1
|
Wu Z, Wu W, Zhang C, Zhang W, Li Y, Ding T, Fang Z, Jing J, He X, Huang F. Enhanced diabetic foot ulcer treatment with a chitosan-based thermosensitive hydrogel loaded self-assembled multi-functional nanoparticles for antibacterial and angiogenic effects. Carbohydr Polym 2025; 347:122740. [PMID: 39486969 DOI: 10.1016/j.carbpol.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Inhibiting bacterial growth and promoting angiogenesis are essential for enhancing wound healing in diabetic patients. Excessive oxidative stress at the wound site can also lead to an accumulation of reactive oxygen species. To address these challenges, a smart thermosensitive hydrogel loaded with therapeutic agents was developed. This formulation features self-assembled nanoparticles named CIZ, consisting of chlorogenic acid (CA), indocyanine green (ICG), and zinc ions (Zn2+). These nanoparticles are loaded into a chitosan-β-glycerophosphate hydrogel, named CIZ@G, which enables rapid gel formation under photothermal effects. The hydrogel demonstrates good biocompatibility and effectively releases drugs into diabetic foot ulcers (DFU) wound. Benefiting from the dual actions of CA and zinc ions, the hydrogel exhibits potent antioxidative and anti-inflammatory effects, enhances the expression of vascular endothelial growth factor (VEGF) and Platelet endothelial cell adhesion molecule-1 (CD31), and promotes angiogenesis. Both in vitro and in vivo experiments confirm that CIZ@G can effectively inhibit the growth of Staphylococcus aureus post-laser irradiation and accelerate wound remodeling within 14 days. This approach offers a new strategy for the treatment of diabetic foot ulcers (DFU), potentially transforming patient care in this challenging clinical area.
Collapse
Affiliation(s)
- Zhiwei Wu
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Weiwei Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Public Health Clinical Center, Hefei 230022, China
| | - Chi Zhang
- Anhui Public Health Clinical Center, Hefei 230022, China; Department of orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenbiao Zhang
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Li
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Tao Ding
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhennan Fang
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Juehua Jing
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China..
| | - Xiaoyan He
- School of Life Sciences Anhui Medical University, Hefei 230032, China.
| | - Fei Huang
- Department of orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China..
| |
Collapse
|
2
|
Moyo MTG, Adali T, Edebal OH. ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications. Gels 2024; 10:824. [PMID: 39727582 DOI: 10.3390/gels10120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.3%, 0.5%, 0.75%, and 1% gellan gum combined with 3% silk fibroin and 4.2% sodium alginate separately, using physical and ionic cross-linking. Swelling behavior was analyzed in phosphate (pH 7.4) and acetic (pH 1.2) buffers and surface morphology was examined by scanning electron microscopy (SEM). Hemocompatibility tests included complete blood count (CBC), coagulation assays, hemolysis index, erythrocyte morphology, and platelet adhesion analysis. Results showed that gellan gum-sodium alginate hydrogels exhibited faster swelling than gellan gum-silk fibroin formulations. SEM indicated smoother surfaces with sodium alginate, while silk fibroin increased roughness, further amplified by higher gellan-gum concentrations. Hemocompatibility assays confirmed normal profiles in formulations with 0.3%, 0.5%, and 0.75% gellan gum, while 1% gellan gum caused significant hemolytic and thrombogenic activity. These findings highlight the excellent hemocompatibility of gellan-gum-based hydrogels, especially the sodium alginate variants, supporting their potential in bioengineering, tissue engineering, and blood-contacting biomedical applications.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Research and Applications Center of Biomedical Sciences, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia 99138, North Cyprus, Turkey
| | - Terin Adali
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Research and Applications Center of Biomedical Sciences, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
| | - Oğuz Han Edebal
- Clinical Biochemistry Laboratory, Near East University Hospital, Nicosia 99138, North Cyprus, Turkey
| |
Collapse
|
3
|
Zhang C, Wang Y, Xue Y, Cheng J, Chi P, Wang Z, Li B, Yan T, Wu B, Wang Z. Enhanced Hemostatic and Procoagulant Efficacy of PEG/ZnO Hydrogels: A Novel Approach in Traumatic Hemorrhage Management. Gels 2024; 10:88. [PMID: 38391418 PMCID: PMC10888357 DOI: 10.3390/gels10020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Managing severe bleeding, particularly in soft tissues and visceral injuries, remains a significant challenge in trauma and surgical care. Traditional hemostatic methods often fall short in wet and dynamic environments. This study addresses the critical issue of severe bleeding in soft tissues, proposing an innovative solution using a polyethylene glycol (PEG)-based hydrogel combined with zinc oxide (ZnO). The developed hydrogel forms a dual-network structure through amide bonds and metal ion chelation, resulting in enhanced mechanical properties and adhesion strength. The hydrogel, exhibiting excellent biocompatibility, is designed to release zinc ions, promoting coagulation and accelerating hemostasis. Comprehensive characterization, including gelation time, rheological properties, microstructure analysis, and swelling behavior, demonstrates the superior performance of the PEG/ZnO hydrogel compared to traditional PEG hydrogels. Mechanical tests confirm increased compression strength and adhesive properties, which are crucial for withstanding tissue dynamics. In vitro assessments reveal excellent biocompatibility and enhanced procoagulant ability attributed to ZnO. Moreover, in vivo experiments using rat liver and tail bleeding models demonstrate the remarkable hemostatic performance of the PEG/ZnO hydrogel, showcasing its potential for acute bleeding treatment in both visceral and peripheral scenarios.
Collapse
Affiliation(s)
- Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Yuan Xue
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Pengfei Chi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Zhaohan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Bo Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Bing Wu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|