1
|
Boersma HE, Smit AJ, Paterson AD, Wolffenbuttel BHR, van der Klauw MM. Skin autofluorescence and cause-specific mortality in a population-based cohort. Sci Rep 2024; 14:19967. [PMID: 39198601 PMCID: PMC11358541 DOI: 10.1038/s41598-024-71037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
We aimed to assess the association of SAF with cardiovascular mortality in the general population and the possible association between SAF with other disease-specific mortality rates. We evaluated 77,143 participants without known diabetes or cardiovascular disease. The cause of death was ascertained by the municipality database. The associations between SAF and all-cause mortality, cardiovascular mortality and cancer mortality were assessed with Cox proportional hazard analysis.After a median follow-up of 115 months, 1447 participants were deceased (1.9%). SAF and age-adjusted SAF-z score were higher in all mortality groups. Cox regression analysis revealed that the highest quartile of SAF was associated with increased odds of cardiovascular mortality, (HR) 12.6 (7.3-21.7) and after adjusting for age (HR 1.8 (1.0-3.2)). Significance was lost after additional adjustments for sex, smoking status, and BMI (HR 1.4 (0.8-2.5). For cancer-related mortality the highest quartile of SAF was associated with higher probability of mortality in all models (unadjusted HR 8.6 (6.6-11.3), adjusted for age HR 2.1 (1.6-2.8)), adjusted for age, sex, smoking status, and BMI HR 1.7 (1.3-2.4)). SAF is associated with all-cause mortality as well as cardiovascular and cancer-related mortality in the general population.
Collapse
Affiliation(s)
- Henderikus E Boersma
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1HPC AA31 9700 RB, P.O. Box 30001, Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andries J Smit
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- Divisions of Biostatistics and Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1HPC AA31 9700 RB, P.O. Box 30001, Groningen, The Netherlands.
| | - Melanie M van der Klauw
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1HPC AA31 9700 RB, P.O. Box 30001, Groningen, The Netherlands
| |
Collapse
|
2
|
Alhujaily M. Glyoxalase System in Breast and Ovarian Cancers: Role of MEK/ERK/SMAD1 Pathway. Biomolecules 2024; 14:584. [PMID: 38785990 PMCID: PMC11117840 DOI: 10.3390/biom14050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system's involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
3
|
Schröder L, Rupp ABA, Gihr KME, Kobilay M, Domroese CM, Mallmann MR, Holdenrieder S. Immunogenic Biomarkers HMGB1 and sRAGE Are Potential Diagnostic Tools for Ovarian Malignancies. Cancers (Basel) 2023; 15:5081. [PMID: 37894448 PMCID: PMC10605106 DOI: 10.3390/cancers15205081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1), soluble receptor of advanced glycation end products (sRAGE) and programmed cell death markers PD-1 and PD-L1 are immunogenic serum biomarkers that may serve as novel diagnostic tools for cancer diagnosis. METHODS We investigated the four markers in sera of 231 women, among them 76 with ovarian cancer, 87 with benign diseases and 68 healthy controls, using enzyme immunoassays. Discrimination between groups was calculated using receiver operating characteristic (ROC) curves and sensitivities at fixed 90% and 95% specificities. RESULTS HMGB1 levels were significantly elevated and sRAGE levels were decreased in cancer patients as compared to benign and healthy controls. In consequence, the ratio of HMGB1 and sRAGE discriminated best between diagnostic groups. The areas under the curve (AUCs) of the ROC curves for differentiation of cancer vs. healthy were 0.77 for HMGB1, 0.65 for sRAGE and 0.78 for the HMGB1/sRAGE ratio, and slightly lower for the differentiation of cancer vs. benigns with 0.72 for HMGB1, 0.61 for sRAGE and 0.74 for the ratio of both. The highest sensitivities for cancer detection at 90% specificity versus benign diseases were achieved using HMGB1 with 41.3% and the HMGB1/sRAGE ratio with 39.2%, followed by sRAGE with 18.9%. PD-1 showed only minor and PD-L1 no power for discrimination between ovarian cancer and benign diseases. CONCLUSION HMGB1 and sRAGE have differential diagnostic potential for ovarian cancer detection and warrant inclusion in further validation studies.
Collapse
Affiliation(s)
- Lars Schröder
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
- Department of Obstetrics and Gynecology, Ketteler Hospital, 63071 Offenbach, Germany
| | - Alexander B. A. Rupp
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, 80636 Munich, Germany
| | - Kathrin M. E. Gihr
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christian M. Domroese
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
| | - Michael R. Mallmann
- Department of Obstetrics and Gynecology, University Hospital Cologne, 50931 Cologne, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, 80636 Munich, Germany
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| |
Collapse
|
4
|
Dorf J, Pryczynicz A, Matowicka-Karna J, Zaręba K, Żukowski P, Zalewska A, Maciejczyk M. Could circulating biomarkers of nitrosative stress and protein glycoxidation be useful in patients with gastric cancer? Front Oncol 2023; 13:1213802. [PMID: 37503318 PMCID: PMC10369187 DOI: 10.3389/fonc.2023.1213802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Background Nitrosative stress leads to protein glycoxidation, but both processes may be strongly related to the cancer development. Therefore, the aim of this study was to assess the nitrosative stress and protein glycoxidation products in patients with gastric cancer in comparison with healthy controls. We are also the first to evaluate the diagnostic utility of nitrosative stress and protein glycoxidation markers in gastric cancer patients in respect to histopathological classifications (TNM, Lauren's and Goseki's classification) and histopathological parameters such as histological type, histological differentiation grade, presence of vascular or neural invasion, desmoplasia and Helicobacter pylori infection. Methods The study included 50 patients with gastric cancer and 50 healthy controls matched for sex and age. Nitrosative stress parameters and protein glycoxidation products were measured colorimetrically/fluorometrically in plasma or serum samples. Student's t-test or Mann-Whitney U-test were used for statistical analysis. Results NO, S-nitrosothiols, nitrotyrosine, kynurenine, N-formylkynurenine, dityrosine, AGE and Amadori products were significantly increased whereas tryptophan fluorescence was decreased in patients with gastric cancer compared to the healthy control. Nitrosative stress and glycoxidation products may be useful in diagnosis of gastric cancer because they differentiate patients with gastric cancer from healthy individuals with high sensitivity and specificity. Some of the determined parameters are characterised by high AUC value in differentiation of GC patients according to the histopathological parameters. Conclusions Gastric cancer is associated with enhanced circulating nitrosative stress and protein glycation. Although further research on a tissue model is needed, plasma/serum biomarkers may be dependent on tumour size, histological type, tumour invasion depth, presence of lymph node and distant metastasis, vascular and neural invasion and Helicobacter pylori infection. Thus, circulating biomarkers of nitrosative stress/protein glycoxidation may have potential diagnostic significance in gastric cancer patients.
Collapse
Affiliation(s)
- Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Konrad Zaręba
- 2 Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, Croydon, United Kingdom
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Chen Z, Hong Q. Correlation of serum IGF-1, AGEs and their receptors with the risk of colorectal cancer in patients with type 2 diabetes mellitus. Front Oncol 2023; 13:1125745. [PMID: 36890832 PMCID: PMC9986935 DOI: 10.3389/fonc.2023.1125745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background According to epidemiological evidence, people with type 2 diabetes mellitus have a higher risk of developing colorectal cancer. Objective To examine the relationship between colorectal cancer (CRC) and serum levels of IGF-1, IGF-1R, AGEs,RAGE and sRAGE in patients with type 2 diabetes. Methods By using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we divided the patients into normal group(58 patients)and tumor group(446 patients), and analyzed the expression and prognostic value analysis of IGF-1,IGF1R and RAGE. Cox regression and the Kaplan-Meier method were used to determine the predictive value of target gene on clinical outcomes in CRC patients. In order to further combine CRC with diabetes research,one hundred forty-eight patients hospitalized in the Second Hospital of Harbin Medical University from July 2021 to July 2022 were enrolled and divided into CA and control groups. There were 106 patients in the CA group, including 75 patients with CRC and 31 patients with CRC+T2DM; the control group comprised 42 patients with T2DM. Circulating levels of IGF-1, IGF-1R, AGEs, RAGE, and sRAGE in the serum of the patients were measured using Enzyme-Linked Immunosorbnent Assay (ELISA) kits, and other clinical parameters were also measured during hospitalization. Statistical methods used were χ² test, independent samples t-test and Pearson correlation analysis were. Finally, we controlled for confounding factors and used logistic multi-factor regression analysis. Results Bioinformatics analysis showed that IGF-1, IGF1R and RAGE were highly expressed in CRC patients, and the patients with high expression also showed significantly lower overall survival rate. Through Cox regression analysis, IGF-1 can be used as an independent influencing factor of CRC. In the ELISA experiment, serum AGE, RAGE, IGF-1, and IGF-1R levels were higher in the CRC and CRC+T2DM groups than in the T2DM group, but the serum sRAGE concentrations in these groups were lower than those in the T2DM group (P < 0.05). Serum AGE, RAGE, sRAGE, IGF1, and IGF1R levels were higher in the CRC+T2DM group than in the CRC group (P < 0.05). In CRC+T2DM patients, serum AGEs were correlated with age (p = 0.027), and the serum AGE levels in these groups were positively correlated with RAGE and IGF-1 levels (p < 0.001) and negatively correlated with sRAGE and IGF-1R levels (p < 0.001). After correcting for confounding factors based on logistic multiple regression analysis, the effects of age, serum IGF-1 and IGF-1R on the development of CRC in patients with T2DM were statistically significant (p<0.05). Conclusion Serum IGF-1 and IGF-1R levels independently influenced the development of CRC in patients with T2DM. Furthermore, IGF-1 and IGF-1R were correlated with AGEs in CRC patients who also had T2DM, suggesting that AGEs may influence the development of CRC in T2DM patients. These findings suggest that we may be able to lower the risk of CRC in the clinic by regulating AGEs through the regulation of blood glucose levels, which will affect IGF-1 and its receptors.
Collapse
Affiliation(s)
- Zeng Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiao Hong
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Dou L, Wang W, Wang J, Zhang X, Hu X, Zheng W, Han K, Wang G. miR-3934 regulates the apoptosis and secretion of inflammatory cytokines of basophils via targeting RAGE in asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:66. [PMID: 35927714 PMCID: PMC9354354 DOI: 10.1186/s13223-022-00704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/03/2022] [Indexed: 11/12/2022]
Abstract
Background Several miRNAs are now known to have clear connections to the pathogenesis of asthma. The present study focused on the potential role of miR-3934 during asthma development. Methods miR-3934 was detected as a down-regulated miRNA in basophils by sequencing analysis. Next, the expression levels of miR-3934 in peripheral blood mononuclear cells of 50 asthma patients and 50 healthy volunteers were examined by RT-qPCR methods. The basophils were then treated with AGEs and transfected with miR-3934 mimics. The apoptosis levels were examined by flow cytometry assay; and the expression levels of cytokines were detected using the ELISA kits. Finally, the Western blot was performed to examined the expression of key molecules in the TGF-β/Smad signaling pathway. Results miR-3934 was down-regulated in the basophils of asthmatic patients. The expression of the pro-inflammatory cytokines IL-6, IL-8 and IL-33 was enhanced in basophils from asthmatic patients, and this effect was partially reversed by transfection of miR-3934 mimics. Furthermore, receiver operating characteristics analysis showed that miR-3934 levels can be used to distinguish asthma patients from healthy individuals. miR-3934 partially inhibited advanced glycation end products-induced increases in basophil apoptosis by suppressing expression of RAGE. Conclusion Our results indicate that miR-3934 acts to mitigate the pathogenesis of asthma by targeting RAGE and suppressing TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Liyan Dou
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Wenyu Wang
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Junwei Wang
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Xiaofei Zhang
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Xiaoman Hu
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Weili Zheng
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Kaiyu Han
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
7
|
Li L, Beeraka NM, Xie L, Dong L, Liu J, Wang L. Co-expression of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in the prognosis of esophageal squamous cell carcinoma. Discov Oncol 2022; 13:64. [PMID: 35829833 PMCID: PMC9279518 DOI: 10.1007/s12672-022-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is a malignant type of cancer with a high mortality rate. The aim of this study is to determine co-expression patterns of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in ESCC (esophageal squamous cell carcinoma) conditions and their prognostic role in cancer progression. The expression of HMGB1 and RAGE in ESCC tissues has been analyzed using qRT-PCR and Western blotting. Co-localized expression patterns of HMGB1 and RAGE in ESCC tissues were determined using immunohistochemistry and analyzed for clinical-pathological parameters. Overall survival was performed based on co-expression of HMGB1 and RAGE proteins. A higher expression pattern of HMGB1, and RAGE was observed at mRNA and protein level in the ESCC group compared to the adjacent tissue group. Expression of HMGB1 was significantly correlated with lymph node, metastasis, lymphatic invasion, and venous invasion (p < 0.05). RAGE expression exhibited a significant correlation with venous invasion. Overall survival was significantly shorter (P < 0.05) in the patients with co-expression of HMGB1 and RAGE compared to the patients without co-expression. A significant difference in the overall survival was evident between the patients with co-expression of HMGB1 and RAGE and the patients without coexpression. HMGB1 and RAGE expression patterns were associated with aggressive metastatic characteristics of ESCC. The co-expression of HMGB1 and RAGE was correlated with shorter survival times. Results concluded the co-expression patterns of HMGB1 and RAGE exhibited a prognostic relevance in ESCC conditions.
Collapse
Affiliation(s)
- Lingzhao Li
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991 Russian Federation
| | - Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Li Dong
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195# Tongbai Road, Zhengzhou, 450052 Henan People’s Republic of China
| |
Collapse
|
8
|
Wang J, Yang X, Wang Z, Wang J. Role of the Glyoxalase System in Breast Cancer and Gynecological Cancer-Implications for Therapeutic Intervention: a Review. Front Oncol 2022; 12:857746. [PMID: 35898868 PMCID: PMC9309216 DOI: 10.3389/fonc.2022.857746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple physiological problems including hyperglycemia, kidney diseases, malignant tumors, beyond its normal concentration range. The glyoxalase system, making MGO maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However, very little is known about the glyoxalase system in breast cancer and gynecological cancer. In this review, we introduce the role of the glyoxalase system in breast cancer, endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase system in breast cancer and gynecological cancer need further exploration.
Collapse
|
9
|
Tian M, Tang Y, Huang T, Liu Y, Pan Y. Amelioration of human peritoneal mesothelial cell co-culture-evoked malignant potential of ovarian cancer cells by acacetin involves LPA release-activated RAGE-PI3K/AKT signaling. Cell Mol Biol Lett 2021; 26:51. [PMID: 34886812 PMCID: PMC8903696 DOI: 10.1186/s11658-021-00296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Ovarian cancer is a devastating gynecological malignancy and frequently presents as an advanced carcinoma with disseminated peritoneum metastasis. Acacetin exerts anti-cancerous effects in several carcinomas. Here, we sought to investigate acacetin function in ovarian cancer malignancy triggered by peritoneal mesothelial cells. Methods Peritoneal mesothelial cells were treated with acacetin, and then the conditioned medium was collected to treat ovarian cancer cells. Then, cell proliferation was analyzed by MTT assay. Transwell analysis was conducted to evaluate cell invasion. Protein expression was determined by western blotting. ELISA and qRT-PCR were applied to analyze inflammatory cytokine levels. The underlying mechanism was also explored. Results Acacetin suppressed cell proliferation and invasion, but enhanced cell apoptosis. Furthermore, mesothelial cell-evoked malignant characteristics were inhibited when mesothelial cells were pre-treated with acacetin via restraining cell proliferation and invasion, concomitant with decreases in proliferation-related PCNA, MMP-2 and MMP-9 levels. Simultaneously, acacetin reduced mesothelial cell-induced transcripts and production of pro-inflammatory cytokine IL-6 and IL-8 in ovarian cancer cells. Mechanically, acacetin decreased lysophosphatidic acid (LPA) release from mesothelial cells, and subsequent activation of receptor for advanced glycation end-products (RAGE)-PI3K/AKT signaling in ovarian cancer cells. Notably, exogenous LPA restored the above pathway, and offset the efficacy of acacetin against mesothelial cell-evoked malignancy in ovarian cancer cells, including cell proliferation, invasion and inflammatory cytokine production. Conclusions Acacetin may not only engender direct inhibition of ovarian cancer cell malignancy, but also antagonize mesothelial cell-evoked malignancy by blocking LPA release-activated RAGE-PI3K/AKT signaling. Thus, these findings provide supporting evidence for a promising therapeutic agent against ovarian cancer. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Meng Tian
- Critical Care Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yingjie Tang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Ting Huang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yingzheng Pan
- Department of Gynecological Endocrinology, Chongqing Health Center for Women and Children, No 120 Longshan Road, Yubei District, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
10
|
Linder M, Pogge von Strandmann E. The Role of Extracellular HSP70 in the Function of Tumor-Associated Immune Cells. Cancers (Basel) 2021; 13:cancers13184721. [PMID: 34572948 PMCID: PMC8466959 DOI: 10.3390/cancers13184721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The intracellular heat shock protein 70 (HSP70) is essential for cells to respond to stress, for instance, by refolding damaged proteins or inhibiting apoptosis. However, in cancer, HSP70 is overexpressed and can translocate to the extracellular milieu, where it emerged as an important modulator of tumor-associated immune cells. By targeting the tumor microenvironment (TME) through different mechanisms, extracellular HSP70 can trigger pro- or anti-tumorigenic responses. Therefore, understanding the pathways and their consequences is crucial for therapeutically targeting cancer and its surrounding microenvironment. In this review, we summarize current knowledge on the translocation of extracellular HSP70. We further elucidate its functions within the TME and provide an overview of potential therapeutic options. Abstract Extracellular vesicles released by tumor cells (T-EVs) are known to contain danger-associated molecular patterns (DAMPs), which are released in response to cellular stress to alert the immune system to the dangerous cell. Part of this defense mechanism is the heat shock protein 70 (HSP70), and HSP70-positive T-EVs are known to trigger anti-tumor immune responses. Moreover, extracellular HSP70 acts as an immunogen that contributes to the cross-presentation of major histocompatibility complex (MHC) class I molecules. However, the release of DAMPs, including HSP70, may also induce chronic inflammation or suppress immune cell activity, promoting tumor growth. Here, we summarize the current knowledge on soluble, membrane-bound, and EV-associated HSP70 regarding their functions in regulating tumor-associated immune cells in the tumor microenvironment. The molecular mechanisms involved in the translocation of HSP70 to the plasma membrane of tumor cells and its release via exosomes or soluble proteins are summarized. Furthermore, perspectives for immunotherapies aimed to target HSP70 and its receptors for cancer treatment are discussed and presented.
Collapse
|
11
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
12
|
Wang X, Gao S, Song L, Liu M, Sun Z, Liu J. Astragaloside IV antagonizes M2 phenotype macrophage polarization-evoked ovarian cancer cell malignant progression by suppressing the HMGB1-TLR4 axis. Mol Immunol 2020; 130:113-121. [PMID: 33308900 DOI: 10.1016/j.molimm.2020.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Macrophages are the most abundant cells in tumor stroma and their polarization within tumor microenvironment exert the key roles in tumorigenesis. Astragaloside IV is a natural extract from traditional Chinese herbal Radix Astragali, and fulfills pleiotropic function in several cancers. Nevertheless, its function in ovarian cancer microenvironment remains elusive. In the present research, astragaloside IV exhibited little cytotoxicity within a certain dose range in THP-1 cells. Moreover, astragaloside IV suppressed the ratio of CD14+CD206+ cells in IL-4/IL-13-treated THP-1 macrophages and transcripts of M2 macrophage markers (including CD206, CCL24, PPARγ, Arg-1, IL-10), indicating the inhibitory effects of astragaloside IV on IL-4/IL-13-induced macrophage M2 polarization. Intriguingly, astragaloside IV antagonized M2 macrophages coculture-evoked cell proliferation, invasion and migration in ovarian cancer cells. During this process, administration with astragaloside IV restrained the high expression of high-mobility group box1 (HMGB1) and TLR4 in macrophages co-cultured with ovarian cancer cells, concomitant with decreases in release of M2 marker TGF-β, MMP-9 and IL-10. Moreover, targeting the HMGB1 signaling reversed M2 macrophages-induced ovarian cancer cell proliferation, invasion and migration. Noticeably, exogenous HMGB1 overturned the inhibitory efficacy of astragaloside IV against macrophage M2 polarization-evoked malignant potential in ovarian cancer cells. Together, these findings suggest that astragaloside IV may protect against M2 macrophages-evoked malignancy in ovarian cancer cells by suppressing the HMGB1-TLR4 signaling. Therefore, astragaloside may alleviate the progression of ovarian cancer by regulating macrophage M2 polarization within tumor microenvironment, implying a promising therapeutic strategy against ovarian cancer.
Collapse
Affiliation(s)
- Xue Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - ShouYang Gao
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - LiYou Song
- Department of Thyroid Surgery, Jilin Cancer Hospital, Changchun, Jilin, 130000, China
| | - Ming Liu
- Department of Obstetrics and Gynecology, Jilin Central Hospital, Jilin, 130011, China
| | - ZiQian Sun
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - JunBao Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| |
Collapse
|
13
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
14
|
Li Y, Wang J, Zhong S, Li J, Du W. Scutellarein inhibits the development of colon cancer via CDC4‑mediated RAGE ubiquitination. Int J Mol Med 2020; 45:1059-1072. [PMID: 32124957 PMCID: PMC7053863 DOI: 10.3892/ijmm.2020.4496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Scutellarein has been identified to serve an anti-tumor function in human colon cancer, but the underlying mechanisms remain largely unclear. The present study further investigated the effect and mechanism of scutellarein, extracted from wild chrysanthemum, in the progression of colon cancer. MTT, clone formation, flow cytometry and tumor-bearing mice assays were used to detect cell viability, clone formation, apoptosis and tumorigenesis, respectively. Western blot and quantitative PCR assays were performed for protein and mRNA expression detection. The results revealed that, compared with the control group, scutellarein treatment significantly inhibited the viability and induced the apoptosis of colon cancer cells (P<0.05), with significant decreases in receptor for advanced glycosylation end products (RAGE) protein expression and stability and an increase in RAGE ubiquitination (P<0.05). However, the effects of scutellarein exerted in cell apoptosis and viability were rescued by RAGE overexpression, and accelerated by RAGE knockdown. Additionally, it was observed that scutellarein treatment induced a significant increase in the expression of cell division control protein 4 (CDC4) compared with the control group (P<0.05), which was then verified to interact with RAGE protein and mediate its ubiquitination. Overexpression of CDC4 inhibited colon cancer cell viability and promoted the apoptosis of SW480 and T84 cells, whereas this function was weakened when RAGE was overexpressed. Furthermore, CDC4 downregulation significantly neutralized scutellarein functions in promoting cell apoptosis and inhibiting cell viability and tumorigenesis in colon cancer cells compared with the scutellarein group (P<0.05). In conclusion, the present study revealed that scutellarein inhibited the development of colon cancer through upregulating CDC4-mediated RAGE ubiquitination.
Collapse
Affiliation(s)
- Yuanzhi Li
- Traditional Chinese Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, P.R. China
| | - Sen Zhong
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, P.R. China
| | - Jun Li
- Traditional Chinese Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weiliang Du
- Traditional Chinese Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
15
|
Schröter D, Höhn A. Role of Advanced Glycation End Products in Carcinogenesis and their Therapeutic Implications. Curr Pharm Des 2019; 24:5245-5251. [PMID: 30706806 PMCID: PMC6635609 DOI: 10.2174/1381612825666190130145549] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/09/2023]
Abstract
Aging is one of the biggest risk factors for the major prevalent diseases such as cardiovascular diseases, neurodegeneration and cancer, but due to the complex and multifactorial nature of the aging process, the molecular mechanisms underlying age-related diseases are not yet fully understood. Research has been intensive in the last years aiming to characterize the pathophysiology of aging and develop therapies to fight age-related diseases. In this context advanced glycation end products (AGEs) have received attention. AGEs, when accumulated in tissues, significantly increase the level of inflammation in the body which has long been associated with the development of cancer. Here we discuss the classical settings promoting AGE formation, as well as reduction strategies, occurrence and relevance of AGEs in cancer tissues and the role of AGE-interaction with the receptor for advanced glycation end products (RAGE) in cancer initiation and progression.
Collapse
Affiliation(s)
- David Schröter
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.,Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren e.V. (IGZ), 14979 Grossbeeren.,Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, German
| |
Collapse
|
16
|
Amini MA, Talebi SS, Karimi J. Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment. Chonnam Med J 2019; 55:136-143. [PMID: 31598470 PMCID: PMC6769249 DOI: 10.4068/cmj.2019.55.3.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/01/2023] Open
Abstract
Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Liu W, Ouyang S, Zhou Z, Wang M, Wang T, Qi Y, Zhao C, Chen K, Dai L. Identification of genes associated with cancer progression and prognosis in lung adenocarcinoma: Analyses based on microarray from Oncomine and The Cancer Genome Atlas databases. Mol Genet Genomic Med 2018; 7:e00528. [PMID: 30556321 PMCID: PMC6393652 DOI: 10.1002/mgg3.528] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) accounts for approximately 40% of all lung cancer patients. There is an urgent need to understand the mechanisms of cancer progression in LUAD and to identify useful biomarkers to predict prognosis. Methods In this study, Oncomine database was used to identify potential genes contributed to cancer progression. Bioinformatics analysis including pathway enrichment and text mining was used to explain the potential roles of identified genes in LUAD. The Cancer Genome Atlas database was used to analyze the association of gene expression with survival result. Results Our results indicated that 80 genes were significantly dysregulated in LUAD according to four microarrays covering 356 cases of LUAD and 164 cases of normal lung tissues. Twenty genes were consistently and stably dysregulated by more than twofold. Ten of 20 genes had a relationship with overall survival or disease‐free survival in a cohort of 516 LUAD patients, and 19 genes were associated with tumor stage, gender, age, lymph node, or smoking. Low expression of AGER and high expression of CCNB1 were specifically associated with poor survival. Conclusion Our findings implicate AGER and CCNB1 might be potential biomarkers for diagnosis and prognosis targets for LUAD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Gastroenterology in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Zhigang Zhou
- Department of Radiology in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Meng Wang
- Department of Radiology in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Tingting Wang
- Department of Medical Examination in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Yu Qi
- Department of Thoracic Surgery in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Chunling Zhao
- Department of Respiratory and Sleep Medicine in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Kuisheng Chen
- Department of Pathology in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Liping Dai
- Department of Respiratory and Sleep Medicine in the First Affiliated HospitalZhengzhou UniversityZhengzhouChina
- Department of Tumor Research in the Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
18
|
Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Discov Oncol 2018; 9:295-325. [DOI: 10.1007/s12672-018-0342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
|
19
|
Kim HY, Wang X, Kang R, Tang D, Boone BA, Zeh HJ, Lotze MT, Edwards WB. RAGE-specific single chain Fv for PET imaging of pancreatic cancer. PLoS One 2018. [PMID: 29529089 PMCID: PMC5846720 DOI: 10.1371/journal.pone.0192821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noninvasive detection of both early pancreatic neoplasia and metastases could enhance strategies to improve patient survival in this disease that is notorious for an extremely poor prognosis. There are almost no identifiable targets for non-invasive diagnosis by positron emission tomography (PET) for patients with pancreatic ductal adenocarcinoma (PDAC). Over-expression of the receptor for advanced glycation end products (RAGE) is found on the cell surface of both pre-neoplastic lesions and invasive PDAC. Here, a RAGE-specific single chain (scFv) was developed, specific for PET imaging in syngeneic mouse models of PDAC. An anti-RAGE scFv conjugated with a sulfo-Cy5 fluorescence molecule showed high affinity and selectivity for RAGE expressing pancreatic tumor cells and genetically engineered KRASG12D mouse models of PDAC. An in vivo biodistribution study was performed with the 64Cu-radiolabled scFv in a syngeneic murine pancreatic cancer model, demonstrating both the feasibility and potential of an anti-RAGE scFv for detection of PDAC. These studies hold great promise for translation into the clinic.
Collapse
Affiliation(s)
- Hye-Yeong Kim
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xiaolei Wang
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rui Kang
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Brian A. Boone
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Herbert J. Zeh
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - W. Barry Edwards
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
AGER promotes proliferation and migration in cervical cancer. Biosci Rep 2018; 38:BSR20171329. [PMID: 29298878 PMCID: PMC5789157 DOI: 10.1042/bsr20171329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/12/2017] [Accepted: 01/01/2018] [Indexed: 12/16/2022] Open
Abstract
The receptor for advanced glycation end products (AGER) is an oncogenic transmembranous receptor up-regulated in various human cancers. We have previously reported that AGER was overexpressed in squamous cervical cancer. However, mechanisms of AGER involved in the progression of cervical cancer are unknown. In the present study, we investigated the effects of AGER on biological behavior, including proliferation, apoptosis, and migration using multiple biological approaches. AGER protein primarily localized in the cytoplasm and cytomembrane of cervical squamous cancer cells. Blockage of AGER with multiple siRNAs suppressed proliferation, stimulated apoptosis, inhibited migration of cervical squamous cancer cells. Conversely, overexpression of AGER increased cell proliferation, migration, and inhibited cell apoptosis. These results indicate that AGER promotes proliferation, migration, and inhibits apoptosis of squamous cervical cancer and might function as a tumor promoter in cervical cancer. Our study provides novel evidence for a potential role of AGER in bridging human papillomavirus (HPV)-induced inflammation and cervical cancer.
Collapse
|