1
|
Xu L, Wang L, Song Y, Tong L. Metagenomic next-generation sequencing assistance in identifying Mycobacterium iranicum pulmonary infection: A case report. Diagn Microbiol Infect Dis 2024; 110:116445. [PMID: 39024931 DOI: 10.1016/j.diagmicrobio.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Nontuberculous mycobacteria (NTM) are important opportunistic pathogens in humans, mostly affecting the lungs, and potentially causing progressive disease in individuals with underlying diseases. The prevalence of NTM infections is increasing worldwide. However, Mycobacterium iranicum (M. iranicum) infections are less common. Here we report a 65-year-old female who developed pneumonia caused by Mycobacterium iranicum, which was detected in bronchoalveolar lavage fluid (BALF) through metagenomic next-generation sequencing (mNGS). The patient was treated with moxifloxacin, doxycycline, and sulfamethoxazole/trimethoprim. Symptoms were relieved and lung abnormalities were shown to be partially absorbed on the follow-up chest computed tomography (CT) scans. As we know, this is the first case of Mycobacterium iranicum pulmonary infection identified by mNGS in BALF.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing 401120, PR China
| | - Linlin Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
2
|
Brown-Elliott BA, Wallace RJ, Wengenack NL, Workman SD, Cameron ADS, Bush G, Hughes MD, Melton S, Gonzalez-Ramirez B, Rodriguez E, Somayaji K, Klapperich C, Viers M, Bolaji AJ, Rempel E, Alexander DC. Emergence of Inducible Macrolide Resistance in Mycobacterium chelonae Due to Broad-Host-Range Plasmid and Chromosomal Variants of the Novel 23S rRNA Methylase Gene, erm(55). J Clin Microbiol 2023; 61:e0042823. [PMID: 37347171 PMCID: PMC10358161 DOI: 10.1128/jcm.00428-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Macrolides are a mainstay of therapy for infections due to nontuberculous mycobacteria (NTM). Among rapidly growing mycobacteria (RGM), inducible macrolide resistance is associated with four chromosomal 23S rRNA methylase (erm) genes. Beginning in 2018, we detected high-level inducible clarithromycin resistance (MICs of ≥16μg/mL) in clinical isolates of Mycobacterium chelonae, an RGM species not previously known to contain erm genes. Using whole-genome sequencing, we identified a novel plasmid-mediated erm gene. This gene, designated erm(55)P, exhibits <65% amino acid identity to previously described RGM erm genes. Two additional chromosomal erm(55) alleles, with sequence identities of 81% to 86% to erm(55)P, were also identified and designated erm(55)C and erm(55)T. The erm(55)T is part of a transposon. The erm(55)P allele variant is located on a putative 137-kb conjugative plasmid, pMchErm55. Evaluation of 133 consecutive isolates from 2020 to 2022 revealed 5 (3.8%) with erm(55). The erm(55)P gene was also identified in public data sets of two emerging pathogenic pigmented RGM species: Mycobacterium iranicum and Mycobacterium obuense, dating back to 2008. In both species, the gene appeared to be present on plasmids homologous to pMchErm55. Plasmid-mediated macrolide resistance, not described previously for any NTM species, appears to have spread to multiple RGM species. This has important implications for antimicrobial susceptibility guidelines and treatment of RGM infections. Further spread could present serious consequences for treatment of other macrolide-susceptible RGM. Additional studies are needed to determine the transmissibility of pMchErm55 and the distribution of erm(55) among other RGM species.
Collapse
Affiliation(s)
- Barbara A. Brown-Elliott
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Richard J. Wallace
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Nancy L. Wengenack
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sean D. Workman
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | | | - Georgie Bush
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - M. Dolores Hughes
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Stephanie Melton
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Bibiana Gonzalez-Ramirez
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Eliana Rodriguez
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kavya Somayaji
- Mycobacteria/Nocardia Research Laboratory, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | | | - Mary Viers
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayooluwa J. Bolaji
- Cadham Provincial Laboratory, Diagnostic Services, Shared Health, Winnipeg, Manitoba, Canada
| | - Emma Rempel
- Cadham Provincial Laboratory, Diagnostic Services, Shared Health, Winnipeg, Manitoba, Canada
| | - David C. Alexander
- Cadham Provincial Laboratory, Diagnostic Services, Shared Health, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Kamau E, Yang S. Metagenomic Sequencing of Positive Blood Culture Fluid for Accurate Bacterial and Fungal Species Identification: A Pilot Study. Microorganisms 2023; 11:1259. [PMID: 37317232 DOI: 10.3390/microorganisms11051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
With blood stream infections (BSIs) representing a major cause of mortality and morbidity worldwide, blood cultures play a crucial role in diagnosis, but their clinical application is dampened by the long turn-around time and the detection of only culturable pathogens. In this study, we developed and validated a shotgun metagenomics next-generation sequencing (mNGS) test directly from positive blood culture fluid, allowing for the identification of fastidious or slow growing microorganisms more rapidly. The test was built based on previously validated next-generation sequencing tests, which rely on several key marker genes for bacterial and fungal identification. The new test utilizes an open-source metagenomics CZ-ID platform for the initial analysis to generate the most likely candidate species, which is then used as a reference genome for downstream, confirmatory analysis. This approach is innovative because it takes advantage of an open-source software's agnostic taxonomic calling capability while still relying on the more established and previously validated marker gene-based identification scheme, increasing the confidence in the final results. The test showed high accuracy (100%, 30/30) for both bacterial and fungal microorganisms. We further demonstrated its clinical utility especially for anaerobes and mycobacteria that are either fastidious, slow growing, or unusual. Although applicable in only limited settings, the Positive Blood Culture mNGS test provides an incremental improvement in solving the unmet clinical needs for the diagnosis of challenging BSIs.
Collapse
Affiliation(s)
- Edwin Kamau
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|