1
|
Fang T, Yu K. LncRNA PFAR facilitates the proliferation and migration of papillary thyroid carcinoma by competitively binding to miR-15a. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3037-3048. [PMID: 37874339 PMCID: PMC11074224 DOI: 10.1007/s00210-023-02779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Papillary thyroid carcinoma (PTC) is type of aggressive tumor, with a markedly declined survival rate when distant metastasis occurs. It is of great significance to develop potential biomarkers to evaluate the progression of PTC. LncRNAs are recently widely claimed with biomarker value in malignant tumors. Herein, the role of LncRNA PFAR in PTC was investigated to explore potential prognostic marker for PTC. Compared to NTHY-ORI 3-1 cells, LncRNA PFAR was found markedly upregulated in PTC cell lines. In LncRNA PFAR knockdown TPC-1 cells, markedly declined cell viability, increased apoptotic rate, enhancive number of migrated cells, and elevated migration distance were observed, accompanied by a suppressed activity of the RET/AKT/mTOR signaling. In LncRNA PFAR overexpressed BCPAP cells, signally increased cell viability, declined apoptotic rate, reduced number of migrated cells, decreased migration distance, and increased tumor volume and tumor weight in nude mice xenograft model were observed, accompanied by an activation of the RET/AKT/mTOR signaling. The binding site between LncRNA PFAR and miR-15a, as well as miR-15a and RET, was confirmed by the dual luciferase reporter assay. The FISH study revealed that LncRNA PFAR was mainly located in the cytoplasm. Furthermore, the impact of the siRNA targeting LncRNA PFAR against the growth and migration of PTC cells was abolished by the inhibitor of miR-15a or SC79, an activator of AKT/mTOR signaling. Collectively, LncRNA PFAR facilitated the proliferation and migration of PTC cells by mediating the miR-15a/RET axis.
Collapse
Affiliation(s)
- Tie Fang
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, No.41, Northwest Street, Haishu District, Ningbo City, 315000, Zhejiang Province, China
| | - Kejie Yu
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, No.41, Northwest Street, Haishu District, Ningbo City, 315000, Zhejiang Province, China.
| |
Collapse
|
2
|
Sawicka B, Sulewska A, Kulczyńska-Przybik A, Bossowski F, Dulewicz M, Borysewicz-Sańczyk H, Mroczko B, Nikliński J, Bossowski A. Potential Role of Selected miRNAs in the Pathogenesis of Autoimmune Thyroid Diseases in Children and Adolescents. Biomedicines 2024; 12:731. [PMID: 38672087 PMCID: PMC11047951 DOI: 10.3390/biomedicines12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Many epigenetic factors, including microRNAs, are involved in the process of changing gene expressions. Small non-coding RNA molecules, called miRNAs, are responsible for regulating gene translation by silencing or degrading target mRNAs. It is acknowledged that for many diseases, they may be novel diagnostic and prognostic biomarkers. Patients with autoimmune thyroid diseases are more likely to develop nodules in the thyroid tissue, and Hashimoto's thyroiditis and Graves' disease predispose patients to thyroid cancer. We evaluated the concentrations of microRNA molecules (miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p, miR-150-5p) in the blood of children with thyroid disorders. In addition, we wished to identify molecules whose change in concentration predisposes to the development of thyroid cancer. AIM The aim of this study is to evaluate selected epigenetic elements by analyzing the levels of miR-15a-5p, miR-126-3p, miR-142-5p, miR-150-5p and miR-21-5p in the blood of pediatric patients with Graves' disease (n = 25), Hashimoto's thyroiditis (n = 26) and thyroid nodular disease (n = 20) compared to a control group of healthy children (n = 17). MATERIALS AND METHODS The study consists of groups of children and adolescents aged 10-18 years with autoimmune thyroid disease, with thyroid nodular disease compared to a control group. The miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p and miR-150-5p molecules were determined through an immunoenzymatic assay using BioVendor reagents. RESULTS There is a statistically significant decrease in the expression of the miR-15a-5p in children with Graves' disease (21.61 vs. 50.22 amol/μL, p = 0.03) and in patients with thyroid nodular disease compared to controls (20.23 vs. 50.22 amol/μL, p = 0.04). Higher levels of the miR-142-5p molecule are found in patients with thyroid disease (with GD-3.8 vs. 3.14 amol/μL, p = 0.01; with HT-3.7 vs. 3.14 amol/μL, p = NS, with thyroid nodular disease-4.16 vs. 3.14 amol/μL, p = 0.04). Lower levels of miR-126-3p were noted in the GD group compared to the control group (7.09 vs. 7.24 amol/μL, p = 0.02). No statistically significant changes in the expressions of miR-150-5p and miR-21-5p molecules were observed in the study groups. CONCLUSIONS 1. The overexpression of the miR-142-5p molecule occurs in children and adolescents with thyroid diseases. 2. Decreased blood levels of miR-15a-5p predispose patients to the formation of focal lesions in the thyroid gland. 3. Identifying a lower expression of the miR-126-3p molecule in the blood of children with GD requires careful follow-up for the development of focal lesions in the thyroid gland and evaluation for their potential malignancy.
Collapse
Affiliation(s)
- Beata Sawicka
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.S.)
| | | | - Filip Bossowski
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland (B.M.)
| | - Hanna Borysewicz-Sańczyk
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-089 Bialystok, Poland (B.M.)
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.S.)
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology, with Cardiology Divisions, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
3
|
Guo YW, Zhu L, Duan YT, Hu YQ, Li LB, Fan WJ, Song FH, Cai YF, Liu YY, Zheng GW, Ge MH. Ruxolitinib induces apoptosis and pyroptosis of anaplastic thyroid cancer via the transcriptional inhibition of DRP1-mediated mitochondrial fission. Cell Death Dis 2024; 15:125. [PMID: 38336839 PMCID: PMC10858168 DOI: 10.1038/s41419-024-06511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Anaplastic thyroid carcinoma (ATC) has a 100% disease-specific mortality rate. The JAK1/2-STAT3 pathway presents a promising target for treating hematologic and solid tumors. However, it is unknown whether the JAK1/2-STAT3 pathway is activated in ATC, and the anti-cancer effects and the mechanism of action of its inhibitor, ruxolitinib (Ruxo, a clinical JAK1/2 inhibitor), remain elusive. Our data indicated that the JAK1/2-STAT3 signaling pathway is significantly upregulated in ATC tumor tissues than in normal thyroid and papillary thyroid cancer tissues. Apoptosis and GSDME-pyroptosis were observed in ATC cells following the in vitro and in vivo administration of Ruxo. Mechanistically, Ruxo suppresses the phosphorylation of STAT3, resulting in the repression of DRP1 transactivation and causing mitochondrial fission deficiency. This deficiency is essential for activating caspase 9/3-dependent apoptosis and GSDME-mediated pyroptosis within ATC cells. In conclusion, our findings indicate DRP1 is directly regulated and transactivated by STAT3; this exhibits a novel and crucial aspect of JAK1/2-STAT3 on the regulation of mitochondrial dynamics. In ATC, the transcriptional inhibition of DRP1 by Ruxo hampered mitochondrial division and triggered apoptosis and GSDME-pyroptosis through caspase 9/3-dependent mechanisms. These results provide compelling evidence for the potential therapeutic effectiveness of Ruxo in treating ATC.
Collapse
Affiliation(s)
- Ya-Wen Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, Zhejiang, China
| | - Lei Zhu
- Department of Thyroid Surgery, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui Central Hospital, Lishui City, Zhejiang, 323000, China
| | - Yan-Ting Duan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, Zhejiang, China
| | - Yi-Qun Hu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, Zhejiang, China
| | - Le-Bao Li
- School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Wei-Jiao Fan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Fa-Huan Song
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, Zhejiang, China
| | - Ye-Feng Cai
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yun-Ye Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Guo-Wan Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, Zhejiang, China.
| | - Ming-Hua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
da Silva Queiroz JP, Pupin B, Bhattacharjee TT, Uno M, Chammas R, Vamondes Kulcsar MA, de Azevedo Canevari R. Expression data of FOS and JUN genes and FTIR spectra provide diagnosis of thyroid carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123305. [PMID: 37660502 DOI: 10.1016/j.saa.2023.123305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
We explore the feasibility of using FOS and JUN gene expression and ATR-FTIR for diagnosis of thyroid cancer. For the study, 38 samples (6 non-neoplastic (NN), 10 papillary thyroid carcinoma (PTC), 7 follicular thyroid carcinoma (FTC), and 15 benign tumors (BT) were subjected to RNA extraction followed by quantitative real time PCR (qRT-PCR) and 30 samples (5 NN, 9 PTC, 5 FTC, and 11 BT) were used for Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) followed by multivariate analysis. Of the above, 20 samples were used for both gene expression and ATR-FTIR studies. We found FOS and JUN expression in malignant tumor samples to be significantly lower than NN and benign. ATR-FIR after multivariate analysis could identify the difficult to diagnose FTC with 93 % efficiency. Overall, results suggest the diagnostic potential of molecular biology techniques combined with ATR-FTIR spectroscopy in differentiated thyroid carcinomas (PTC and FTC) and BT.
Collapse
Affiliation(s)
- João Paulo da Silva Queiroz
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil
| | - Breno Pupin
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil
| | | | - Miyuki Uno
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Marco Aurélio Vamondes Kulcsar
- Serviço de Cirurgia de cabeça e Pescoço, Instituto do Câncer do Estado de São Paulo - ICESP, Av. Doutor Arnaldo, 251, Cerqueira César, CEP 01246-000 São Paulo, SP, Brazil
| | - Renata de Azevedo Canevari
- Laboratório de Biologia Molecular do Câncer, Universidade do Vale do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José dos Campos, 12244-000 São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Geropoulos G, Psarras K, Papaioannou M, Giannis D, Meitanidou M, Kapriniotis K, Symeonidis N, Pavlidis ET, Pavlidis TE, Sapalidis K, Ahmed NM, Abdel-Aziz TE, Eddama MMR. Circulating microRNAs and Clinicopathological Findings of Papillary Thyroid Cancer: A Systematic Review. In Vivo 2022; 36:1551-1569. [PMID: 35738604 PMCID: PMC9301440 DOI: 10.21873/invivo.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Papillary thyroid cancer (PTC) is the most common endocrine malignancy with a rising incidence. There is a need for a non-invasive preoperative test to enable better patient counselling. The aim of this systematic review was to investigate the potential role of circulating microRNAs (miRNAs) in the diagnosis and prognosis of PTC. MATERIALS AND METHODS A systematic literature search was performed using MEDLINE, Cochrane, and Scopus databases (last search date was December 1, 2021). Studies investigating the expression of miRNAs in the serum or plasma of patients with PTC were deemed eligible for inclusion. RESULTS Among the 1,533 screened studies, 39 studies met the inclusion criteria. In total, 108 miRNAs candidates were identified in the serum, plasma, or exosomes of patients suffering from PTC. Furthermore, association of circulating miRNAs with thyroid cancer-specific clinicopathological features, such as tumor size (13 miRNAs), location (3 miRNAs), extrathyroidal extension (9 miRNAs), pre- vs. postoperative period (31 miRNAs), lymph node metastasis (17 miRNAs), TNM stage (9 miRNAs), BRAF V600E mutation (6 miRNAs), serum thyroglobulin levels (2 miRNAs), 131I avid metastases (13 miRNAs), and tumor recurrence (2 miRNAs) was also depicted in this study. CONCLUSION MiRNAs provide a potentially promising role in the diagnosis and prognosis of PTC. There is a correlation between miRNA expression profiles and specific clinicopathological features of PTC. However, to enable their use in clinical practice, further clinical studies are required to validate the predictive value and utility of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Georgios Geropoulos
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K.;
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriakos Psarras
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Dimitrios Giannis
- Department of Surgery, North Shore University Hospital, Manhasset, NY, U.S.A
| | - Maria Meitanidou
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nikolaos Symeonidis
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios T Pavlidis
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros E Pavlidis
- 2 Propedeutical Department of Surgery, Hippokration Hospital, School of Medicine,Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Sapalidis
- 3 General Surgery Department, "AHEPA" University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nada Mabrouk Ahmed
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K
- Department of Pathology, University of Alexandria, Alexandria, Egypt
| | - Tarek Ezzat Abdel-Aziz
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K
| | - Mohammad M R Eddama
- Department of General and Endocrine Surgery, University College London Hospitals, London, U.K
- Research Department of Surgical Biotechnology, University College London, London, U.K
| |
Collapse
|
6
|
Papaioannou M, Chorti AG, Chatzikyriakidou A, Giannoulis K, Bakkar S, Papavramidis TS. MicroRNAs in Papillary Thyroid Cancer: What Is New in Diagnosis and Treatment. Front Oncol 2022; 11:755097. [PMID: 35186709 PMCID: PMC8851242 DOI: 10.3389/fonc.2021.755097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Papillary thyroid cancer (PTC) accounts for up to 80% of thyroid malignancies. New diagnostic and therapeutic options are suggested including innovative molecular methods. MicroRNAs (miRNAs) are nonprotein coding single-stranded RNAs that regulate many cell processes. The aim of the present study is to review the deregulated miRNAs associated with PTCs. Methods A bibliographic research was conducted, resulting in 272 articles referred to miRNAs and PTC. Regarding our exclusion criteria, 183 articles were finally included in our review. Results A remarkably large number of miRNAs have been found to be deregulated during PTC manifestation in the literature. The deregulated miRNAs are detected in tissue samples, serum/plasma, and FNA samples of patients with PTC. These miRNAs are related to several molecular pathways, involving genes and proteins responsible for important biological processes. MiRNA deregulation is associated with tumor aggressiveness, including larger tumor size, multifocality, extrathyroidal extension, lymphovascular invasion, lymph node and distant metastasis, and advanced tumor node metastasis stage. Conclusion MiRNAs are proposed as new diagnostic and therapeutic tools regarding PTC. They could be essential biomarkers for PTC diagnosis applied in serum and FNA samples, while their contribution to prognosis is of great importance.
Collapse
Affiliation(s)
- Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angeliki G. Chorti
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Laboratory of Medical Biology, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kleanthis Giannoulis
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sohail Bakkar
- Department of Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Theodosios S. Papavramidis
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Theodosios S. Papavramidis,
| |
Collapse
|
7
|
Ma Q, Zhang J, Huang J, Wang X, Xiao F, Xing H, Wang Y, Guo Y, Shi B, Song Z, Liu D, Si C, Horinouchi H, Liang C. Decreased miR-940 expression can predict a negative prognosis in early-stage nonsmoking female lung adenocarcinoma. Transl Lung Cancer Res 2022; 10:4293-4302. [PMID: 35004257 PMCID: PMC8674601 DOI: 10.21037/tlcr-21-906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Background Early-stage female lung adenocarcinoma is the most common type of lung cancer encountered in thoracic surgery departments. Tumor-node-metastasis (TNM) staging does not adequately explain a significant stratification phenomenon in the prognosis of patients with stage I lung adenocarcinoma. We aimed to investigate the contributory role of miR-940 in the prognosis prediction. Methods We analyzed the microRNA (miRNA) expression level in tumor tissues (high-risk group vs. low-risk group) from 12 non-smoking female patients with stage I lung adenocarcinoma using miRNA array. Bioinformatic analyses of miR-940 were also carried out based on the public database. Then, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) tests of the tissue samples were further validated. And miR-940's function was analyzed and potential target genes were predicted. Results In all, 24 miRNAs were found to be significantly different between the high-risk group and low-risk group. The expression level of miR-940 was lower in tumor tissue (P=0.011), and the survival rate in the high miR-940 group was higher [hazard ratio (HR) =0.688; P=0.011]. Gene Ontology (GO) analysis showed that the assembly functions of targets regulated by miR-940 were mainly enriched in regulation of myeloid cell differentiation, G1/S transition of mitotic cell cycle, and cellular response to environmental stimulus. miR-940 is involved in transforming growth factor-beta (TGF-beta) signaling pathway; TNF signaling pathway; and estrogen signaling pathway. The number of lung adenocarcinoma cells (A549) was significantly decreased after miR-940 was transfected. Ten epithelial-to-mesenchymal-transition (EMT)-associated genes (MMP9, ZEB1, CDH1, KRT8, KRT18 KET19, TWIST1, VIM, SNAI1, and SNAI2) were found to be significantly related to miR-940. Conclusions The present study showed that miR-940 might be a protective factor for positive prognosis in early stage nonsmoking female lung adenocarcinoma, with transforming growth factor-beta (TGF-beta) pathway, TNF pathway, and matrix metalloprotein (MMP9) being potential targets.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jingjing Huang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaowei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Huajie Xing
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Yongqing Guo
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bin Shi
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyi Song
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Deruo Liu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Xiong H, Yu H, Jia G, Yu J, Su Y, Zhang J, Zhou J. circZFR regulates thyroid cancer progression by the miR-16/MAPK1 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2236-2244. [PMID: 34323000 DOI: 10.1002/tox.23337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have identified the dysregulation of various circRNAs in many types of human cancers including thyroid cancer (TC). Circular RNA ZFR (circZFR) serves as an oncogenic circRNA in TC. However, the detailed molecular mechanism of circZFR in TC progression remains to be further explored. CircZFR and miR-16 expressions in TC cells were analyzed through qRT-PCR. Cell viability, invasion, and apoptosis were detected using CCK-8, transwell invasion assay, and flow cytometry analysis, respectively. The relationship between circZFR and miR-16 was explored using luciferase reporter assay, RNA pull-down assay, and qRT-PCR. The relationship between miR-16 and mitogen-activated protein kinase 1 (MAPK1) was explored using luciferase reporter assay and western blot analysis. Results showed that circZFR was upregulated and miR-16 was downregulated in TC cells. CircZFR knockdown inhibited the viability and invasion and induced apoptosis in TC cells. CircZFR inhibited miR-16 expression by sponging miR-16 and miR-16 repressed MAPK1 expression by targeting MAPK1. Moreover, circZFR positively regulated MAPK1 expression in TC cells by serving as a ceRNA of miR-16. Mechanistically, circZFR knockdown-induced inhibition of cell viability and invasion and promotion of apoptosis were overturned after miR-16 downregulation and promotion of MAPK1. Collectively, circZFR knockdown retarded TC progression by sponging miR-16 and modulating MAPK1 expression.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang, China
| | - Huimei Yu
- Department of Endocrinology, Huaiyin Hospital, Huai'an, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Jinsong Yu
- Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang, China
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Yang Su
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Jianliang Zhang
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Jin Zhou
- Department of Ultrasound Imaging, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
9
|
Li H, Li Y, Tian D, Zhang J, Duan S. miR-940 is a new biomarker with tumor diagnostic and prognostic value. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:53-66. [PMID: 34168918 PMCID: PMC8192490 DOI: 10.1016/j.omtn.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-940 is a microRNA located on chromosome 16p13.3, which has varying degrees of expression imbalance in many diseases. It binds to the 3′ untranslated region (UTR) and affects the transcription or post-transcriptional regulation of target protein-coding genes. For a diversity of cellular processes, including cell proliferation, migration, invasion, apoptosis, epithelial-to-mesenchymal transition (EMT), cell cycle, and osteogenic differentiation, miR-940 can affect them not only by regulating protein-coding genes but also long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in pathways. Intriguingly, miR-940 participates in four pathways that affect cancer development, including the Wnt/β-catenin pathway, mitogen-activated protein kinase (MAPK) pathway, PD-1 pathway, and phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Importantly, the expression of miR-940 is intimately correlated with the diagnosis and prognosis of tumor patients, as well as to the efficacy of tumor chemotherapy drugs. In conclusion, our main purpose is to outline the expression of miR-940 in various diseases and the molecular biological and cytological functions of target genes in order to reveal its potential diagnostic and prognostic value as well as its predictive value of drug efficacy.
Collapse
Affiliation(s)
- Hongxiang Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongmei Tian
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaqian Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|
11
|
CCNA1 gene as a potential diagnostic marker in papillary thyroid cancer. Acta Histochem 2020; 122:151635. [PMID: 33007517 DOI: 10.1016/j.acthis.2020.151635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
The malignancy that most affects the endocrine system is thyroid neoplasm, with an increasing incidence over the years. The most prevalent histological type of the carcinomas that affect the thyroid gland is papillary carcinoma with a prevalence of 80 % worldwide. The current diagnostic methodology may present inconclusive results, emphasizing the need for new effective and sensitive techniques to aid the diagnosis. For this, it is necessary to understand molecular and protein mechanisms in the identification of diagnostic and predictive markers in the lesions. The Cyclin A1 protein, encoded by the CCNA1 gene, is an important cell cycle regulator, belonging to the MAPK/ERK signaling pathway directly involved with thyroid cancer. The aim of this study was to evaluate the CCNA1 gene and Cyclin A1 protein expression in papillary thyroid carcinoma, follicular thyroid carcinoma, and benign thyroid lesions, by real time quantitative PCR and immunohistochemistry analysis, respectively, to verify their roles as potential diagnostic and predictive markers to future applications in the clinical routine. Overexpression of CCNA1 gene was observed in the papillary carcinoma group compared to the normal group (P = 0.0023), benign lesions (P = 0.0011), colloid goiter (P = 0.0124), and follicular carcinoma (P = 0.0063). No differential expression was observed in the papillary primary tumor group from negative lymph nodes compared with the one from positive lymph nodes (P = 0.3818). Although an increased expression of Cyclin A1 was observed in the PTC group compared to the other one in the IHC analysis, no significant difference was observed (Fisher's exact Test). A Cyclin A1 overexpression was detected with weak to mid-moderate immunoreactivity in the benign group (k = 0.56), (score 1.5); mid-moderate to moderate in the goiter group (k = 0.58); weak in the FTC group (k = 0.33); and mid-moderate to moderate in the PTC group (k = 0.48). Due to the small sample size in the IHC analysis and to the fact that not all RNA is translated into protein, the diagnostic potential of Cyclin A1 could not be assessed. However, these findings highlight the potential of the CCNA1 gene as a diagnostic marker for papillary thyroid carcinoma.
Collapse
|
12
|
Somatic Genomic Changes in the Formation of Differentiated Thyroid Carcinoma. ACTA MEDICA BULGARICA 2020. [DOI: 10.2478/amb-2020-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Globally, the diffuse goiter affects more than 10% of the population and in some regions is endemic. Thyroid nodules are found in approximately 5% of the population using the oldest method for thyroid examination – palpation. When performing ultrasound screening, this percentage increases significantly and reaches between 20 and 75% of the total population. Thyroid carcinoma is a rare malignancy and accounts for up to 1% of all malignant tumors. It is the most common endocrine cancer and is clinically manifested as a thyroid nodule. Somatic mutations play an important role in its development. Differentiation of benign and malignant thyroid nodules is of great importance due to the different therapeutic approach. Therefore, new diagnostic tools are sought to help distinguish the two. Despite the progress in our knowledge of carcinogenesis in recent years, a number of key issues still remain unanswered. The establishment of new rare somatic mutations can improve pre-surgical diagnosis and optimize post-operative strategies for the treatment of thyroid carcinoma. Next-generation sequencing (NGS) allows for extensive mutation and genome rearrangements tracking. The results obtained with NGS provide the basis for the development of new approach for systematic genetic screening, at prevention, early diagnosis, accurate prognosis, and targeted therapy of this disorder.
Collapse
|
13
|
Xu SL, Tian YY, Zhou Y, Liu LQ. Diagnostic value of circulating microRNAs in thyroid carcinoma: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 2020; 93:489-498. [PMID: 32379941 DOI: 10.1111/cen.14217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Thyroid cancer (TC) is the most common endocrine system tumour. Several studies had revealed the potential of circulating microRNAs (miRNAs) as novel biomarkers for the diagnosis of TC. The purpose of this meta-analysis is to summarize published studies and evaluate the diagnostic accuracy of circulating miRNAs in TC detection. METHODS In this meta-analysis, we systematically searched three databases: PubMed, EMBASE and Cochrane Library. We used the bivariate mixed-effects regression model to calculate the pooled diagnostic parameters and conduct the summary receiver operator characteristic curve (SROC). All calculations were performed using stata software. RESULTS Thirty-five studies from 9 articles, including 663 TC patients, 519 patients with benign thyroid nodules (BTNs), and 84 healthy controls were included in this meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the SROC curve (AUC) were 0.81 (95% CI 0.75-0.86), 0.81 (95% CI 0.75-0.86), 4.3 (95% CI 3.2-5.6), 0.24 (95% CI 0.18-0.31), 18 (95% CI 12-28) and 0.88 (95% CI 0.85-0.90), respectively in BTN controls, and 0.81 (95% CI 0.75-0.86), 0.85 (95% CI 0.75-0.91), 5.3 (95% CI 3.3-8.7), 0.23 (95% CI 0.18-0.29), 24 (95% CI 14-39), 0.89 (95% CI 0.86-0.91) in healthy controls. The subgroup analysis found that multiple miRNA assays had higher diagnostic accuracy than single miRNA assays with sensitivity of 0.88, specificity of 0.89 and AUC of 0.94. CONCLUSION Circulating miRNAs have good values to diagnose TC and distinguish TC patients from BTN patients. MiRNAs can assist in the diagnosis of malignancy and avoid unnecessary surgery. In summary, circulating miRNAs should be added to our current clinical tools.
Collapse
Affiliation(s)
- Shi-Lin Xu
- Department of Science and Technology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Yang Tian
- Queen Mary School, Medical College, Nanchang University, Nanchang, China
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Ying Zhou
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Li-Qiao Liu
- Department of Science and Technology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Nylén C, Mechera R, Maréchal-Ross I, Tsang V, Chou A, Gill AJ, Clifton-Bligh RJ, Robinson BG, Sywak MS, Sidhu SB, Glover AR. Molecular Markers Guiding Thyroid Cancer Management. Cancers (Basel) 2020; 12:cancers12082164. [PMID: 32759760 PMCID: PMC7466065 DOI: 10.3390/cancers12082164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of thyroid cancer is rapidly increasing, mostly due to the overdiagnosis and overtreatment of differentiated thyroid cancer (TC). The increasing use of potent preclinical models, high throughput molecular technologies, and gene expression microarrays have provided a deeper understanding of molecular characteristics in cancer. Hence, molecular markers have become a potent tool also in TC management to distinguish benign from malignant lesions, predict aggressive biology, prognosis, recurrence, as well as for identification of novel therapeutic targets. In differentiated TC, molecular markers are mainly used as an adjunct to guide management of indeterminate nodules on fine needle aspiration biopsies. In contrast, in advanced thyroid cancer, molecular markers enable targeted treatments of affected signalling pathways. Identification of the driver mutation of targetable kinases in advanced TC can select treatment with mutation targeted tyrosine kinase inhibitors (TKI) to slow growth and reverse adverse effects of the mutations, when traditional treatments fail. This review will outline the molecular landscape and discuss the impact of molecular markers on diagnosis, surveillance and treatment of differentiated, poorly differentiated and anaplastic follicular TC.
Collapse
Affiliation(s)
- Carolina Nylén
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna L1:00, 171 76 Stockholm, Sweden
| | - Robert Mechera
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Department of Visceral Surgery, Clarunis University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Isabella Maréchal-Ross
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
| | - Venessa Tsang
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Department of Endocrinology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Angela Chou
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Anthony J. Gill
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Roderick J. Clifton-Bligh
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Department of Endocrinology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
- Cancer Genetics Unit, Kolling Institute, Sydney, NSW 2010, Australia
| | - Bruce G. Robinson
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Department of Endocrinology, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
- Cancer Genetics Unit, Kolling Institute, Sydney, NSW 2010, Australia
| | - Mark S. Sywak
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
| | - Stan B. Sidhu
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- Cancer Genetics Unit, Kolling Institute, Sydney, NSW 2010, Australia
| | - Anthony R. Glover
- Endocrine Surgical Unit, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (C.N.); (R.M.); (M.S.S.); (S.B.S.)
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (I.M.-R.); (V.T.); (A.C.); (A.J.G.); (R.J.C.-B.); (B.G.R.)
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Faculty of Medicine, St. Vincent’s Clinical School, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Correspondence: ; Tel.: +61-2-9463-1477
| |
Collapse
|
15
|
Guo D, Li F, Zhao X, Long B, Zhang S, Wang A, Cao D, Sun J, Li B. Circular RNA expression and association with the clinicopathological characteristics in papillary thyroid carcinoma. Oncol Rep 2020; 44:519-532. [PMID: 32468074 PMCID: PMC7336492 DOI: 10.3892/or.2020.7626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Circular RNAs (circRNAs) are a novel class of RNAs, with higher stability and tissue specificity, which may be of value as novel clinical markers. High-throughput RNA sequencing was used to profile the expression of circRNAs in 5 pairs of cancer and normal tissues, and reverse transcription-quantitative PCR (RT-qPCR) analysis was employed to verify the results of the RNA sequencing in 45 cases of PTC. The dysregulated circRNA expression and clinicopathological characteristics were assessed and the potential roles of circRNAs in the cellular miRNA and mRNA network were predicted using bioinformatics analysis. The results demonstrated that, compared with normal tissues, a total of 53 circRNAs were dysregulated in tumour tissues, and 8 circRNAs were validated at the mRNA level (P<0.001 and P<0.01). Among those, the expression of chr5:161330882-161336769- (P=0.015), chr9:22046750-22097364+ (P=0.041) and chr8:18765448-18804898- (P=0.036) were obviously associated with the BRAFV600E mutation, chr12:129699809-129700698- was associated with capsular invasion (P=0.025) and chr5:38523418-38530666- was associated with pT stage (P=0.037) and lymph node metastasis (P=0.002). Therefore, some dysregulated circRNAs were found to be associated with BRAFV600E mutation, capsular invasion, advanced pT stage and lymph node metastasis of PTC, indicating that circRNAs may be involved in tumourigenesis and cancer progression, and they may be putative biomarkers for the diagnosis and evaluation of progression of PTC.
Collapse
Affiliation(s)
- Dan Guo
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Fangyuan Li
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoxiao Zhao
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bo Long
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Sumei Zhang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Anqi Wang
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Dingyan Cao
- Medical Science Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Binglu Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
16
|
da Silva RM, Pupin B, Bhattacharjee TT, Vamondes Kulcsar MA, Uno M, Chammas R, de Azevedo Canevari R. ATR-FTIR spectroscopy and CDKN1C gene expression in the prediction of lymph nodes metastases in papillary thyroid carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117693. [PMID: 31708464 DOI: 10.1016/j.saa.2019.117693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Thyroid cancer has become in recent years the most common endocrine malignancy. Among its different types, papillary thyroid carcinoma (PTC) has the highest incidence. PTC is slow growing, but shows a high rate of lymph node metastasis. Tissue biochemical characterization and identification of molecular markers can facilitate stratification of patients into those requiring surgical assessment of lymph nodes and patients for whom this surgical procedure is unnecessary; thus, leading to a more accurate prognosis. To this end, the study aimed to predict lymph node metastasis by Attenuated Total Reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy of primary PTC tumors. Another objective of the study was to determine whether CCNA1, CDKN1C, FOS, HSPA5, JUN, KSR1, MAP2K6, MAPK8IP2 and SFN gene expression in primary PTC tumors could be used as predictive markers of lymph node metastasis. Three PTC with lymph node involvement (PTC+), six PTC without lymph node involvement (PTC-), and five normal (N) thyroid tissues were used for FTIR spectroscopy analysis; while 18 PTC+, 17 PTC-, and 6 N samples were used for molecular analysis by real-time quantitative PCR (RT-qPCR). FTIR spectral analysis revealed changes in phosphate groups possibly associated with nucleic acid (1236 cm-1), and protein/lipids (1452, 2924, 3821 cm-1) in PTC + compared to PTC-, and multivariate analysis could distinguish the two groups. Molecular analysis showed significant increase in CDKN1C gene expression in PTC + compared to PTC-. Being a cell growth regulator, increased CDKN1C provides some supporting evidence to the FTIR spectroscopy based finding of increased nucleic acids in PTC+. Thus, the study suggests the possibility of using FTIR spectroscopy and CDKN1C expression for predicting metastasis using primary tumor alone.
Collapse
Affiliation(s)
- Raissa Monteiro da Silva
- Laboratório de Biologia Molecular Do Câncer, Universidade Do Vale Do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José Dos Campos, 12244-000, São Paulo, SP, Brazil
| | - Breno Pupin
- Laboratório de Biologia Molecular Do Câncer, Universidade Do Vale Do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José Dos Campos, 12244-000, São Paulo, SP, Brazil
| | - Tanmoy Tapobrata Bhattacharjee
- Dental Implantology and Forensics, Sir John Walsh Research Institute, University of Otago, 310 Great King St, North Dunedin, Dunedin, 9016, New Zealand
| | - Marco Aurélio Vamondes Kulcsar
- Instituto Do Câncer Do Estado de São Paulo, Serviço de Cirurgia de Cabeça e Pescoço, Av. Doutor Arnaldo, 251, Cerqueira César, CEP 01246-000, São Paulo, SP, Brazil
| | - Miyuki Uno
- Centro de Investigação Translacional Em Oncologia, Departamento de Radiologia e Oncologia, Instituto Do Cancer Do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo, 01246-000, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional Em Oncologia, Departamento de Radiologia e Oncologia, Instituto Do Cancer Do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo, 01246-000, São Paulo, Brazil
| | - Renata de Azevedo Canevari
- Laboratório de Biologia Molecular Do Câncer, Universidade Do Vale Do Paraíba, UNIVAP, Instituto de Pesquisa e Desenvolvimento, Avenida Shishima Hifumi 2911, Urbanova, São José Dos Campos, 12244-000, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Sun D, Chen L, Lv H, Gao Y, Liu X, Zhang X. Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940. Onco Targets Ther 2020; 13:1569-1581. [PMID: 32110054 PMCID: PMC7037104 DOI: 10.2147/ott.s237307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background Thyroid cancer (TC) is an endocrine disease, and its progression is regulated by many factors, including circular RNAs (circRNAs). However, as a new circRNA, the role of circ_0058124 in TC is worth further exploration. Methods The expression levels of circ_0058124, microRNA-940 (miR-940) and mitogen-activated protein kinase 1 (MAPK1) were assessed by quantitative polymerase chain reaction (q-PCR). The circular characteristic of circ_0058124 was identified by oligo (dT)18 primers, Ribonuclease R (RNase R) and Actinomycin D (ActD), and its localization was determined by nuclear-cytoplasmic separation assay. Also, cell proliferation was detected by colony formation assay, and cell migration and invasion were assessed by transwell assay. Further, Seahorse XF Extracellular Flux Analyzer was used to measure the oxygen consumption rate (OCR) of cells. Besides, dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to identify the mechanism of circ_0058124. Western blot (WB) analysis was used to test the MAPK1 protein level. In addition, mice xenograft models were constructed to test the effect of circ_0058124 on TC tumor growth in vivo. Results Circ_0058124 was highly expressed in TC and is a stable cyclic transcript, mainly located in the cytoplasm. Circ_0058124 knockdown suppressed proliferation, migration, invasion and metabolic abilities in TC cells. MiR-940 could be absorbed by circ_0058124, and the inhibition effect of its overexpression on TC progression could be reversed by overexpressed-circ_0058124. MAPK1 was a target of miR-940, and the suppression effect of its silencing on TC progression could be inverted by miR-940 inhibitor. Besides, MAPK1 expression was regulated by circ_0058124 and miR-940. Interference of circ_0058124 also reduced TC tumor growth in vivo. Conclusion Circ_0058124 might play a carcinogenic role in TC progression by regulating the miR-940/MAPK1 axis, which might provide a new idea for the treatment of TC.
Collapse
Affiliation(s)
- Dezhong Sun
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Li Chen
- Department of Anesthesiology Operation, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Huaiqing Lv
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Yongli Gao
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xuelai Liu
- Department of Neurosurgery, Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong, People's Republic of China
| | - Xiaoyan Zhang
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
18
|
Huang W, Xu X, Liu M, Cui W, Peng G. Downregulation of Hsa_circ_0000735 Inhibits the Proliferation, Migration, Invasion, and Glycolysis in Non-small-cell Lung Cancer by Targeting miR-940/BMPER Axis. Onco Targets Ther 2020; 13:8427-8439. [PMID: 32922033 PMCID: PMC7457839 DOI: 10.2147/ott.s253474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung cancer is the most commonly diagnosed cancer and the major cause of cancer-related deaths worldwide. The increasing studies have demonstrated that circular RNA (circRNA) was involved in the progression of various cancers, including non-small-cell lung cancer (NSCLC). This study was designed to assess the expression, roles and functional mechanisms of circ_0000735 in NSCLC. MATERIALS AND METHODS The expression levels of circ_0000735, miR-940 and bone morphogenetic protein binding endothelial cell precursor-derived regulator (BMPER) were estimated by the real-time quantitative polymerase chain reaction (RT-qPCR). The biological behaviors of NSCLC cells such as proliferation, migration and invasion were analyzed by cell counting kit-8 (CCK-8), colony-forming assays and transwell assay, respectively. Furthermore, extracellular acid ratio and lactate production were tested to assess glycolysis levels of NSCLC cells. The interaction relationship among circ_0000735, BMPER and miR-940 was analyzed by bioinformatics database and dual-luciferase reporter assay. The protein expression level of BMPER was assessed by Western blot assay. Tumorigenesis assay was established to clarify the functional roles of circ_0000735 in vivo. RESULTS Circ_0000735 was upregulated and significantly correlated with overall survival in patients with NSCLC. In addition, the loss-of-functional experiments revealed that knockdown of circ_0000735 repressed proliferation, migration, invasion and glycolysis of NSCLC cells and tumor growth in vivo, which was overturned by overexpression of BMPER. Similarly, overexpression of circ_0000735 enhanced proliferation, migration, invasion, and glycolysis of NSCLC cells. In addition, we also confirmed that overexpression of miR-940 impeded proliferation, migration, invasion, and glycolysis of NSCLC cells. Furthermore, overexpression of BMPER abolished si-circ_0000735 induced effects on NSCLC cells. CONCLUSION Circ_0000735 regulated proliferation, migration, invasion, and glycolysis in NSCLC cells by targeting miR-940/BMPER axis.
Collapse
Affiliation(s)
- Weizhe Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou515041, Guangdong, People’s Republic of China
| | - Xin Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, Guangdong, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- National Clinical Research Center for Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- Guangzhou Institute of Respiratory Health, Guangzhou510120, Guangdong, People’s Republic of China
| | - Mengyang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, Guangdong, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- National Clinical Research Center for Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- Guangzhou Institute of Respiratory Health, Guangzhou510120, Guangdong, People’s Republic of China
| | - Weixue Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, Guangdong, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- National Clinical Research Center for Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- Guangzhou Institute of Respiratory Health, Guangzhou510120, Guangdong, People’s Republic of China
| | - Guilin Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, Guangdong, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- National Clinical Research Center for Respiratory Disease, Guangzhou510120, Guangdong, People’s Republic of China
- Guangzhou Institute of Respiratory Health, Guangzhou510120, Guangdong, People’s Republic of China
- Correspondence: Guilin Peng Tel +86-20-83062114 Email
| |
Collapse
|
19
|
Hou Y, Feng F, Yang R. Effect of miR‑449a‑mediated Notch signaling pathway on the proliferation, apoptosis and invasion of papillary thyroid carcinoma cells. Oncol Rep 2019; 43:471-480. [PMID: 31894345 PMCID: PMC6967094 DOI: 10.3892/or.2019.7443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/15/2019] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to investigate the effect of miR‑449a‑mediated Notch signaling pathway on the proliferation, apoptosis and invasion of papillary thyroid carcinoma cells. Human papillary thyroid carcinoma cell line TPC‑1 was selected, and cells were grouped and transfected: Control group (without any treatment), negative control (NC) group (transfection with NC plasmid), miR‑449a mimic group (transfection with miR‑449a mimic), miR‑449a inhibitor group (transfection with miR‑449a inhibitor), DAPT group (addition of γ‑secretase inhibitor DAPT to inhibit the Notch signaling pathway), and miR‑449a inhibitor + DAPT group (transfection with miR‑449a inhibitor and addition of DAPT). The target relationship between miR‑449a and Notch1 was detected by dual‑luciferase reporter assay. qRT‑PCR and western blotting were used to assess the expression of miR‑449a, Notch1 and Jagged1 in cells. Cell proliferation was detected using EdU; the cell cycle and apoptosis were detected by flow cytometry; cell invasion ability was detected by Transwell assay. PCNA, MMP‑2, MMP‑9, Bcl‑2 and Bax mRNA and protein expression were assessed by qRT‑PCR and western blotting. The results revealed that miR‑449a negatively regulated Notch1. Compared with the control group, there was significantly increased miR‑449a expression in the miR‑449a mimic group, and there was significantly decreased expression of Notch1, Jagged1, PCNA, MMP‑2, MMP‑9 and Bcl‑2, increased Bax, reduced cell proliferation, increased G1‑phase cell fraction, decreased S‑phase cell fraction, an increased apoptosis rate, and decreased invasion ability in the miR‑449a mimic group and DAPT group (all P<0.05). However, the results in the miR‑449a inhibitor group were the opposite of those in miR‑449a mimic group (all P<0.05). There was no significant difference in cell proliferation, apoptosis and invasion in the NC group and miR‑449a inhibitor + DAPT group compared to the control group (all P>0.05). miR‑449a overexpression can inhibit Notch signaling pathway, thereby inhibiting the proliferation and invasion of papillary thyroid carcinoma cells and promoting cell apoptosis.
Collapse
Affiliation(s)
- Yujie Hou
- Department of Endocrinology, Second People's Hospital of Guilin, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Feiling Feng
- Department of Pathophysiology, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Ronghua Yang
- Department of Internal Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| |
Collapse
|
20
|
Over-expression of miR-206 decreases the Euthyrox-resistance by targeting MAP4K3 in papillary thyroid carcinoma. Biomed Pharmacother 2019; 114:108605. [DOI: 10.1016/j.biopha.2019.108605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
|
21
|
Differentiated Thyroid Carcinoma and Late Onset of Lung Distant Metastasis. A Case Report. REPORTS 2019. [DOI: 10.3390/reports2010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Differentiated thyroid carcinoma (DTC), which includes the papillary and follicular variants, is a common neoplasm. DTC has a very high cure rate and is treated surgically, usually followed by ablation of the post-surgical remnant with radioiodine. Case Presentation: The case of a 68-year-old male patient who underwent a minimally invasive complete thyroidectomy on July 4, 2007 for capsulated follicular carcinoma with margins of excision exempted from neoplastic infiltration (AJCC 2002 pT2 PNX PMX) is presented. Discussion: As the patient showed the presence of a pulmonary metastasis after 11 years, the potential implications of DTC follow-up management are here summarized. Conclusions: Follow up must be continued throughout life.
Collapse
|
22
|
Jiang K, Zhao T, Shen M, Zhang F, Duan S, Lei Z, Chen Y. MiR-940 inhibits TGF-β-induced epithelial-mesenchymal transition and cell invasion by targeting Snail in non-small cell lung cancer. J Cancer 2019; 10:2735-2744. [PMID: 31258781 PMCID: PMC6584929 DOI: 10.7150/jca.31800] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Increased evidence reveals that miR-940 inhibits the migration and invasion of cancer cells. Considering transforming growth factor β (TGF-β) signaling is crucial to cellular epithelial-mesenchymal transition (EMT) process and metastasis of cancer, it is in urgent to explore whether and how miR-940 plays an essential role in regulating TGF-β-induced EMT in lung cancer progression. In the present study, we observed a reciprocal expression with down-regulated miR-940 and up-regulated Snail mRNA in non-small-cell lung cancer (NSCLC) tissues. we further found that the expression of miR-940 was decreased in NSCLC tissues with lymph node metastasis, advanced TNM stages and poor cell differentiation, in which, on the contrary, the expression of Snail was increased. Overexpression of miR-940 significantly inhibited Snail mRNA and protein expression in A549 and H226 cells. Mechanistically, Snail mRNA was identified as target of miR-940. In addition, miR-940 repressed TGF-β-induced EMT and further hampered the cell migration and invasion. Finally, siRNA-mediated knockdown of Snail copied the phenotype of miR-940 overexpression in A549 and H226 cells. Taken together, our study reveals that miR-940 can suppress TGF-β-induced EMT and cell invasion by targeting Snail 3'-UTR mRNA in NSCLC.
Collapse
Affiliation(s)
- Kanqiu Jiang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Ting Zhao
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Mingjing Shen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Fuquan Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Shanzhou Duan
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, China
- Department of Genetics, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- ✉ Corresponding authors: Zhe Lei, Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, 199 Ren'ai Road, Sino-Singapore Industrial Park, Suzhou 215123, China. E-mail: , and Yongbing Chen, Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, 1055 Sanxiang Street, Suzhou 215004, China. E-mail:
| | - Yongbing Chen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
- ✉ Corresponding authors: Zhe Lei, Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, 199 Ren'ai Road, Sino-Singapore Industrial Park, Suzhou 215123, China. E-mail: , and Yongbing Chen, Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, 1055 Sanxiang Street, Suzhou 215004, China. E-mail:
| |
Collapse
|
23
|
Calabrese G, Dolcimascolo A, Torrisi F, Zappalà A, Gulino R, Parenti R. MiR-19a Overexpression in FTC-133 Cell Line Induces a More De-Differentiated and Aggressive Phenotype. Int J Mol Sci 2018; 19:ijms19123944. [PMID: 30544640 PMCID: PMC6320980 DOI: 10.3390/ijms19123944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, microRNAs (miRNAs) have received increasing attention for their important role in tumor initiation and progression. MiRNAs are a class of endogenous small non-coding RNAs that negatively regulate the expression of several oncogenes or tumor suppressor genes. MiR-19a, a component of the oncogenic miR-17-92 cluster, has been reported to be highly expressed only in anaplastic thyroid cancer, the most undifferentiated, aggressive and lethal form of thyroid neoplasia. In this work, we evaluated the putative contribution of miR-19a in de-differentiation and aggressiveness of thyroid tumors. To this aim, we induced miR-19a expression in the well-differentiated follicular thyroid cancer cell line and evaluated proliferation, apoptosis and gene expression profile of cancer cells. Our results showed that miR-19a overexpression stimulates cell proliferation and alters the expression profile of genes related to thyroid cell differentiation and aggressiveness. These findings not only suggest that miR-19a has a possible involvement in de-differentiation and malignancy, but also that it could represent an important prognostic indicator and a good therapeutic target for the most aggressive thyroid cancer.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Anna Dolcimascolo
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| |
Collapse
|
24
|
Zhao J, Li Z, Chen Y, Zhang S, Guo L, Gao B, Jiang Y, Tian W, Hao S, Zhang X. MicroRNA‑766 inhibits papillary thyroid cancer progression by directly targeting insulin receptor substrate 2 and regulating the PI3K/Akt pathway. Int J Oncol 2018; 54:315-325. [PMID: 30387841 DOI: 10.3892/ijo.2018.4615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are widely dysregulated in papillary thyroid cancer (PTC). Dysregulated miRNAs, together with their target genes, comprise a complex network that has been implicated in the regulation of PTC pathogenesis. Further knowledge of the functional roles of aberrantly expressed miRNAs in PTC, and the underlying molecular mechanisms, may assist in the identification of novel therapeutic targets. miR‑766 has been well studied in human cancer; however, the expression status, specific roles and regulatory mechanisms of miR‑766 in PTC remain unclear. The present study aimed to detect miR‑766 expression in PTC tissues and cell lines, to explore the biological roles of miR‑766 in the malignant biological behaviors of PTC cells, and to determine the underlying mechanism of action of miR‑766 in PTC cells. The results revealed that miR‑766 was downregulated in PTC tissues and cell lines, and its downregulation was strongly associated with TNM stage and lymph node metastasis. Overexpression of miR‑766 inhibited PTC cell proliferation, colony formation, migration and invasion, promoted cell apoptosis and reduced tumor growth in vivo. Mechanistically, insulin receptor substrate 2 (IRS2) was identified as a direct target of miR‑766 in PTC cells. IRS2 was upregulated in PTC tissues, and this was inversely correlated with miR‑766 expression. Inhibition of IRS2 simulated the tumor suppressor activity of miR‑766 in PTC cells. Restoration of IRS2 expression negated the tumor‑suppressing effects of miR‑766 overexpression on PTC cells. Notably, miR‑766 directly targeted IRS2 to inhibit activation of the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) pathway in PTC cells in vitro and in vivo. Overall, these findings indicated that miR‑766 may inhibit the malignant biological behaviors of PTC cells by directly targeting IRS2 and regulating the PI3K/Akt pathway, thus suggesting that this miRNA may be a promising therapeutic target for PTC.
Collapse
Affiliation(s)
- Jianjie Zhao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhirong Li
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Shu Zhang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Lingji Guo
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Bo Gao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yan Jiang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Wuguo Tian
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Shuai Hao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaohua Zhang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
25
|
Ullmann TM, Gray KD, Moore MD, Zarnegar R, Fahey TJ. Current controversies and future directions in the diagnosis and management of differentiated thyroid cancers. Gland Surg 2018; 7:473-486. [PMID: 30505769 DOI: 10.21037/gs.2017.09.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the development of novel diagnostic, surgical, and chemotherapeutic approaches to differentiated thyroid cancers (DTCs), the diagnosis and management of these tumors remains controversial. The most recent American Thyroid Association (ATA) guidelines, released in 2015, reflect a recent shift towards less aggressive management for patients with DTCs. However, many clinicians have expressed concern that more conservative management will put patients at risk for disease recurrence and metastasis. In particular, the management of indeterminate nodules on fine needle aspiration (with special attention to genetic and epigenetic markers of malignancy), the extent of surgery for known differentiated cancers, the role of adjuvant radioactive iodine (RAI) therapy, and novel targeted treatments with tyrosine kinase inhibitors (TKIs) represent current areas of uncertainty and opportunities for future research. In this review, we examine the current state of the art in these areas, and address some of the questions that remain.
Collapse
Affiliation(s)
- Timothy M Ullmann
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Katherine D Gray
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Maureen D Moore
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Rasa Zarnegar
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Thomas J Fahey
- Department of Surgery, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Fang T, Li J, Wu X. Shenmai injection improves the postoperative immune function of papillary thyroid carcinoma patients by inhibiting differentiation into Treg cells via miR-103/GPER1 axis. Drug Dev Res 2018; 79:324-331. [PMID: 30267584 DOI: 10.1002/ddr.21459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
Shenmai injection (SMI) is increasingly used in tumor combination therapy, devoting to enhancing anti-tumor effects and reducing the toxicity of chemotherapy drugs. This study aimed to explore the role of SMI in papillary thyroid carcinoma (PTC) treatment. Flow cytometry was used to examine Treg cells percentage in CD4 + T cells. The expression of RNA and protein was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Inducers were used to stimulate CD4 + T cells to differentiate into Treg cells. The interaction between miR-103 and G protein-coupled estrogen receptor 1 (GPER1) was confirmed with the dual luciferase assays. Cell transfection and recombinant plasmids were used to achieve endogenous expression. Compared with patients not treated with 131 I, the Treg cells percentage and Foxp3 expression were clearly increased in patients with 131 I radiotherapy, just the opposite in SMI combination therapy. SMI inhibited the differentiation of CD4 + T cells into Treg cells. Aberrant expression of miR-103 and GPER1 induced by 131 I was reversed by SMI and 131 I combination therapy. GPER1 was negatively regulated by miR-103 and SMI inhibits the differentiation of CD4 + T cells into Treg cells via miR-103/GPER1 axis, which improves the postoperative immunological function of PTC patients with 131 I radiotherapy.
Collapse
Affiliation(s)
- Tie Fang
- Department of thyroid surgery, The Ningbo No.2 Hospital, Ningbo, People's Republic of China
| | - Jianjun Li
- Department of thyroid surgery, The Ningbo No.2 Hospital, Ningbo, People's Republic of China
| | - Xianjiang Wu
- Department of thyroid surgery, The Ningbo No.2 Hospital, Ningbo, People's Republic of China
| |
Collapse
|
27
|
Thyroid cancers of follicular origin in a genomic light: in-depth overview of common and unique molecular marker candidates. Mol Cancer 2018; 17:116. [PMID: 30089490 PMCID: PMC6081953 DOI: 10.1186/s12943-018-0866-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, thyroid malignances have become more prevalent, especially among women. The most common sporadic types of thyroid tumors of follicular origin include papillary, follicular and anaplastic thyroid carcinomas. Although modern diagnosis methods enable the identification of tumors of small diameter, tumor subtype differentiation, which is imperative for the correct choice of treatment, is still troublesome. This review discusses the recent advances in the field of molecular marker identification via next-generation sequencing and microarrays. The potential use of these biomarkers to distinguish among the most commonly occurring sporadic thyroid cancers is presented and compared. Geographical heterogeneity might be a differentiator, although not necessarily a limiting factor, in biomarker selection. The available data advocate for a subset of mutations common for the three subtypes as well as mutations that are unique for a particular tumor subtype. Tumor heterogeneity, a known issue occurring within solid malignancies, is also discussed where applicable. Public databases with datasets derived from high-throughput experiments are a valuable source of information that aid biomarker research in general, including the identification of molecular hallmarks of thyroid cancer.
Collapse
|
28
|
Ding S, Qu W, Jiao Y, Zhang J, Zhang C, Dang S. LncRNA SNHG12 promotes the proliferation and metastasis of papillary thyroid carcinoma cells through regulating wnt/β-catenin signaling pathway. Cancer Biomark 2018; 22:217-226. [PMID: 29630517 DOI: 10.3233/cbm-170777] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shimei Ding
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Wei Qu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Jing Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Chunhong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| |
Collapse
|
29
|
Risk of malignancy in thyroid nodules: predictive value of puncture feeling of grittiness in the process of fine-needle aspiration. Sci Rep 2017; 7:13109. [PMID: 29026128 PMCID: PMC5638944 DOI: 10.1038/s41598-017-13391-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023] Open
Abstract
Fine-needle aspiration cytology (FNAC) is widely used for diagnosing thyroid nodules. However, there has been no specific investigation about the puncture feeling of grittiness. The aim of the present study was to see if the puncture feeling of grittiness during fine-needle aspiration procedure, combined with standard FNAC, could improve the accuracy in diagnosing thyroid cancer. A total of one thousand five hundred and thirty-one thyroid FNAC specimens acquired between January 2013 and January 2017 were retrospectively retrieved. All cases underwent surgical intervention. The FNAC diagnoses and puncture feeling of grittiness were evaluated and compared with the results of final histopathological diagnoses. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of diagnosis for thyroid nodules by FNAC alone, puncture feeling of grittiness alone, and the combination of FNAC plus grittiness were calculated respectively. The findings of our study suggest that puncture feeling of grittiness is a useful adjunct. Adding puncture feeling of grittiness to FNAC can significantly enhance the ability to differentiate malignant thyroid nodules from benign thyroid nodules. More importantly, we found that puncture feeling of grittiness is surprising trust-worthy in being near perfectly reproducible per individual radiologist, and among different operators.
Collapse
|