1
|
Akineden A, ÇiÇek C, TÜrkel S, Khan IU, Abdulmawjood A. Pheno- and Genotypic Epidemiological Characterization of Vancomycin-Resistant Enterococcus faecium Isolates from Intensive Care Unit Patients in Central Türkiye. Pol J Microbiol 2024; 73:403-410. [PMID: 39268956 PMCID: PMC11395416 DOI: 10.33073/pjm-2024-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 09/15/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) has been detected in Türkiye. Only limited information is available on its dissemination in the central regions of the country. This study describes the first epidemiological characterization of VRE clinical isolates detected in patients in a hospital in the province of Aksaray. In this one-year study conducted between 2021 and 2022, stool samples from intensive care unit patients were screened for VRE using the phenotypic E-test method, and the antibiotic sensitivity test was analyzed by using the VITEK® 2 system. A molecular assay for confirmation of species level was carried out by 16S rRNA gene-based sequencing and testing for antibiotic resistance (vanA or vanB) and virulence factor-encoding genes (esp, asa1, and hyl). Further, genotypic characterization was determined by macro-restriction fragment pattern analysis (MRFPA) of genomic DNA digested with SmaI restriction enzyme. Of the total 350 Enterococcus positive patients from different hospital intensive care units, 22 (6.3%) were positive for VRE using the phenotypic E-test method. All isolates showed resistance to ampicillin, ciprofloxacin, vancomycin, and teicoplanin and positive amplification for the vanA gene. However, none of the isolates was positive for the vanB gene. The most prevalent virulence gene was esp. The results indicate that the isolates are persistent in the hospital environment and subsequently transmitted to hospitalized patients, thus representing challenges to an outbreak and infection control. These study results would also help formulate more effective strategies to reduce the transmission and propagation of VRE contamination in various hospital settings.
Collapse
Affiliation(s)
- Altan Akineden
- Department of Clinical Microbiology, Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - Cemal ÇiÇek
- Education and Research Hospital Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - SelÇuk TÜrkel
- Education and Research Hospital Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - Izhar U.H. Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Giersch K, Tanida K, Both A, Nörz D, Heim D, Rohde H, Aepfelbacher M, Lütgehetmann M. Adaptation and validation of a quantitative vanA/vanB DNA screening assay on a high-throughput PCR system. Sci Rep 2024; 14:3523. [PMID: 38347048 PMCID: PMC10861526 DOI: 10.1038/s41598-024-54037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Vancomycin resistant enterococci (VRE) are a leading cause of ICU-acquired bloodstream infections in Europe. The bacterial load in enteral colonization may be associated with a higher probability of transmission. Here, we aimed to establish a quantitative vanA/vanB DNA real-time PCR assay on a high-throughput system. Limits of detection (LOD), linear range and precision were determined using serial bacterial dilutions. LOD was 46.9 digital copies (dcp)/ml for vanA and 60.8 dcp/ml for vanB. The assay showed excellent linearity between 4.7 × 101 and 3.5 × 105 dcp/ml (vanA) and 6.7 × 102 and 6.7 × 105 dcp/ml (vanB). Sensitivity was 100% for vanA and vanB, with high positive predictive value (PPV) for vanA (100%), but lower PPV for vanB (34.6%) likely due to the presence of vanB DNA positive anerobic bacteria in rectal swabs. Using the assay on enriched VRE broth vanB PPV increased to 87.2%. Quantification revealed median 2.0 × 104 dcp/ml in PCR positive but VRE culture negative samples and median 9.1 × 104 dcp/ml in VRE culture positive patients (maximum: 107 dcp/ml). The automated vanA/B_UTC assay can be used for vanA/vanB detection and quantification in different diagnostic settings and may support future clinical studies assessing the impact of bacterial load on risk of infection and transmission.
Collapse
Affiliation(s)
- Katja Giersch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Konstantin Tanida
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Anna Both
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Dominik Nörz
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Denise Heim
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf (UKE), Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Thomsen J, Abdulrazzak NM, AlRand H, Menezes GA, Moubareck CA, Everett DB, Senok A, Podbielski A. Epidemiology of vancomycin-resistant enterococci in the United Arab Emirates: a retrospective analysis of 12 years of national AMR surveillance data. Front Public Health 2023; 11:1275778. [PMID: 38089023 PMCID: PMC10715431 DOI: 10.3389/fpubh.2023.1275778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Enterococci are usually low pathogenic, but can cause invasive disease under certain circumstances, including urinary tract infections, bacteremia, endocarditis, and meningitis, and are associated with peritonitis and intra-abdominal abscesses. Increasing resistance of enterococci to glycopeptides and fluoroquinolones, and high-level resistance to aminoglycosides is a concern. National antimicrobial resistance (AMR) surveillance data for enterococci from the Middle East and North Africa (MENA) and the Gulf region is scarce. Methods A retrospective 12-year analysis of N = 37,909 non-duplicate diagnostic Enterococcus spp. isolates from the United Arab Emirates (UAE) was conducted. Data was generated by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National AMR Surveillance program. Data analysis was conducted with WHONET. Results Enterococcus faecalis was the most commonly reported species (81.5%), followed by Enterococcus faecium (8.5%), and other enterococci species (4.8%). Phenotypically vancomycin-resistant enterococci (VRE) were found in 1.8% of Enterococcus spp. isolates. Prevalence of VRE (%VRE) was highest for E. faecium (8.1%), followed by E. faecalis (0.9%). A significant level of resistance to glycopeptides (%VRE) for these two species has been observed in the majority of observed years [E. faecalis (0-2.2%), 2010: 0%, 2021: 0.6%] and E. faecium (0-14.2%, 2010: 0%, 2021: 5.8%). Resistance to fluoroquinolones was between 17 and 29% (E. faecalis) and was higher for E. faecium (between 42 and 83%). VRE were associated with higher patient mortality (RR: 2.97), admission to intensive care units (RR: 2.25), and increased length of stay (six excess inpatient days per VRE case), as compared to vancomycin-susceptible Enterococcus spp. Discussion Published data on Enterococcus infections, in particular VRE-infections, in the UAE and MENA region is scarce. Our data demonstrates that VRE-enterococci are relatively rare in the UAE, however showing an increasing resistance trend for several clinically important antibiotic classes, causing a concern for the treatment of serious infections caused by enterococci. This study also demonstrates that VRE were associated with higher mortality, increased intensive care unit admission rates, and longer hospitalization, thus poorer clinical outcome and higher associated costs in the UAE. We recommend the expansion of current surveillance techniques (e.g., local VRE screening), stricter infection prevention and control strategies, and better stewardship interventions. Further studies on the molecular epidemiology of enterococci are needed.
Collapse
Affiliation(s)
- Jens Thomsen
- Department of Environmental and Occupational Health and Safety, Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Najiba M. Abdulrazzak
- Al Kuwait Hospital Dubai, Emirates Health Services Establishment (EHS), Dubai, United Arab Emirates
| | - Hussain AlRand
- Public Health Sector, Ministry of Health and Prevention, Dubai, United Arab Emirates
| | | | - Godfred Antony Menezes
- Department of Medical Microbiology and Immunology, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Carole A. Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine, Rostock, Germany
| |
Collapse
|
4
|
Cimen C, Berends MS, Bathoorn E, Lokate M, Voss A, Friedrich AW, Glasner C, Hamprecht A. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control 2023; 12:78. [PMID: 37568229 PMCID: PMC10422769 DOI: 10.1186/s13756-023-01278-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The rising prevalence of vancomycin-resistant enterococci (VRE) is a matter of concern in hospital settings across Europe without a distinct geographical pattern. In this scoping review, we compared the epidemiology of vancomycin-resistant Enterococcus spp. in hospitals in the Netherlands and Germany, between 1991 and 2022. We searched PubMed and summarized the national antibiotic resistance surveillance data of the two countries. We included 46 studies and summarized national surveillance data from the NethMap in the Netherlands, the National Antimicrobial Resistance Surveillance database in Germany, and the EARS-Net data. In total, 12 studies were conducted in hospitals in the Netherlands, 32 were conducted in German hospitals, and an additional two studies were conducted in a cross-border setting. The most significant difference between the two countries was that studies in Germany showed an increasing trend in the prevalence of VRE in hospitals, and no such trend was observed in studies in the Netherlands. Furthermore, in both Dutch and German hospitals, it has been revealed that the molecular epidemiology of VREfm has shifted from a predominance of vanA towards vanB over the years. According to national surveillance reports, vancomycin resistance in Enterococcus faecium clinical isolates fluctuates below 1% in Dutch hospitals, whereas it follows an increasing trend in German hospitals (above 20%), as supported by individual studies. This review demonstrates that VRE is more frequently encountered in German than in Dutch hospitals and discusses the underlying factors for the difference in VRE occurrence in these two neighboring countries by comparing differences in healthcare systems, infection prevention control (IPC) guidelines, and antibiotic use in the Netherlands and Germany.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs S Berends
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Epidemiology, Certe Medical Diagnostics and Advice Foundation, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Werner G, Abu Sin M, Bahrs C, Brogden S, Feßler AT, Hagel S, Kaspar H, Köck R, Kreienbrock L, Krüger-Haker H, Maechler F, Noll I, Pletz MW, Tenhagen BA, Schwarz S, Walther B, Mielke M. [Therapy-relevant antibiotic resistances in a One Health context]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023:10.1007/s00103-023-03713-4. [PMID: 37184673 DOI: 10.1007/s00103-023-03713-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
One Health refers to a concept that links human, animal, and environmental health. In Germany, there is extensive data on antibiotic resistance (AMR) and multidrug-resistant (micro)organisms (MDRO) in human and veterinary medicine, as well as from studies in various environmental compartments (soil, water, wastewater). All these activities are conducted according to different specifications and standards, which makes it difficult to compare data. A focus on AMR and MDRO of human therapeutic importance is helpful to provide some guidance. Most data are available across sectors on methicillin-resistant Staphylococcus aureus (MRSA) and multiresistant Enterobacterales such as Escherichia coli and Klebsiella pneumoniae. Here, the trends of resistance are heterogeneous. Antibiotic use leads to MRE selection, which is well documented. Success in minimizing antibiotic use has also been demonstrated in recent years in several sectors and could be correlated with success in containing AMR and MDRO (e.g., decrease in MRSA in human medicine). Sector-specific measures to reduce the burden of MDRO and AMR are also necessary, as not all resistance problems are linked to other sectors. Carbapenem resistance is still rare, but most apparent in human pathogens. Colistin resistance occurs in different sectors but shows different mechanisms in each. Resistance to antibiotics of last resort such as linezolid is rare in Germany, but shows a specific One Health correlation. Efforts to harmonize methods, for example in the field of antimicrobial susceptibility testing and genome-based pathogen and AMR surveillance, are an important first step towards a better comparability of the different data collections.
Collapse
Affiliation(s)
- Guido Werner
- Robert Koch Institut, Berlin, Deutschland.
- Abt. Infektionskrankheiten, Fachgebiet Nosokomiale Infektionserreger und Antibiotikaresistenzen, Robert Koch-Institut, Außenstelle Wernigerode, Burgstr. 37, 38855, Wernigerode, Deutschland.
| | - Muna Abu Sin
- Robert Koch Institut, Berlin, Deutschland
- WHO Collaborating Centre for Antimicrobial Resistance, Consumption and Healthcare-Associated Infections, Berlin, Deutschland
| | - Christina Bahrs
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Sandra Brogden
- Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Stiftung Tierärztliche Hochschule Hannover, Hannover, Deutschland
- WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Hannover, Deutschland
| | - Andrea T Feßler
- Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
- Tiermedizinisches Zentrum für Resistenzforschung (TZR), Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
| | - Stefan Hagel
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Heike Kaspar
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Berlin, Deutschland
| | - Robin Köck
- Bereich Hygiene und Umweltmedizin, Universitätsmedizin Essen, Essen, Deutschland
- Institut für Hygiene, Universitätsklinikum Münster, Münster, Deutschland
| | - Lothar Kreienbrock
- Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Stiftung Tierärztliche Hochschule Hannover, Hannover, Deutschland
- WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Hannover, Deutschland
| | - Henrike Krüger-Haker
- Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
- Tiermedizinisches Zentrum für Resistenzforschung (TZR), Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
| | - Frederike Maechler
- Institut für Hygiene und Umweltmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Ines Noll
- Robert Koch Institut, Berlin, Deutschland
- WHO Collaborating Centre for Antimicrobial Resistance, Consumption and Healthcare-Associated Infections, Berlin, Deutschland
| | - Mathias W Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Bernd-Alois Tenhagen
- Fachbereich Epidemiologie, Zoonosen und Antibiotikaresistenz, Abteilung Biologische Sicherheit, Bundesinstitut für Risikobewertung BfR, Berlin, Deutschland
| | - Stefan Schwarz
- Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
- Tiermedizinisches Zentrum für Resistenzforschung (TZR), Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
| | - Birgit Walther
- Robert Koch Institut, Berlin, Deutschland
- Fachgebiet Mikrobiologische Risiken, Abteilung Umwelthygiene, Umweltbundesamt, Berlin, Deutschland
| | | |
Collapse
|
6
|
MacKenzie P, Färber J, Post M, Esser T, Bechmann L, Kropf S, Croner R, Geginat G. Previous antibiotic therapy as independent risk factor for the presence of vancomycin-resistant enterococci in surgical inpatients. Results from a matched case-control study. BMC Infect Dis 2023; 23:274. [PMID: 37131139 PMCID: PMC10155433 DOI: 10.1186/s12879-023-08238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Investigation of risk factors for the presence of vancomycin-resistant enterococci (VRE) in inpatients on surgical wards and associated intensive care units of a German tertiary care hospital. METHODS A single-centre retrospective matched case-control study was performed with surgical inpatients admitted between July 2013 and December 2016. Patients with in-hospital detection of VRE later than 48 h after admission were included and comprised 116 VRE-positive cases and 116 VRE-negative matched controls. VRE isolates of cases were typed by multi-locus sequence typing. RESULTS ST117 was identified as the dominant VRE sequence type. Next to length of stay in hospital or on an intensive care unit and previous dialysis the case-control study revealed previous antibiotic therapy as a risk factor for the in-hospital detection of VRE. The antibiotics piperacillin/tazobactam, meropenem, and vancomycin were associated with the highest risks. After taking into account length of stay in hospital as possible confounder other potential contact-related risk factors such as previous sonography, radiology, central venous catheter, and endoscopy were not significant. CONCLUSIONS Previous dialysis and previous antibiotic therapy were identified as independent risk factors for the presence of VRE in surgical inpatients.
Collapse
Affiliation(s)
- Philip MacKenzie
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jacqueline Färber
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marius Post
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Torben Esser
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lukas Bechmann
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Siegfried Kropf
- Institute for Biometry and Medical Informatics, Otto-von-Guericke University, Magdeburg, Germany
| | - Roland Croner
- Department of General, Visceral, Vascular and Transplant Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gernot Geginat
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Institut für medizinische Mikrobiologie und Krankenhaushygiene, Otto-von-Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|