1
|
Shang Y, Wang G, Zhen Y, Liu N, Nie F, Zhao Z, Li H, An Y. Application of decellularization-recellularization technique in plastic and reconstructive surgery. Chin Med J (Engl) 2023; 136:2017-2027. [PMID: 36752783 PMCID: PMC10476794 DOI: 10.1097/cm9.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 02/09/2023] Open
Abstract
ABSTRACT In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Collapse
Affiliation(s)
- Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing 100191, China
| |
Collapse
|
2
|
Esmaeili J, Barati A, Charelli LE. Discussing the final size and shape of the reconstructed tissues in tissue engineering. J Artif Organs 2022:10.1007/s10047-022-01360-1. [PMID: 36125581 DOI: 10.1007/s10047-022-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemical and biological characteristics are the initial criteria for scaffolds in TE that should be fulfilled. This research will provide another point of view toward TE challenges concerning the morphological and geometrical aspects of the reconstructed tissue and which parameters may affect it. Based on our survey, there is a high possibility that the final reconstructed tissue may be different in size and shape compared to the original design scaffold. Thereby, the 3D-printed scaffold might not guarantee an accurate tissue reconstruction. The main justification for this is the unpredicted behavior of cells, specifically in the outer layer of the scaffold. It can also be a concern when the scaffold is implanted while cell migration cannot be controlled through the in vivo signaling pathways, which might cause cancer challenges. To sum up, it is concluded that more studies are necessary to focus on the size and geometry of the final reconstructed tissue.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.,Tissue Engineering Department, TISSUEHUB Co., Tehran, Iran
| | - Aboulfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.
| | - Letícia Emiliano Charelli
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Li H, Wu F, Huang G, Wu D, Wang T, Wang X, Wang K, Feng Y, Xu A. Cardiomyocytes induced from hiPSCs by well-defined compounds have therapeutic potential in heart failure by secreting PDGF-BB. Signal Transduct Target Ther 2022; 7:253. [PMID: 35902567 PMCID: PMC9334380 DOI: 10.1038/s41392-022-01045-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 01/14/2023] Open
Abstract
Recent studies have suggested that transplant of hiPS-CMs is a promising approach for treating heart failure. However, the optimally clinical benefits have been hampered by the immature nature of the hiPS-CMs, and the hiPS-CMs-secreted proteins contributing to the repair of cardiomyocytes remain largely unidentified. Here, we established a saponin+ compound optimally induced system to generate hiPS-CMs with stable functional attributes in vitro and transplanted in heart failure mice. Our study showed enhanced therapeutic effects of optimally induced hiPS-CMs by attenuating cardiac remodeling and dysfunction, these beneficial effects were concomitant with reduced cardiomyocytes death and increased angiogenesis. Moreover, the optimally induced hiPS-CMs could gathering to the injured heart and secret an abundant PDGF-BB. The reparative effect of the optimally induced hiPS-CMs in the hypoxia-injured HCMs was mimicked by PDGF-BB but inhibited by PDGF-BB neutralizing antibody, which was accompanied by the changed expression of p-PI3K and p-Akt proteins. It is highly possible that the PI3K/Akt pathway is regulated by the PDGF-BB secreted from the compound induced hiPS-CMs to achieve a longer lasting myocardial repair effect compared with the standard induced hiPS-CMs. Taken together, our data strongly implicate that the compound induced hiPS-CMs promote the recovery of injured hearts via paracrine action. In this process, the paracrine factor PDGF-BB derived from the compound induced hiPS-CMs reduces isoproterenol-induced adverse cardiac remodeling, which is associated with improved cardiac function, and these effects are mediated by the PI3K/Akt pathway, suggesting that the optimally induced hiPS-CMs may serve as a new promising cell therapy for clinical applications.
Collapse
Affiliation(s)
- Hongmei Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenfang Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Guangrui Huang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Di Wu
- College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ting Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xiashuang Wang
- College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyin Feng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China. .,College of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Saleh T, Ahmed E, Yu L, Song SH, Park KM, Kwak HH, Woo HM. Conjugating homogenized liver-extracellular matrix into decellularized hepatic scaffold for liver tissue engineering. J Biomed Mater Res A 2020; 108:1991-2004. [PMID: 32180336 DOI: 10.1002/jbm.a.36920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
The generation of a transplantable liver scaffold is crucial for the treatment of end-stage liver failure. Unfortunately, decellularized liver scaffolds suffer from lack of bioactive molecules and functionality. In this study, we conjugated homogenized liver-extracellular matrix (ECM) into a decellularized liver in a rat model to improve its structural and functional properties. The homogenized ECM was prepared, characterized, and subsequently perfused into ethyl carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) activated liver scaffolds. Various techniques were performed to confirm the improvements that were accomplished through the conjugation process; these included micro/ultra-structural analyses, biochemical analysis of ECM components, DNA quantification, swelling ratio, structural stability, calcification properties, platelet activation study, static and dynamic seeding with EAhy926 endothelial cells and HepG2 hepatocarcinoma cells, subcutaneous implantation and intrahepatic transplantation. The results showed that the conjugated scaffolds have superior micro- and ultrastructural and biochemical characteristics. In addition, DNA contents, swelling ratios, calcification properties, platelet reactions, and host inflammatory reactions were not altered with the conjugation process. The conjugated scaffolds revealed better cellular spreading and popularity compared to the non-conjugated scaffolds. Intrahepatic transplantation showed that the conjugated scaffold had higher popularity of hepatic regenerative cells with better angiogenesis. The conjugation of the decellularized liver scaffold with homogenized liver-ECM is a promising tool to improve the quality of the generated scaffold for further transplantation.
Collapse
Affiliation(s)
- Tarek Saleh
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Ebtehal Ahmed
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Lina Yu
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Su-Hyeon Song
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ho-Hyun Kwak
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Heung-Myong Woo
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
6
|
Inglis S, Schneider KH, Kanczler JM, Redl H, Oreffo ROC. Harnessing Human Decellularized Blood Vessel Matrices and Cellular Construct Implants to Promote Bone Healing in an Ex Vivo Organotypic Bone Defect Model. Adv Healthc Mater 2019; 8:e1800088. [PMID: 29756272 DOI: 10.1002/adhm.201800088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Decellularized matrices offer a beneficial substitute for biomimetic scaffolds in tissue engineering. The current study examines the potential of decellularized placental vessel sleeves (PVS) as a periosteal protective sleeve to enhance bone regeneration in embryonic day 18 chick femurs contained within the PVS and cultured organotypically over a 10 day period. The femurs are inserted into decellularized biocompatibility-tested PVS and maintained in an organotypic culture for a period of 10 days. In femurs containing decellularized PVS, a significant increase in bone volume (p < 0.001) is evident, demonstrated by microcomputed tomography (µCT) compared to femurs without PVS. Histological and immunohistological analyses reveal extensive integration of decellularized PVS with the bone periosteum, and enhanced conservation of bone architecture within the PVS. In addition, the expressions of hypoxia inducible factor-1 alpha (HIF-1α), type II collagen (COL-II), and proteoglycans are observed, indicating a possible repair mechanism via a cartilaginous stage of the bone tissue within the sleeve. The use of decellularized matrices like PVS offers a promising therapeutic strategy in surgical tissue replacement, promoting biocompatibility and architecture of the tissue as well as a factor-rich niche environment with negligible immunogenicity.
Collapse
Affiliation(s)
- Stefanie Inglis
- Bone and Joint Research GroupCentre for Human Development, Stem Cells and RegenerationInstitute of Developmental SciencesSouthampton General HospitalUniversity of Southampton Southampton SO16 6YD UK
| | - Karl Heinrich Schneider
- Center of Biomedical ResearchMedical University of ViennaLudwig Boltzmann Cluster for Cardiovascular Researchp.A.KIM II/Klinische Abteilung für Kardiologie Währinger Gürtel 18‐20 1090 Vienna Austria
| | - Janos M. Kanczler
- Bone and Joint Research GroupCentre for Human Development, Stem Cells and RegenerationInstitute of Developmental SciencesSouthampton General HospitalUniversity of Southampton Southampton SO16 6YD UK
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA ResearchCenter and Austrian Cluster for Tissue Regeneration Donaueschingenstrasse 13 1200 Vienna Austria
| | - Richard O. C. Oreffo
- Bone and Joint Research GroupCentre for Human Development, Stem Cells and RegenerationInstitute of Developmental SciencesSouthampton General HospitalUniversity of Southampton Southampton SO16 6YD UK
| |
Collapse
|
7
|
Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74:74-89. [PMID: 29702289 DOI: 10.1016/j.actbio.2018.04.044] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023]
Abstract
Of all biologic matrices, decellularized extracellular matrix (dECM) has emerged as a promising tool used either alone or when combined with other biologics in the fields of tissue engineering or regenerative medicine - both preclinically and clinically. dECM provides a native cellular environment that combines its unique composition and architecture. It can be widely obtained from native organs of different species after being decellularized and is entitled to provide necessary cues to cells homing. In this review, the superiority of the macro- and micro-architecture of dECM is described as are methods by which these unique characteristics are being harnessed to aid in the repair and regeneration of organs and tissues. Finally, an overview of the state of research regarding the clinical use of different matrices and the common challenges faced in using dECM are provided, with possible solutions to help translate naturally derived dECM matrices into more robust clinical use. STATEMENT OF SIGNIFICANCE Ideal scaffolds mimic nature and provide an environment recognized by cells as proper. Biologically derived matrices can provide biological cues, such as sites for cell adhesion, in addition to the mechanical support provided by synthetic matrices. Decellularized extracellular matrix is the closest scaffold to nature, combining unique micro- and macro-architectural characteristics with an equally unique complex composition. The decellularization process preserves structural integrity, ensuring an intact vasculature. As this multifunctional structure can also induce cell differentiation and maturation, it could become the gold standard for scaffolds.
Collapse
|
8
|
Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L. A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 2018; 177:52-66. [PMID: 29885586 DOI: 10.1016/j.biomaterials.2018.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naïve decellularized liver scaffold (nDLS)-based tissue engineering has been impaired by the lack of a suitable extracellular matrix (ECM) to provide "active micro-environmental" support. AIM The present study aimed to examine whether a novel, regenerative DLS (rDLS) with an active ECM improves primary hepatocyte survival and prevents thrombosis. METHODS rDLS was obtained from a 30-55% partial hepatectomy that was maintained in vivo for 3-5 days and then perfused with detergent in vitro. Compared to nDLS generated from normal livers, rDLS possesses bioactive molecules due to the regenerative period in vivo. Primary mouse hepatocyte survival was evaluated by staining for Ki-67 and Trypan blue exclusion. Thrombosis was assessed by immunohistochemistry and ex vivo diluted whole-blood perfusion. Hemocompatibility was determined by near-infrared laser-Doppler flowmetry and heterotopic transplantation. RESULTS After recellularization, rDLS contained more Ki-67-positive primary hepatocytes than nDLS. rDLS had a higher oxygen saturation and blood flow velocity and a lower expression of integrin αIIb and α4 than nDLS. Tumor necrosis factor-α, hepatocyte growth factor, interleukin-10, interleukin-6 and interleukin-1β were highly expressed throughout the rDLS, whereas expression of collagen-I, collagen-IV and thrombopoietin were lower in rDLS than in nDLS. Improved blood vessel patency was observed in rDLS both in vitro and in vivo. The results in mice were confirmed in large animals (pigs). CONCLUSION rDLS is an effective DLS with an "active microenvironment" that supports primary hepatocyte survival and promotes blood vessel patency. This is the first study to demonstrate a rDLS with a blood microvessel network that promotes hepatocyte survival and resists thrombosis.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Quanyu Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Renpei Xia
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Xiaolin You
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yan Jiang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Lianhua Bai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Informative three-dimensional survey of cell/tissue architectures in thick paraffin sections by simple low-vacuum scanning electron microscopy. Sci Rep 2018; 8:7479. [PMID: 29748574 PMCID: PMC5945589 DOI: 10.1038/s41598-018-25840-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Recent advances in bio-medical research, such as the production of regenerative organs from stem cells, require three-dimensional analysis of cell/tissue architectures. High-resolution imaging by electron microscopy is the best way to elucidate complex cell/tissue architectures, but the conventional method requires a skillful and time-consuming preparation. The present study developed a three-dimensional survey method for assessing cell/tissue architectures in 30-µm-thick paraffin sections by taking advantage of backscattered electron imaging in a low-vacuum scanning electron microscope. As a result, in the kidney, the podocytes and their processes were clearly observed to cover the glomerulus. The 30 µm thickness facilitated an investigation on face-side (instead of sectioned) images of the epithelium and endothelium, which are rarely seen within conventional thin sections. In the testis, differentiated spermatozoa were three-dimensionally assembled in the middle of the seminiferous tubule. Further application to vascular-injury thrombus formation revealed the distinctive networks of fibrin fibres and platelets, capturing the erythrocytes into the thrombus. The four-segmented BSE detector provided topographic bird’s-eye images that allowed a three-dimensional understanding of the cell/tissue architectures at the electron-microscopic level. Here, we describe the precise procedures of this imaging method and provide representative electron micrographs of normal rat organs, experimental thrombus formation, and three-dimensionally cultured tumour cells.
Collapse
|