1
|
Chen A, Li Q, Huang Y, Li Y, Chuang YN, Hu X, Guo S, Wu Y, Guo Y, Bian J. Feasibility of Identifying Factors Related to Alzheimer's Disease and Related Dementia in Real-World Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.10.24302621. [PMID: 38405723 PMCID: PMC10889002 DOI: 10.1101/2024.02.10.24302621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A comprehensive view of factors associated with AD/ADRD will significantly aid in studies to develop new treatments for AD/ADRD and identify high-risk populations and patients for prevention efforts. In our study, we summarized the risk factors for AD/ADRD by reviewing existing meta-analyses and review articles on risk and preventive factors for AD/ADRD. In total, we extracted 477 risk factors in 10 categories from 537 studies. We constructed an interactive knowledge map to disseminate our study results. Most of the risk factors are accessible from structured Electronic Health Records (EHRs), and clinical narratives show promise as information sources. However, evaluating genomic risk factors using RWD remains a challenge, as genetic testing for AD/ADRD is still not a common practice and is poorly documented in both structured and unstructured EHRs. Considering the constantly evolving research on AD/ADRD risk factors, literature mining via NLP methods offers a solution to automatically update our knowledge map.
Collapse
Affiliation(s)
- Aokun Chen
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Qian Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu Huang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yongqiu Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu-neng Chuang
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Xia Hu
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Serena Guo
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL 32610
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| |
Collapse
|
2
|
Yoo TJ. Anti-Inflammatory Gene Therapy Improves Spatial Memory Performance in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 85:1001-1008. [PMID: 34897091 PMCID: PMC8925118 DOI: 10.3233/jad-215270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system plays a critical role in neurodegenerative processes involved in Alzheimer’s disease (AD). In this study, a gene-based immunotherapeutic method examined the effects of anti-inflammatory cellular immune response elements (CIREs) in the amyloid-β protein precursor (AβPP) mouse model. Bi-monthly intramuscular administration, beginning at either 4 or 6 months, and examined at 7.5 through 16 months, with plasmids encoding Interleukin (IL)-10, IL-4, TGF-β polynucleotides, or a combination thereof, into AβPP mice improved spatial memory performance. This work demonstrates an efficient gene therapy strategy to downregulate neuroinflammation, and possibly prevent or delay cognitive decline in AD.
Collapse
Affiliation(s)
- Tai June Yoo
- Korea Allergy Clinic, KangNam Gu, Seoul, South Korea.,University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Pinheiro L, Faustino C. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:418-452. [PMID: 30907320 DOI: 10.2174/1567205016666190321163438] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder linked to protein misfolding and aggregation. AD is pathologically characterized by senile plaques formed by extracellular Amyloid-β (Aβ) peptide and Intracellular Neurofibrillary Tangles (NFT) formed by hyperphosphorylated tau protein. Extensive synaptic loss and neuronal degeneration are responsible for memory impairment, cognitive decline and behavioral dysfunctions typical of AD. Amyloidosis has been implicated in the depression of acetylcholine synthesis and release, overactivation of N-methyl-D-aspartate (NMDA) receptors and increased intracellular calcium levels that result in excitotoxic neuronal degeneration. Current drugs used in AD treatment are either cholinesterase inhibitors or NMDA receptor antagonists; however, they provide only symptomatic relief and do not alter the progression of the disease. Aβ is the product of Amyloid Precursor Protein (APP) processing after successive cleavage by β- and γ-secretases while APP proteolysis by α-secretase results in non-amyloidogenic products. According to the amyloid cascade hypothesis, Aβ dyshomeostasis results in the accumulation and aggregation of Aβ into soluble oligomers and insoluble fibrils. The former are synaptotoxic and can induce tau hyperphosphorylation while the latter deposit in senile plaques and elicit proinflammatory responses, contributing to oxidative stress, neuronal degeneration and neuroinflammation. Aβ-protein-targeted therapeutic strategies are thus a promising disease-modifying approach for the treatment and prevention of AD. This review summarizes recent findings on Aβ-protein targeted AD drugs, including β-secretase inhibitors, γ-secretase inhibitors and modulators, α-secretase activators, direct inhibitors of Aβ aggregation and immunotherapy targeting Aβ, focusing mainly on those currently under clinical trials.
Collapse
Affiliation(s)
- Lídia Pinheiro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Célia Faustino
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| |
Collapse
|
4
|
Sellers RS, Nelson K, Bennet B, Wolf J, Tripathi N, Chamanza R, Perron Lepage MF, Adkins K, Laurent S, Troth SP. Scientific and Regulatory Policy Committee Points to Consider*: Approaches to the Conduct and Interpretation of Vaccine Safety Studies for Clinical and Anatomic Pathologists. Toxicol Pathol 2019; 48:257-276. [PMID: 31594486 DOI: 10.1177/0192623319875085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and execution of toxicology studies supporting vaccine development have some unique considerations relative to those supporting traditional small molecules and biologics. A working group of the Society of Toxicologic Pathology Scientific and Regulatory Policy Committee conducted a review of the scientific, technical, and regulatory considerations for veterinary pathologists and toxicologists related to the design and evaluation of regulatory toxicology studies supporting vaccine clinical trials. Much of the information in this document focuses on the development of prophylactic vaccines for infectious agents. Many of these considerations also apply to therapeutic vaccine development (such as vaccines directed against cancer epitopes); important differences will be identified in various sections as appropriate. The topics addressed in this Points to Consider article include regulatory guidelines for nonclinical vaccine studies, study design (including species selection), technical considerations in dosing and injection site collection, study end point evaluation, and data interpretation. The intent of this publication is to share learnings related to nonclinical studies to support vaccine development to help others as they move into this therapeutic area. [Box: see text].
Collapse
Affiliation(s)
| | | | - Bindu Bennet
- Janssen Research & Development LLC, Spring House, PA, USA
| | | | | | - Ronnie Chamanza
- Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | | | | | | |
Collapse
|
5
|
Intracerebral Injection of Extracellular Vesicles from Mesenchymal Stem Cells Exerts Reduced Aβ Plaque Burden in Early Stages of a Preclinical Model of Alzheimer's Disease. Cells 2019; 8:cells8091059. [PMID: 31510042 PMCID: PMC6770482 DOI: 10.3390/cells8091059] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Bone marrow Mesenchymal Stem Cells (BM-MSCs), due to their strong protective and anti-inflammatory abilities, have been widely investigated in the context of several diseases for their possible therapeutic role, based on the release of a highly proactive secretome composed of soluble factors and Extracellular Vesicles (EVs). BM-MSC-EVs, in particular, convey many of the beneficial features of parental cells, including direct and indirect β-amyloid degrading-activities, immunoregulatory and neurotrophic abilities. Therefore, EVs represent an extremely attractive tool for therapeutic purposes in neurodegenerative diseases, including Alzheimer’s disease (AD). We examined the therapeutic potential of BM-MSC-EVs injected intracerebrally into the neocortex of APPswe/PS1dE9 AD mice at 3 and 5 months of age, a time window in which the cognitive behavioral phenotype is not yet detectable or has just started to appear. We demonstrate that BM-MSC-EVs are effective at reducing the Aβ plaque burden and the amount of dystrophic neurites in both the cortex and hippocampus. The presence of Neprilysin on BM-MSC-EVs, opens the possibility of a direct β-amyloid degrading action. Our results indicate a potential role for BM-MSC-EVs already in the early stages of AD, suggesting the possibility of intervening before overt clinical manifestations.
Collapse
|