data Korea, Seoul 06152, Korea
| | - Hansong Chae
- Bio Team, Animal Industry Data Korea, Seoul 06152, Korea
| | - Won Gyeong Kim
- Bio Team, Animal Industry Data Korea, Seoul 06152, Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyuk Song
- Department of Stem Cells and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Korea
| | - Jung-Won Kang
- Bio Team, Animal Industry Data Korea, Seoul 06152, Korea.
| |
Collapse
|
5
|
Alfano F, Lucibelli MG, Serra F, Levante M, Rea S, Gallo A, Petrucci F, Pucciarelli A, Picazio G, Monini M, Di Bartolo I, d’Ovidio D, Santoro M, De Carlo E, Fusco G, Amoroso MG. Identification of Aichivirus in a Pet Rat ( Rattus norvegicus) in Italy. Animals (Basel) 2024; 14:1765. [PMID: 38929384 PMCID: PMC11200523 DOI: 10.3390/ani14121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
We investigated the occurrence of eight potential zoonotic viruses in 91 exotic companion mammals from pet shops in southern Italy via real-time PCR and end-point PCR. The animals were screened for aichivirus, sapovirus, astrovirus, hepatitis A, noroviruses (GI and GII), rotavirus, circovirus, and SARS-CoV-2. Among the nine species of exotic pets studied, only one rat tested positive for aichivirus. The high sequence similarity to a murine kobuvirus-1 strain previously identified in China suggests that the virus may have been introduced into Italy through the importation of animals from Asia. Since exotic companion mammals live in close contact with humans, continuous sanitary monitoring is crucial to prevent the spread of new pathogens among domestic animals and humans. Further investigations on detecting and typing zoonotic viruses are needed to identify emerging and re-emerging viruses to safeguard public health.
Collapse
Affiliation(s)
- Flora Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Gabriella Lucibelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Francesco Serra
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Martina Levante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Simona Rea
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Amalia Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Federica Petrucci
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Alessia Pucciarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Gerardo Picazio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Marina Monini
- Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (I.D.B.)
| | | | | | - Mario Santoro
- Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy;
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.G.L.); (F.S.); (M.L.); (S.R.); (A.G.); (A.P.); (G.P.); (E.D.C.); (G.F.); (M.G.A.)
| |
Collapse
|
6
|
Yang C, Abi KM, Yue H, Yang F, Tang C. First identification of a novel Aichivirus D in goats with diarrhea. JOURNAL OF INTEGRATIVE AGRICULTURE 2024; 23:1442-1446. [DOI: 10.1016/j.jia.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Savard C, Wang L. Identification and Genomic Characterization of Bovine Boosepivirus A in the United States and Canada. Viruses 2024; 16:307. [PMID: 38400082 PMCID: PMC10893527 DOI: 10.3390/v16020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Boosepivirus is a new genus in the Picornaviridae family. Boosepiviruses (BooVs) are genetically classified into three species: A, B, and C. Initially, Boosepivirus A and B were identified in cattle, whereas Boosepivirus C was detected in sheep. Recent evidence showed that Boosepivirus B was detected in sheep and Boosepivirus C was identified in goats, suggesting that Boosepvirus might cross the species barrier to infect different hosts. Different from BooV B, BooV A is less studied. In the present study, we reported identification of two North American BooV A strains from cattle. Genomic characterization revealed that US IL33712 (GenBank accession #PP035161) and Canada 1087562 (GenBank accession #PP035162) BooV A strains are distantly related to each other, and US IL33712 is more closely correlated to two Asian BooV A strains. US-strain-specific insertions, NorthAmerican-strain-specific insertions, and species A-specific insertions are observed and could contribute to viral pathogenicity and host adaptation. Our findings highlight the importance of continued surveillance of BooV A in animals.
Collapse
Affiliation(s)
- Christian Savard
- Biovet Inc., 4375, Avenue Beaudry, Saint-Hyacinthe, QC J2S 8W2, Canada;
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| |
Collapse
|
8
|
Savard C, Wang L. Identification and Genomic Characterization of Bovine Boosepivirus A in the United States and Canada. Viruses 2024; 16:307. [DOI: https:/doi.org/10.3390/v16020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Boosepivirus is a new genus in the Picornaviridae family. Boosepiviruses (BooVs) are genetically classified into three species: A, B, and C. Initially, Boosepivirus A and B were identified in cattle, whereas Boosepivirus C was detected in sheep. Recent evidence showed that Boosepivirus B was detected in sheep and Boosepivirus C was identified in goats, suggesting that Boosepvirus might cross the species barrier to infect different hosts. Different from BooV B, BooV A is less studied. In the present study, we reported identification of two North American BooV A strains from cattle. Genomic characterization revealed that US IL33712 (GenBank accession #PP035161) and Canada 1087562 (GenBank accession #PP035162) BooV A strains are distantly related to each other, and US IL33712 is more closely correlated to two Asian BooV A strains. US-strain-specific insertions, NorthAmerican-strain-specific insertions, and species A-specific insertions are observed and could contribute to viral pathogenicity and host adaptation. Our findings highlight the importance of continued surveillance of BooV A in animals.
Collapse
Affiliation(s)
- Christian Savard
- Biovet Inc., 4375, Avenue Beaudry, Saint-Hyacinthe, QC J2S 8W2, Canada
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| |
Collapse
|
9
|
Han M, Han S. A novel multiplex RT-qPCR assay for simultaneous detection of bovine norovirus, torovirus, and kobuvirus in fecal samples from diarrheic calves. J Vet Diagn Invest 2023; 35:742-750. [PMID: 37571922 PMCID: PMC10621540 DOI: 10.1177/10406387231191723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Calf diarrhea results in significant economic loss and is caused by a variety of pathogens, including enteric viruses. Many of these viruses, including bovine norovirus (BNoV), bovine torovirus (BToV), and bovine kobuvirus (BKoV), are recognized as the causative agents of diarrhea; however, they remain understudied as major pathogens. We developed a multiplex reverse-transcription quantitative real-time PCR (RT-qPCR) assay for rapid and simple detection of BNoV, BToV, and BKoV. Our method had high sensitivity and specificity, with detection limits of 1 × 102 copies/μL for BNoV, BToV, and BKoV, which is a lower detection limit than conventional RT-PCR for BNoV and BKoV and identical for BToV. We tested fecal samples from 167 diarrheic calves with our multiplex RT-qPCR method. Viral detection was superior to conventional RT-PCR methods in all samples. The diagnostic sensitivity of the multiplex RT-qPCR method (100%) is higher than that of the conventional RT-PCR methods (87%). Our assay can detect BNoV, BToV, and BKoV in calf feces rapidly and with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mina Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Seongtae Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| |
Collapse
|
10
|
Yan N, Yue H, Liu Q, Wang G, Tang C, Liao M. Isolation and Characteristics of a Novel Aichivirus D from Yak. Microbiol Spectr 2023; 11:e0009923. [PMID: 37097198 PMCID: PMC10269754 DOI: 10.1128/spectrum.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Aichivirus D (AiV-D) is a newly emerging Kobuvirus detected in bovine and sheep, and information is limited regarding its biological significance and prevalence. This study aimed to explore both the prevalence and characteristics of AiV-D in yaks. From May to August 2021, 117 fecal samples were collected from yaks with diarrhea in three provinces of China's Qinghai-Tibet Plateau, 15 of which were selected and pooled for metagenomic analysis. A high abundance of AiV-D sequences was obtained. Of the 117 diarrhea samples, 29 (24.8%) tested AiV-D-positive, including 33.3% (14/42) from Sichuan, 21.1% (8/38) from Qinghai, and 18.9% (7/37) from Tibet, respectively, suggesting a wide geographical distribution of the AiV-D in yaks in the Qinghai-Tibet Plateau. Furthermore, three AiV-D strains were successfully isolated using Vero cells. Significantly, the AiV-D strain could cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, duodenum, colon, cecum, and rectum. Based on phylogenetic analysis of the genome and capsid protein P1 (VP0, VP3, and VP1 genes), the yak AiV-D strains likely represent a novel genotype of AiV-D. On the whole, this study identified a novel genotype of AiV-D from yaks, which was successfully isolated, and confirmed that this virus is a diarrhea pathogen in yaks and has a wide geographical distribution in the Qinghai-Tibet Plateau. Our results expand the host range of AiV-D and the pathogen spectrum of yaks and have significant implications for diagnosing and controlling diarrhea in yaks. IMPORTANCE In this study, we identified and successfully isolated a novel genotype of AiV-D from yaks. Animal infection confirmed that this virus can cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, cecum, duodenum, colon, and rectum. All of these results have significant implications for diagnosing and controlling diarrhea in yaks. These novel AiV-D strains have a wide geographical distribution in yaks from the Qinghai-Tibet Plateau in China. In addition to expanding the host range of AiV-D and the pathogen spectrum of yaks, these findings can increase knowledge of the prevalence and diversity of AiV-D.
Collapse
Affiliation(s)
- Nan Yan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Field Observation and Experiment Station on Animal Blight of Guangdong Province, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Ji C, Zhang Y, Feng Y, Zhang X, Ma J, Pan Z, Kawaguchi A, Yao H. Systematic Surveillance of an Emerging Picornavirus among Cattle and Sheep in China. Microbiol Spectr 2023; 11:e0504022. [PMID: 37162348 PMCID: PMC10269770 DOI: 10.1128/spectrum.05040-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 05/11/2023] Open
Abstract
Emerging viruses are a constant threat to human and animal health. Boosepivirus is a novel picornavirus considered a gastrointestinal pathogen and has broken out in recent years. In 2020, we identified a strain of boosepivirus NX20-1 from Chinese calf feces and performed genetic characterization and evolutionary analysis. NX20-1 was closely related to the Japanese strain Bo-12-38/2009/JPN and belonged to Boosepivirus B. We found that 64 of 603 samples (10.6%) from 20 different provinces across the country were positive for boosepivirus by reverse transcription (RT)-PCR. Further, coinfection with other diarrheal pathogens was also present in 35 of these positive samples. Importantly, we found the prevalence of boosepivirus in sheep as well, indicating that Boosepivirus can infect different domestic animals. Our data suggest that boosepivirus is a potential diarrheal pathogen, but the pathogenicity and the mechanism of pathogenesis need further study. IMPORTANCE We identified a novel picornavirus, boosepivirus, for the first time in China. Genetic evolutionary analysis revealed that NX20-1 strain was closely related to the Japanese strain Bo-12-38/2009/JPN and belonged to Boosepivirus B. In addition, we found that the virus was prevalent in China with an overall positivity rate of 10.6% (64 of 603 samples), and there was significant coinfection with other pathogens. Importantly, we found the prevalence of boosepivirus in sheep as well, suggesting that boosepivirus has a risk of spillover and can be transmitted across species.
Collapse
Affiliation(s)
- Chengyuan Ji
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yiqiu Feng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinqin Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiale Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Huochun Yao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Righi C, Curini V, Torresi C, Cammà C, Pirani S, Di Lollo V, Gobbi P, Giammarioli M, Viola G, Pela M, Feliziani F, Petrini S. Molecular Detection and Genetic Characterization of Bovine Kobuvirus (BKV) in Diarrhoeic Calves in a Central Italy Herd. Transbound Emerg Dis 2023; 2023:6637801. [PMID: 40303754 PMCID: PMC12016806 DOI: 10.1155/2023/6637801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 01/05/2025]
Abstract
Bovine kobuvirus (BKV) is an infectious agent associated with neonatal calf diarrhoea (NCD), causing important economic losses to dairy and beef cattle herds worldwide. Here, we present the detection rate and characterize the genome of BKV isolated from diarrhoeic calves from a Central Italy herd. From January to December 2021, we collected blood samples and nasal and rectal swabs from 66 calves with severe NCD between 3 and 20 days of age. After virological (bovine coronavirus, bovine viral diarrhoea virus, and bovine rotavirus), bacteriological (Escherichia coli spp. and Salmonella spp.), and parasitological (Cryptosporidium spp., Eimeria spp., and Giardia duodenalis) investigations, we detected BKV using the metagenomic analysis. This result was confirmed using a specific polymerase chain reaction assay that revealed the number of BKV-positive nasal (24.2%) and rectal swabs (31.8%). The prevalence of BKV was higher than that of BCoV. Coinfection with BKV and BCoV was detected in 7.5% of the rectal swabs, highlighting the involvement of another infectious agent in NCD. Using next generation sequencing (NGS) approach, it was possible to obtain the complete sequence of the BKV genome from other two rectal swabs previously analysed by real-time PCR. This is the first report describing the whole genome sequence (WGS) of BKV from Italy. The Italian BKV genomes showed the highest nucleotide sequence identity with BKV KY407744.1, identified in Egypt in 2014. The sequence encoding VP1 best matched that of BKV KY024562, identified in Scotland in 2013. Considering the small number of BKV WGSs available in public databases, further studies are urgently required to assess the whole genome constellation of circulating BKV strains. Furthermore, pathogenicity studies should be conducted by inoculating calves with either only BKV or a combination with other enteric pathogens for understanding the probable role of BKV in NCD.
Collapse
Affiliation(s)
- Cecilia Righi
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo 64100, Italy
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo 64100, Italy
| | - Silvia Pirani
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo 64100, Italy
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| | - Giulio Viola
- Veterinary Practitioner, San Ginesio 62026, Italy
| | - Michela Pela
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati“, Perugia 06126, Italy
| |
Collapse
|
13
|
Wang L, Lim A, Fredrickson R. Genomic characterization of a new bovine picornavirus (boosepivirus) in diarrheal cattle and detection in different states of the United States, 2019. Transbound Emerg Dis 2022; 69:3109-3114. [PMID: 34761864 DOI: 10.1111/tbed.14390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/05/2023]
Abstract
The Boosepivirus is a newly proposed genus in the family Picornaviridae in 2020. Bovine boosepiviruses (BooV) were initially identified in diarrheal cattle through deep sequencing in Japan in 2009. These diarrheal cases were either BooV alone positive or coinfection with other viruses, suggesting that BooV is an enteric pathogen. In 2019, through metagenomic sequencing, a US BooV strain IL41203-19 was identified in the fecal sample of a 10-day old calf with diarrhea and characterized in the present study. Genomic characterization revealed that IL41203-19 share the highest identities with the Japan BooV strain (Bo-12-7/2009/JPN) at both the complete nucleotide and amino acid levels, belonging to Boosepivirus B species in the genus Boosepivirus. Further real-time RT-PCR testing of 84 clinical samples from the diarrheal testing panel showed that five were positive for BooV and were all coinfected with one to four other enteric pathogens. Our data provided further evidence that BooV might contribute to cattle diarrhea observed in different states. Future studies on epidemiology and pathogenesis of bovine BooV are warranted.
Collapse
Affiliation(s)
- Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Ailam Lim
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
14
|
Abi KM, Yang C, Tang C, Jing ZZ. Aichivirus C isolate is a diarrhea-causing pathogen in goats. Transbound Emerg Dis 2022; 69:e2268-e2275. [PMID: 35502695 DOI: 10.1111/tbed.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
Aichivirus C is an emerging virus in goats, but its biological significance remains unknown. In this study, 18 diarrheic and 16 non-diarrheic fecal samples of kids were collected from a farm with an ongoing diarrheic outbreak in Sichuan Province, China in May 2021. Of these samples, 77.8% (14/18) of diarrheic samples were detected as Aichivirus C positive by RT-PCR, which was significantly higher than that of non-diarrheic feces (0%, p<0.001); meanwhile, other common diarrhea-causing pathogens in goats were not detected in diarrheic samples, except for two samples that were detected as caprine enterovirus positive, suggesting that Aichivirus C was associated with goat diarrhea. Furthermore, five Aichivirus C strains were successfully isolated from positive samples using Vero cell lines and two isolates further plaque-purified, named SWUN/F5/2021(10-6.7 TCID50 /0.1ml) and SWUN/F6/2021(10-7 TCID50 /0.1ml). Interestingly, Aichivirus C strain could cause systemic infection in experimental kids via oral administration, with the main clinical manifestation being severe watery diarrhea. Histopathological changes observed in the duodenum and jejunum were characteristic, with shedding of mucosal epithelial cells. In addition, the virus was detected in tissues of diarrhea kids naturally infected with Aichivirus C, exhibiting pathological changes similar to those of experimental infections. Overall, this study first isolated Aichivirus C and confirmed its pathogenicity on kids, with further study needed to better understand virus pathogenicity. As Aichivirus C has been detected in South Korea, Italy, and the USA and widely prevalent in southwest China, the results obtained here have significant implications for the diagnosis and control of diarrhea in goats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Keha-Mo Abi
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Chen Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| |
Collapse
|
15
|
Savard C, Ariel O, Fredrickson R, Wang L, Broes A. Detection and genome characterization of bovine kobuvirus (BKV) in faecal samples from diarrhoeic calves in Quebec, Canada. Transbound Emerg Dis 2022; 69:1649-1655. [PMID: 33788413 PMCID: PMC8938984 DOI: 10.1111/tbed.14086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Kobuviruses are known to infect the gastrointestinal tract of different animal species. Since its discovery in 2003, bovine kobuvirus (BKV) has been identified in faecal samples from diarrhoeic cattle in many countries, but only recently in North America. Although its possible role as an agent of calf diarrhoea remains to be determined, evidence is mounting. Our study reports for the first time the detection of BKV in faecal samples from diarrhoeic calves raised in Quebec, Canada. BKV was more commonly identified than eight known and common enteric calf pathogens. Further sequence analysis revealed that Canada BKV strain 1,043,507 was more closely correlated with the US BKV IL35164 strain than other BKV strains with complete genome. Continued surveillance and genomic characterization are needed to monitor BKV in the cattle around the world.
Collapse
Affiliation(s)
| | | | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
16
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|
17
|
Hause BM, Nelson E, Christopher-Hennings J. Identification of boosepivirus B in U.S. calves. Arch Virol 2021; 166:3193-3197. [PMID: 34528138 PMCID: PMC8442811 DOI: 10.1007/s00705-021-05231-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Bovine enteric disease has a complex etiology that can include viral, bacterial, and parasitic pathogens and is a significant source of losses due to morbidity and mortality. Boosepivirus was identified in calves with enteric disease with unclear etiology in Japan in 2009 and has not been reported elsewhere. Metagenomic sequencing and PCR here identified boosepivirus in bovine enteric disease diagnostic submissions from six states in the USA with 98% sequence identity to members of the species Boosepivirus B. In all cases, boosepivirus was identified as a coinfection with the established pathogens bovine coronavirus, bovine rotavirus, and cryptosporidia. Further research is needed to determine the clinical significance of boosepivirus infection.
Collapse
Affiliation(s)
- Ben M Hause
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Jane Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| |
Collapse
|
18
|
Zhang M, You F, Wu F, He H, Li Q, Chen Q. Epidemiology and genetic characteristics of murine kobuvirus from faecal samples of Rattus losea, Rattus tanezumi and Rattus norvegicus in southern China. J Gen Virol 2021; 102. [PMID: 34486970 PMCID: PMC8567428 DOI: 10.1099/jgv.0.001646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently, murine kobuvirus (MuKV), a novel member of the family Picornaviridae, was identified in faecal samples of Rattus norvegicus in China. The limited information on the circulation of MuKV in other murine rodent species prompted us to investigate its prevalence and conduct a genetic characterization of MuKV in Rattus losea, Rattus tanezumi and Rattus norvegicus in China. Between 2015 and 2017, 243 faecal samples of these three murine rodent species from three regions in southern China were screened for the presence of MuKV. The overall prevalence was 23.0% (56/243). Three complete MuKV polyprotein sequences were acquired, and the genome organization was determined. Phylogenetic analyses suggested that our sequences were closely related to Chinese strains and belong to the species Aichivirus A in the genus Kobuvirus. Additional studies are required to understand the true prevalence of MuKV in murine rodent populations in China.
Collapse
Affiliation(s)
- Minyi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Fangfei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Fei Wu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Qiushuang Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
19
|
Castells M, Colina R. Viral Enteritis in Cattle: To Well Known Viruses and Beyond. MICROBIOLOGY RESEARCH 2021; 12:663-682. [DOI: 10.3390/microbiolres12030048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.
Collapse
Affiliation(s)
- Matías Castells
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| | - Rodney Colina
- Centro Universitario Regional Litoral Norte, Laboratorio de Virología Molecular, Universidad de la República, Salto 50000, Uruguay
| |
Collapse
|
20
|
Hao L, Chen C, Bailey K, Wang L. Bovine kobuvirus-A comprehensive review. Transbound Emerg Dis 2021; 68:1886-1894. [PMID: 33146459 DOI: 10.1111/tbed.13909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023]
Abstract
Bovine kobuvirus (BKV) is a single-stranded, positive sense, non-enveloped RNA virus in genus Kobuvirus of family Picornavirus. BKV was first identified in the culture media of HeLa cell containing calf serum in 2003. Since then, BKV has been detected in 13 countries of four different continents, suggesting widespread in the world. Herein, we review the detection and genomic characterization of BKV in 13 countries. All studies tested bovine faecal samples for BKV. These studies provide evidence that BKV might be a causative agent for neonatal calf diarrhoea. Therefore, further efforts including animal challenge study are urgently needed to unveil the pathogenicity of BKV.
Collapse
Affiliation(s)
- Lili Hao
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Chaoxi Chen
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Keith Bailey
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Epidemiology, Genetic Characterization, and Evolution of Hunnivirus Carried by Rattus norvegicus and Rattus tanezumi: The First Epidemiological Evidence from Southern China. Pathogens 2021; 10:pathogens10060661. [PMID: 34071186 PMCID: PMC8226955 DOI: 10.3390/pathogens10060661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Hunnivirus is a novel member of the family Picornaviridae. A single species, Hunnivirus A, is currently described. However, there is limited information on the identification of Hunnivirus to date, and thereby the circulation of Hunnivirus is not fully understood. Thus, the objective of this study was to investigate the prevalence, genomic characteristics, and evolution of rat hunnivirus in southern China. A total of 404 fecal samples were subjected to detection of Hunnivirus from urban rats (Rattus norvegicus and Rattus tanezumi) using PCR assay based on specific primers targeted to partial 3D regions, with the prevalence of 17.8% in Rattus norvegicus and 15.6% in Rattus tanezumi. An almost full-length rat hunnivirus sequence (RatHuV/YY12/CHN) and the genome structure were acquired in the present study. Phylogenetic analysis of the P1 coding regions suggested the RatHuV/YY12/CHN sequence was found to be within the genotype of Hunnivirus A4. The negative selection was further identified based on analysis of non-synonymous to synonymous substitution rates. The present findings suggest that hunniviruses are common in urban rats. Further research is needed for increased surveillance and awareness of potential risks to human health.
Collapse
|
22
|
Abi KM, Yu Z, Jing ZZ, Tang C. Identification of a novel Aichivirus D in sheep. INFECTION GENETICS AND EVOLUTION 2021; 91:104810. [PMID: 33741511 DOI: 10.1016/j.meegid.2021.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel kobuvirus was found in diarrheal fecal samples of Tibetan sheep using a viral metagenomics approach, and a full kobuvirus genome was successfully obtained by RT-PCR from a diarrheal fecal sample. The full genomic sequence was 8485 nucleotides (nt) in length with a standard picornavirus genome organization. The novel genome shares 62.9% and 77.8% nt homology with Aichivirus D1 genotype strain 1-22-KoV, and Aichivirus D2 genotype strain 2-44-KoV, respectively. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), the new kobuvirus belongs to Aichivirus species D. Interestingly, compared with 2 known Aichivirus D genotype strains, the novel Aichivirus D has unique amino acid substitutions in the 5'untranslated region (-UTR), VP0, VP3, and VP1, with a recombination event in the 2C region.These characteristics make the novel Aichivirus D cluster into an independent branch in the phylogenetic tree, suggesting that strain may represent a novel genotype in Aichivirus D. Moreover, the novel Aichivirus D was detected in 9.2% (18/195) of the sheep diarrheal fecal samples from 4 farms in 3 counties of the Qinghai Tibet Plateau in China. In addition, full-length VP0, VP3, and VP1 genes were successfully obtained from 12 samples from 4 farms, and phylogenetic analysis based on these genes revealed a unique evolutionary pattern for this novel Aichivirus D strain. This study identified a novel Aichivirus D that is circulating in sheep in Qinghai Tibet Plateau in China and these findings provide a better understanding of the epidemiologic and genetic evolution of kobuviruses.
Collapse
Affiliation(s)
- Keha-Mo Abi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhonghua Yu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Hongyuan 624400, PR China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
23
|
Abi KM, Zhang Q, Jing ZZ, Tang C. First detection and molecular characteristics of caprine kobuvirus in goats in China. INFECTION GENETICS AND EVOLUTION 2020; 85:104566. [PMID: 32976973 DOI: 10.1016/j.meegid.2020.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
Caprine kobuvirus (CKoV), a member of the genus Kobuvirus, has only been identified in South Korea and Italy until now. In this study, 24 goat diarrheic fecal samples were collected from 3 farms in Sichuan province, China, and 87.5% (21/24) samples were detected as CKoV positive by RT-PCR. Meanwhile, full-length VP0, VP3, and VP1 genes were simultaneously cloned from 17 clinical samples. Phylogenetic analysis showed that all CKoV strains were most closely related to porcine kobuvirus based on amino acid (aa) sequences of VP0 and VP3 proteins, but CKoV strains were closely related to with Aichivirus B strains (ferret, bovine, and sheep kobuvirus) based on aa sequences of the VP1 protein. Interestingly, compared with known CKoV strains in the GenBank database, Chinese CKoV strains have unique amino acid changes in VP0 and VP1 proteins. Moreover, the first Chinese CKoV nearly complete genome was successfully obtained from a diarrheic fecal sample, named SWUN/F11/2019. Compared with the two known CKoV strains, five aa mutations (S60A, L252I, V267T, I, V 306 L, V331I) were found in the VP0 gene and 7 aa mutations (S57N, G, T243A, V244I, T, A248V, L, S251A, R252H, and M255L) were found in VP1 in the SWUN/F11/2019 genome. This was the first report of the detection and molecular characteristics of CKoV from goats in China, which could be helpful for improving the understanding of the prevalence and genetic evolution of CKoV.
Collapse
Affiliation(s)
- Keha-Mo Abi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, P.R. China
| | - Qi Zhang
- College of Life Science and Technology, Southwest Minzu University and Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Zhi Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, P.R. China.
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University and Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China.
| |
Collapse
|