1
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
2
|
Unsaturated Fatty Acids and Their Immunomodulatory Properties. BIOLOGY 2023; 12:biology12020279. [PMID: 36829556 PMCID: PMC9953405 DOI: 10.3390/biology12020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Oils are an essential part of the human diet and are primarily derived from plant (or sometimes fish) sources. Several of them exhibit anti-inflammatory properties. Specific diets, such as Mediterranean diet, that are high in ω-3 polyunsaturated fatty acids (PUFAs) and ω-9 monounsaturated fatty acids (MUFAs) have even been shown to exert an overall positive impact on human health. One of the most widely used supplements in the developed world is fish oil, which contains high amounts of PUFAs docosahexaenoic and eicosapentaenoic acid. This review is focused on the natural sources of various polyunsaturated and monounsaturated fatty acids in the human diet, and their role as precursor molecules in immune signaling pathways. Consideration is also given to their role in CNS immunity. Recent findings from clinical trials utilizing various fatty acids or diets high in specific fatty acids are reviewed, along with the mechanisms through which fatty acids exert their anti-inflammatory properties. An overall understanding of diversity of polyunsaturated fatty acids and their role in several molecular signaling pathways is useful in formulating diets that reduce inflammation and increase longevity.
Collapse
|
3
|
Silva SSL, Tureck LV, Souza LC, Mello-Hortega JV, Piumbini AL, Teixeira MD, Furtado-Alle L, Vital MABF, Souza RLR. Animal model of Alzheimer's disease induced by streptozotocin: New insights about cholinergic pathway. Brain Res 2023; 1799:148175. [PMID: 36436686 DOI: 10.1016/j.brainres.2022.148175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) is of multifactorial origin, and still presents several gaps regarding its development and progression. Disorders of the cholinergic system are well known to be involved in the pathogenesis of AD, characterized by increased acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and decreased acetyltransferase (ChAT) enzymatic activities. Late onset AD (LOAD) animal model induced by intracerebroventricular injection of streptozotocin (icv-STZ) showed promising results in this context, due to the similarity with the pathophysiology of human LOAD. Thus, this study aimed to assess the long-term effects of icv-STZ on the cholinergic system, through the measuring of AChE and BChE enzymatic activities in hippocampus, prefrontal cortex and liver of animals euthanized 30 and 120-days after the icv-STZ. Regarding the cholinergic response to icv-STZ, the 30-days and 120-days STZ-induced rats exhibit decreased AChE and BChE activities only in the hippocampus. The cognitive deficit was more consistent in the 30-days post icv-STZ animals, as was the weight loss. This is the first study to investigate the long-term effects (more than 60 days) of the icv-STZ on AChE and BChE activities, and our results, as well as those of a recent study, suggest that the cholinergic system may not be compromised by icv-STZ, at least in the long term, which means that this model may not be the best model for studying the cholinergic system in AD or that it is informative only for a short period.
Collapse
Affiliation(s)
- Saritha S L Silva
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Luciane V Tureck
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Mayza D Teixeira
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - Ricardo L R Souza
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
4
|
Souza LC, Andrade MK, Azevedo EM, Ramos DC, Bail EL, Vital MABF. Andrographolide Attenuates Short-Term Spatial and Recognition Memory Impairment and Neuroinflammation Induced by a Streptozotocin Rat Model of Alzheimer's Disease. Neurotox Res 2022; 40:1440-1454. [PMID: 36029454 DOI: 10.1007/s12640-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder clinically manifested by a gradual cognitive decline. Intracerebroventricular injection (ICV) of streptozotocin (STZ), a model of sporadic AD (sAD), shows many aspects of sAD abnormalities (i.e., neuroinflammation, oxidative stress, protein aggregation), resulting in memory impairment. Andrographolide (ANDRO), a natural diterpene lactone, has numerous bioactivities including anti-inflammatory and antioxidant properties. Studies in rodents revealed that ANDRO has neuroprotective properties and restores cognitive impairment. In the present study, we investigated the effects of ANDRO in the ICV-STZ model relative to short-term spatial memory (object location test (OLT) and Y maze test), short-term recognition memory (object recognition test (ORT)), locomotor activity (open field test (OFT)), expression of amyloid precursor protein (APP), and activation of astrocytes (glial fibrillary acidic protein (GFAP) expression) and microglia (ionized calcium-binding adapter molecule-1 (Iba-1) immunohistochemistry) in the prefrontal cortex (PFC) and hippocampus (HIP). Wistar rats were injected ICV with STZ (3 mg/kg) or vehicle and treated with ANDRO (2 mg/kg, i.p.; three times per week). After four weeks, ANDRO attenuated the impairments of the Y maze and ORT performances, and the increase of astrocyte activation in the PFC induced by the ICV-STZ model. In addition, ANDRO decreased the number of activated microglia cells in the HIP of STZ-injected rats. The APP expression was not altered, neither by the STZ nor ANDRO. ANDRO showed a beneficial effect on memory impairment and neuroinflammation in the STZ model of AD.
Collapse
Affiliation(s)
- Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Marcos K Andrade
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Daniele C Ramos
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ellen L Bail
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Tayanloo-Beik A, Kiasalari Z, Roghani M. Paeonol Ameliorates Cognitive Deficits in Streptozotocin Murine Model of Sporadic Alzheimer's Disease via Attenuation of Oxidative Stress, Inflammation, and Mitochondrial Dysfunction. J Mol Neurosci 2021; 72:336-348. [PMID: 34797511 DOI: 10.1007/s12031-021-01936-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Intracerebroventricular (ICV) microinjection of diabetogenic drug streptozotocin (STZ) in rodents consistently produces a model of sporadic Alzheimer's disease (sAD) which is characterized by tau pathology and concomitant cognitive decline, insulin resistance, neuroinflammation, oxidative stress, and mitochondrial malfunction. Paeonol is an active phenolic component in some medicinal plants like Cortex Moutan with neuroprotective efficacy via exerting anti-inflammatory and anti-oxidative effects. This study was conducted to assess beneficial effect of paeonol in amelioration of cognitive deficits in ICV STZ rat model of sAD. STZ (3 mg/kg) was microinjected into the lateral ventricles on days 0 and 2, and paeonol was given p.o. at two doses of 25 (low) or 100 (high) mg/kg from day 0 (post-surgery) till day 24 post-STZ. Cognitive performance was evaluated in different tasks, and oxidative stress- and inflammation-related parameters were measured in addition to immunohistochemical assessment of glial fibrillary acidic protein (GFAP) as a marker of astrocytes. Paeonol at the higher dose ameliorated cognitive deficits in Barnes maze, novel object recognition (NOR) task, Y maze, and passive avoidance test. In addition, paeonol partially reversed hippocampal malondialdehyde (MDA), reactive oxygen species (ROS), total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase, glutathione reductase, tumor necrosis factor α (TNFα), interleukin 6 (IL-6), mitochondrial membrane potential (MMP), myeloperoxidase (MPO), and acetylcholinesterase (AChE) activity. Paeonol treatment was also associated with lower hippocampal immunoreactivity for GFAP. This study showed that paeonol can alleviate cognitive disturbances in ICV STZ rat model of sAD via ameliorating neuroinflammation, oxidative stress, mitochondrial dysfunction, and also through its attenuation of astrogliosis.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Department of Biology, School of Basic Sciences, Shahed University, Tehran, Iran
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
6
|
Siqueira LD, Celes APM, Santos HD, Ferreira ST. A Specialized Nutritional Formulation Prevents Hippocampal Glial Activation and Memory Impairment Induced by Amyloid-β Oligomers in Mice. J Alzheimers Dis 2021; 83:1113-1124. [PMID: 34397411 DOI: 10.3233/jad-210139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in the elderly and is characterized by progressive cognitive decline. Considerable evidence supports an important role of amyloid-β oligomers (AβOs) in the pathogenesis of AD, including the induction of aberrant glial activation and memory impairment. OBJECTIVE We have investigated the protective actions of a nutritional formulation, denoted AZ formulation, on glial activation and memory deficits induced by intracerebroventricular (i.c.v.) infusion of AβOs in mice. METHODS Two-month-old male mice were treated orally with AZ formulation or isocaloric placebo for 30 consecutive days. Microglial and astrocytic activation were analyzed by immunohistochemistry in the hippocampus 10 days after i.c.v. infusion of AβOs (n = 5 mice per experimental condition). Memory loss was assessed by the novel object recognition (NOR) test (n = 6-10 mice per experimental condition). RESULTS Oral treatment with the AZ formulation prevented hippocampal microglial and astrocytic activation induced by i.c.v. infusion of AβOs. The AZ formulation further protected mice from AβO-induced memory impairment. CONCLUSION Results suggest that administration of the AZ formulation may comprise a promising preventative and non-pharmacological strategy to reduce brain inflammation and attenuate memory impairment in AD.
Collapse
Affiliation(s)
- Luciana Domett Siqueira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|