1
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
2
|
Cordeiro HG, Azevedo-Martins JM, Faria AVDS, Rocha-Brito KJP, Milani R, Peppelenbosch M, Fuhler G, de Fátima Â, Ferreira-Halder CV. Calix[6]arene dismantles extracellular vesicle biogenesis and metalloproteinases that support pancreatic cancer hallmarks. Cell Signal 2024; 119:111174. [PMID: 38604340 DOI: 10.1016/j.cellsig.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Many challenges are faced in pancreatic cancer treatment due to late diagnosis and poor prognosis because of high recurrence and metastasis. Extracellular vesicles (EVs) and matrix metalloproteinases (MMPs), besides acting in intercellular communication, are key players in the cancer cell plasticity responsible for initiating metastasis. Therefore, these entities provide valuable targets for the development of better treatments. In this context, this study aimed to evaluate the potential of calix[6]arene to disturb the release of EVs and the activity of MMPs in pancreatic cancer cells. We found a correlation between the endocytic-associated mediators and the prognosis of pancreatic cancer patients. We observed a more active EV machinery in the pancreatic cancer cell line PANC-1, which was reduced three-fold by treatment with calix[6]arene at subtoxic concentration (5 μM; p 〈0,001). We observed the modulation of 186 microRNAs (164 miRNAs upregulated and 22 miRNAs downregulated) upon calix[6]arene treatment. Interestingly, some of them as miR-4443 and miR-3909, regulates genes HIF1A e KIF13A that are well known to play a role in transport of vesicles. Furthermore, Calix[6]arene downmodulated matrix metalloproteinases (MMPs) -2 and - 9 and disturbed the viability of pancreatic organoids which recapitulate the cellular heterogeneity, structure, and functions of primary tissues. Our findings shed new insights on calix[6]arene's antitumor mechanism, including its intracellular effects on vesicle production and trafficking, as well as MMP activity, which may harm the tumor microenvironment and contribute to a reduction in cancer cell dissemination, which is one of the challenges associated with high mortality in pancreatic cancer.
Collapse
Affiliation(s)
- Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jordana Maria Azevedo-Martins
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Renato Milani
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gwenny Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carmen Veríssima Ferreira-Halder
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Dang C, Bian Q, Wang F, Wang H, Liang Z. Machine learning identifies SLC6A14 as a novel biomarker promoting the proliferation and metastasis of pancreatic cancer via Wnt/β-catenin signaling. Sci Rep 2024; 14:2116. [PMID: 38267509 PMCID: PMC10808089 DOI: 10.1038/s41598-024-52646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Pancreatic cancer (PC) has the poorest prognosis compared to other common cancers because of its aggressive nature, late detection, and resistance to systemic treatment. In this study, we aimed to identify novel biomarkers for PC patients and further explored their function in PC progression. We analyzed GSE62452 and GSE28735 datasets, identifying 35 differentially expressed genes (DEGs) between PC specimens and non-tumors. Based on 35 DEGs, we performed machine learning and identified eight diagnostic genes involved in PC progression. Then, we further screened three critical genes (CTSE, LAMC2 and SLC6A14) using three GEO datasets. A new diagnostic model was developed based on them and showed a strong predictive ability in screen PC specimens from non-tumor specimens in GEO, TCGA datasets and our cohorts. Then, clinical assays based on TCGA datasets indicated that the expression of LAMC2 and SLC6A14 was associated with advanced clinical stage and poor prognosis. The expressions of LAMC2 and SLC6A14, as well as the abundances of a variety of immune cells, exhibited a significant positive association with one another. Functionally, we confirmed that SLC6A14 was highly expressed in PC and its knockdown suppressed the proliferation, migration, invasion and EMT signal via regulating Wnt/β-catenin signaling pathway. Overall, our findings developed a novel diagnostic model for PC patients. SLC6A14 may promote PC progression via modulating Wnt/β-catenin signaling. This work offered a novel and encouraging new perspective that holds potential for further illuminating the clinicopathological relevance of PC as well as its molecular etiology.
Collapse
Affiliation(s)
- Cunshu Dang
- Department of Hepatobiliary Gastrointestinal Surgery, Tianjin Fourth Central Hospital, No.1 Zhongshan Road, Tianjin, China.
| | - Quan Bian
- Department of Plastic and Reconstructive Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Fengbiao Wang
- Department of Hepatobiliary Gastrointestinal Surgery, Tianjin Fourth Central Hospital, No.1 Zhongshan Road, Tianjin, China
| | - Han Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin Fourth Central Hospital, Tianjin, China
| | - Zhipeng Liang
- Department of Hepatobiliary Gastrointestinal Surgery, Tianjin Fourth Central Hospital, No.1 Zhongshan Road, Tianjin, China
| |
Collapse
|
4
|
Abstract
OBJECTIVES Extracellular vesicles (EVs) are lipid bound vesicles secreted by cells into the extracellular environment. Studies have implicated EVs in cell proliferation, epithelial-mesenchymal transition, metastasis, angiogenesis, and mediating the interaction of tumor cells and microenvironment. A systematic characterization of EVs from pancreatic cancer cells and cancer-associated fibroblasts (CAFs) would be valuable for studying the roles of EV proteins in pancreatic tumorigenesis. METHODS Proteomic and functional analyses were applied to characterize the proteomes of EVs released from 5 pancreatic cancer lines, 2 CAF cell lines, and a normal pancreatic epithelial cell line (HPDE). RESULTS More than 1400 nonredundant proteins were identified in each EV derived from the cell lines. The majority of the proteins identified in the EVs from the cancer cells, CAFs, and HPDE were detected in all 3 groups, highly enriched in the biological processes of vesicle-mediated transport and exocytosis. Protein networks relevant to pancreatic tumorigenesis, including epithelial-mesenchymal transition, complement, and coagulation components, were significantly enriched in the EVs from cancer cells or CAFs. CONCLUSIONS These findings support the roles of EVs as a potential mediator in transmitting epithelial-mesenchymal transition signals and complement response in the tumor microenvironment and possibly contributing to coagulation defects related to cancer development.
Collapse
|
5
|
Lyu P, Hao Z, Zhang H, Li J. Identifying pancreatic cancer‑associated miRNAs using weighted gene co‑expression network analysis. Oncol Lett 2022; 24:297. [DOI: 10.3892/ol.2022.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Pengfei Lyu
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Zhengwen Hao
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Haoruo Zhang
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Jun Li
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
6
|
Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, Wang HQ, Bu LL, Liu B, Chen G. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: Present and future. J Extracell Vesicles 2021; 10:e12175. [PMID: 34918479 PMCID: PMC8678102 DOI: 10.1002/jev2.12175] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid‐bilayer membrane structures secreted by most cell types. EVs act as messengers via the horizontal transfer of lipids, proteins, and nucleic acids, and influence various pathophysiological processes in both parent and recipient cells. Compared to EVs obtained from body fluids or cell culture supernatants, EVs isolated directly from tissues possess a number of advantages, including tissue specificity, accurate reflection of tissue microenvironment, etc., thus, attention should be paid to tissue‐derived EVs (Ti‐EVs). Ti‐EVs are present in the interstitium of tissues and play pivotal roles in intercellular communication. Moreover, Ti‐EVs provide an excellent snapshot of interactions among various cell types with a common histological background. Thus, Ti‐EVs may be used to gain insights into the development and progression of diseases. To date, extensive investigations have focused on the role of body fluid‐derived EVs or cell culture‐derived EVs; however, the number of studies on Ti‐EVs remains insufficient. Herein, we summarize the latest advances in Ti‐EVs for cancers and non‐cancer diseases. We propose the future application of Ti‐EVs in basic research and clinical practice. Workflows for Ti‐EV isolation and characterization between cancers and non‐cancer diseases are reviewed and compared. Moreover, we discuss current issues associated with Ti‐EVs and provide potential directions.
Collapse
Affiliation(s)
- Su-Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fu-Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Lin Y, Zheng ZH, Wang JX, Zhao Z, Peng TY. Tumor Cell-Derived Exosomal Circ-0072088 Suppresses Migration and Invasion of Hepatic Carcinoma Cells Through Regulating MMP-16. Front Cell Dev Biol 2021; 9:726323. [PMID: 34568335 PMCID: PMC8458752 DOI: 10.3389/fcell.2021.726323] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Tumor-derived exosomes (EXOs), commonly differentially expressed in circular RNAs, have been shown to be crucial determinants of tumor progression and may regulate the development and metastasis of hepatic carcinoma (HCC). Methods: Possibly differentially expressed circRNAs in patients with HCC were screened out from the Gene Expression Omnibus (GEO). EXOs were isolated from the culture medium of HCC cells and plasma of patients with HCC, followed by characterization by transmission electron microscope, NanHCCight, and western blotting. Additionally, RNA immunoprecipitation and luciferase reporter gene assays were carried out to explore the molecular mechanism of hsa_circRNA_103809 (circ-0072088) in HCC cells. Results: The screening results showed that circ-0072088 was highly expressed in patients with HCC, and its increase indicated unfavorable prognosis of patients according to quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Additionally, circ-0072088 was mainly secreted by HCC cells via EXOs in plasma of such patients, and its high level in plasma EXOs was closely associated with tumor node metastasis (TNM) staging and tumor size. Moreover, HCC-secreted EXOs mediated the degradation of miR-375 via circ-0072088 and upregulated MMP-16, thus suppressing the metastasis of HCC. Conclusion: Upregulated in patients with HCC, circ-0072088 may be an index for diagnosis and prognosis of HCC. In addition, HCC-derived EXOs coated with circ-0072088 might be a treatment for HCC, with the ability to inhibit the metastasis of HCC cells.
Collapse
Affiliation(s)
- Ye Lin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ze-Hao Zheng
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Surgery, Shantou University Medical College, Shantou, China
| | - Jian-Xi Wang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Zhao
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tian-Yi Peng
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Surgery, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Wang S, Gao Y. Pancreatic cancer cell-derived microRNA-155-5p-containing extracellular vesicles promote immune evasion by triggering EHF-dependent activation of Akt/NF-κB signaling pathway. Int Immunopharmacol 2021; 100:107990. [PMID: 34482266 DOI: 10.1016/j.intimp.2021.107990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
Pancreatic cancer (PC)-derived EVs have been extensively investigated due to their promising potential as disease biomarkers for diagnosis, monitoring, and treatment decisionmaking. Herein, we explored the mechanism underlying PC-derived EVs in immune evasion of PC. Initially, microRNA (miR)-155-5p level was quantified by RT-qPCR in tumor tissue samples from PC patients, EVs isolated from PC cell lines and PC cell lines. Then, the interaction between miR-155-5p and EHF was identified using dual-luciferase reporter assay. Ectopic expression and knockdown experiments were conducted in PC cells, PC cells-derived EVs, or mouse xenograft model of PC. Afterwards, cell invasion, proportion of macrophage and immune cell subsets, and expression of NF-κB signaling-related genes were assessed using Transwell assay, flow cytometry, RT-qPCR and western blot analysis, respectively. Accordingly, miR-155-5p was upregulated in clinical tissue samples, Pan02-derived EVs and PC cell lines. miR-155-5p knockdown in PC cells enhanced anti-tumor immunity. PC cell-derived EVs facilitated immunosuppressive microenvironment by promoting T cell depletion. In addition, PC cell-derived EVs transferred miR-155-5p to macrophages and then promoted polarization of macrophages to M2 phenotype. EHF was downregulated in PC and could be targeted by miR-155-5p, which resulted in the activation of the Akt/NF-κB signaling. Our findings revealed a previously unrecognized tumor immune evasion-promoting function of PC-derived EV miR-155-5p in PC development by suppressing EHF and activating NF-κB signaling. This study suggested that the miR-155-5p/EHF/Akt/NF-κB axis can be exploited to prevent cancer immune evasion triggered by therapies.
Collapse
Affiliation(s)
- Shuxia Wang
- Department of Special Needs Ward, Linyi People's Hospital, Linyi 276100, PR China
| | - Yongli Gao
- Third Department of Oncology, Linyi People's Hospital, Linyi 276100, PR China.
| |
Collapse
|
9
|
Huang W, Xue L, Xu H, Kong Z, Xu J, Zhao H, Nie Y. Diagnostic value of neuronal pentraxin II methylation in patients with pancreatic cancer: Meta-analysis. Int J Clin Pract 2021; 75:e14443. [PMID: 34105851 DOI: 10.1111/ijcp.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a devasting disease of which mortality almost parallels its incidence. PC tissue may express aberrantly methylated neuronal pentraxin II (NPTX2), but it is unclear what the consequences of this are. METHODS We systematically searched PubMed, Web of Science, the Chinese National Knowledge Infrastructure (CNKI), from inception to July 15, 2020, to identify if the detection of methylated NPTX2 have sufficient sensitivity and specificity to identify PC from other benign pancreatic diseases. RESULTS Majority of the studies obtained samples from pancreatic juice by endoscopy or surgery and composed of population with chronic pancreatitis, benign cystic lesion, intraductal papillary mucinous neoplasm, and healthy controls. Our results demonstrated that the diagnostic value of methylated NPTX2 is of widely various sensitivity and specificity and it shown higher specificity in differentiate PC from benign diseases. The lab method of quantitative real-time methylation-specific PCR (QMSP) has higher specificity than real-time methylation-specific PCR (MSP) in detecting the indicator. CONCLUSIONS NPTX2 methylation could serve as a promising molecular biomarker for pancreatic cancer diagnosis, for its high diagnostic value in differentiating pancreatic cancer from benign pancreatic disease with the lab method. The variable sensitivity of methylated NPTX2 was multifactorial, and it must be promoted before applied as screening test in clinical practice. Furthermore, experiments on methylated NPTX2 were needed to expanded for lower the heterogeneity.
Collapse
Affiliation(s)
- Wenqi Huang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - LiFeng Xue
- Department of Gastroenterology, People's Hospital of Shenzhen, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiqian Kong
- Dongguan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jing Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hailan Zhao
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Hu JX, Zhao CF, Chen WB, Liu QC, Li QW, Lin YY, Gao F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J Gastroenterol 2021; 27:4298-4321. [PMID: 34366606 PMCID: PMC8316912 DOI: 10.3748/wjg.v27.i27.4298] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite rapid advances in modern medical technology and significant improvements in survival rates of many cancers, pancreatic cancer is still a highly lethal gastrointestinal cancer with a low 5-year survival rate and difficulty in early detection. At present, the incidence and mortality of pancreatic cancer are increasing year by year worldwide, no matter in the United States, Europe, Japan, or China. Globally, the incidence of pancreatic cancer is projected to increase to 18.6 per 100000 in 2050, with the average annual growth of 1.1%, meaning that pancreatic cancer will pose a significant public health burden. Due to the special anatomical location of the pancreas, the development of pancreatic cancer is usually diagnosed at a late stage with obvious clinical symptoms. Therefore, a comprehensive understanding of the risk factors for pancreatic cancer is of great clinical significance for effective prevention of pancreatic cancer. In this paper, the epidemiological characteristics, developmental trends, and risk factors of pancreatic cancer are reviewed and analyzed in detail.
Collapse
Affiliation(s)
- Jian-Xiong Hu
- Intensive Care Unit (ICU), Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Cheng-Fei Zhao
- School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine in University of Fujian Province, Putian University, Putian 351100, Fujian Province, China
| | - Wen-Biao Chen
- Department of Basic Medicine, Quanzhou Medical College, Quanzhou 362011, Fujian Province, China
| | - Qi-Cai Liu
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Qu-Wen Li
- Department of Priority Laboratory for Zoonoses Research, Fujian Center for Disease Control and Prevention, Fuzhou 350001, Fujian Province, China
| | - Yan-Ya Lin
- Intensive Care Unit (ICU), Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Feng Gao
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
11
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
12
|
Kim SH, Lim KH, Yang S, Joo JY. Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets. J Hematol Oncol 2021; 14:77. [PMID: 33980320 PMCID: PMC8114507 DOI: 10.1186/s13045-021-01088-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Brain tumors are associated with adverse outcomes despite improvements in radiation therapy, chemotherapy, and photodynamic therapy. However, treatment approaches are evolving, and new biological phenomena are being explored to identify the appropriate treatment of brain tumors. Long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels and are involved in a variety of biological functions. Recent studies on lncRNAs have revealed their aberrant expression in various cancers, with distinct expression patterns associated with their instrumental roles in cancer. Abnormal expression of lncRNAs has also been identified in brain tumors. Here, we review the potential roles of lncRNAs and their biological functions in the context of brain tumors. We also summarize the current understanding of the molecular mechanisms and signaling pathways related to lncRNAs that may guide clinical trials for brain tumor therapy.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
13
|
Exosomes as Pleiotropic Players in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030275. [PMID: 33803470 PMCID: PMC8002012 DOI: 10.3390/biomedicines9030275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) incidence is rising and due to late diagnosis, combined with unsatisfactory response to current therapeutic approaches, this tumor has an extremely high mortality rate. A better understanding of the mechanisms underlying pancreatic carcinogenesis is of paramount importance for rational diagnostic and therapeutic approaches. Multiple lines of evidence have showed that exosomes are actively involved in intercellular communication by transferring their cargos of bioactive molecules to recipient cells within the tumor microenvironment and systemically. Intriguingly, exosomes may exert both protumor and antitumor effects, supporting or hampering processes that play a role in the pathogenesis and progression of PC, including shifts in tumor metabolism, proliferation, invasion, metastasis, and chemoresistance. They also have a dual role in PC immunomodulation, exerting immunosuppressive or immune enhancement effects through several mechanisms. PC-derived exosomes also induce systemic metabolic alterations, leading to the onset of diabetes and weight loss. Moreover, exosomes have been described as promising diagnostic and prognostic biomarkers for PC. Their potential application in PC therapy as drug carriers and therapeutic targets is under investigation. In this review, we provide an overview of the multiple roles played by exosomes in PC biology through their specific cargo biomolecules and of their potential exploitation in early diagnosis and treatment of PC.
Collapse
|
14
|
Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 2021; 17:151-162. [PMID: 33420658 PMCID: PMC7954979 DOI: 10.1007/s11302-020-09761-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China.
| |
Collapse
|
15
|
SRY-related high-mobility-group box 4: Crucial regulators of the EMT in cancer. Semin Cancer Biol 2020; 67:114-121. [DOI: 10.1016/j.semcancer.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
|
16
|
Wang L, Bi J, Li X, Wei M, He M, Zhao L. Prognostic alternative splicing signature reveals the landscape of immune infiltration in Pancreatic Cancer. J Cancer 2020; 11:6530-6544. [PMID: 33046974 PMCID: PMC7545682 DOI: 10.7150/jca.47877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Pancreatic cancer (PC) is an aggressive cancer with worse survival in the world. Emerging evidence suggested that the imbalance of alternative splicing (AS) is a hallmark of cancer and indicated poor prognosis of patients. Genes-derived splicing events can produce neoepitopes for immunotherapy. However, the profound study of splicing profiling in PC is still elusive. We aimed to identification of novel prognostic signature across a comprehensive splicing landscape and reveal their relationship with tumor-infiltrating immune cells in pancreatic cancer microenvironment. Methods: Based on integrated analysis of splicing profiling and clinical data, differentially splicing events were filtered out. Then, stepwise Cox regression analysis was applied to identify survival-related splicing events and construct prognostic signature. Functional enrichment analysis was performed to explore biology function. Kaplan-Meier curves and receiver operating characteristic (ROC) curves were performed to validate the predictive effect of predictive signature. We also verified the clinical value of prognostic signature under the influence of different clinical parameters. For deeper analysis, we evaluated the correlation between prognostic signature and infiltrating immune cells by CIBERSORT. Results: According to systematic analyzing, a final six splicing events were identified and validated the good prognostic capability in entire TCGA dataset, validation set 1 and validation set 2 by Kaplan-Meier curves (P < 0.0001). The area under the curve (AUC) of ROC curves were also confirmed the high predictive efficiency of the prognostic signature in these three cohorts (AUC = 0.857, 0.895 and 0.788). In order to validate whether prognostic signature highlights a correlation between AS and immune contexture, CIBERSORT was performed to analyze the proportion of tumor-infiltrating immune cells in PC. Based on prognostic signature, we identified survival-related immune cells including CD8 T cells (P = 0.0111), activated CD4 memory T cells (P = 0.0329) and resting mast cells (P = 0.0352). Conclusion: In conclusion, our study contribute to provide a promising prognostic signature based on six splicing events and revealed prognosis-related immune cells which indeed represented novel tumor drivers and provide potential targets for personalized therapeutic.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
17
|
Martellucci S, Orefice NS, Angelucci A, Luce A, Caraglia M, Zappavigna S. Extracellular Vesicles: New Endogenous Shuttles for miRNAs in Cancer Diagnosis and Therapy? Int J Mol Sci 2020; 21:ijms21186486. [PMID: 32899898 PMCID: PMC7555972 DOI: 10.3390/ijms21186486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs’ stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: or ; Tel.: +1-608-262-21-89
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, 83031 Avellino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| |
Collapse
|
18
|
Sun W, Ren Y, Lu Z, Zhao X. The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer 2020; 19:135. [PMID: 32878635 PMCID: PMC7466807 DOI: 10.1186/s12943-020-01255-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PaCa) is an insidious and highly metastatic malignancy, with a 5-year survival rate of less than 5%. So far, the pathogenesis and progression mechanisms of PaCa have been poorly characterized. Exosomes correspond to a class of extracellular nanovesicles, produced by a broad range of human somatic and cancerous cells. These particular nanovesicles are mainly composed by proteins, genetic substances and lipids, which mediate signal transduction and material transport. A large number of studies have indicated that exosomes may play decisive roles in the occurrence and metastatic progression of PaCa. This article summarizes the specific functions of exosomes and their underlying molecular mechanisms in mediating the initiation and metastatic capability of PaCa.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
19
|
BxPC-3-Derived Small Extracellular Vesicles Induce FOXP3+ Treg through ATM-AMPK-Sirtuins-Mediated FOXOs Nuclear Translocations. iScience 2020; 23:101431. [PMID: 32798974 PMCID: PMC7452591 DOI: 10.1016/j.isci.2020.101431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/27/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy in pancreatic ductal adenocarcinoma (PDAC) treatment faces serious challenges, due particularly to the poor immunogenicity. Cancer cell-derived small extracellular vesicles (sEVs) play important roles in damaging the immune system. However, the effects of pancreatic cancer-derived sEVs on T lymphocytes are unknown. Here we investigated changes in phenotypes and signal transduction pathways in sEVs-treated T lymphocytes. We identified the overexpression of immune checkpoint proteins PD-1, PD-L1, CTLA4, and Tim-3 and the enrichment of FOXP3+ Treg cluster in sEVs-treated T lymphocytes by CyTOF. Gene set enrichment analysis revealed that DNA damage response and metabolic pathways might be involved in sEVs-induced Tregs. ATM, AMPK, SIRT1, SIRT2, and SIRT6 were activated sequentially in sEVs-treated T lymphocytes and essential for sEVs-upregulated expressions of FOXO1A, FOXO3A, and FOXP3. Our study reveals the impact and mechanism of pancreatic cancer cell-derived sEVs on T lymphocytes and may provide insights into developing immunotherapy strategies for PDAC treatment. Human pancreatic cancer cells-derived sEVs induce Treg promotion DNA damage responses and metabolism are altered in sEVs-stimulated T lymphocytes ATM-AMPK-SIRT1/2/6-FOXO1A/3A axis plays a role in sEVs-induced Treg FOXO1A, FOXO3A, and FOXP3 are highly expressed in pancreatic cancer-involved lymph nodes
Collapse
|
20
|
Kim JH, Youn Y, Kim KT, Jang G, Hwang JH. Non-SMC condensin I complex subunit H mediates mature chromosome condensation and DNA damage in pancreatic cancer cells. Sci Rep 2019; 9:17889. [PMID: 31784646 PMCID: PMC6884527 DOI: 10.1038/s41598-019-54478-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Non-SMC condensin I complex subunit H (NCAPH) is a vital gene associated with chromosome stability and is required for proper chromosome condensation and segregation. However, the mechanisms through which NCAPH affects pancreatic cancer (PC) and its molecular function remain unclear. In this study, we examined the role of NCAPH in PC cells. Our results showed that NCAPH was overexpressed in clinical PC specimens (GEPIA) and cell lines. In addition, in NCAPH-knockdown cells, colony formation and proliferation were inhibited, and the cell cycle was arrested at the S and G2/M phases owing to failure of mature chromosome condensation (MCC) in poorly condensed chromosomes. Increased cell death in NCAPH-knockdown cells was found to help initiate apoptosis through the activation of caspase-3 and PARP cleavage. Furthermore, NCAPH-knockdown cells showed an increase in chromosomal aberrations and DNA damage via activation of the DNA damage response (Chk1/Chk2) signaling pathways. These data demonstrated that NCAPH played an important role in cell cycle progression and DNA damage by maintaining chromosomal stability through progression of MCC from poorly condensed chromosomes. Ultimately, NCAPH knockdown induced apoptotic cell death, which was partially mediated by caspase-dependent pathways. These findings highlight the potential role of NCAPH as a therapeutic target for PC.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Kyung-Tae Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Gyubeom Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
21
|
Multiple Roles of Exosomal Long Noncoding RNAs in Cancers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1460572. [PMID: 31360701 PMCID: PMC6642753 DOI: 10.1155/2019/1460572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/12/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are not transcriptional noise, as previously understood, but are currently considered to be multifunctional. Exosomes are derived from the internal multivesicular compartment and are extracellular vesicles (EVs) with diameters of 30–100 nm. Exosomes play significant roles in the intercellular exchange of information and material. Exosomal lncRNAs may be promising biomarkers for cancer diagnosis and potential targets for cancer therapies, since they are increasingly understood to be involved in tumorigenesis, tumor angiogenesis, and chemoresistance. This review mainly focuses on the roles of emerging exosomal lncRNAs in cancer. In addition, the biogenesis of exosomes, the functions of lncRNAs, and the mechanisms of lncRNAs in exosome-mediated cell-cell communication are also summarized.
Collapse
|
22
|
Azam Z, Quillien V, Wang G, To SST. The potential diagnostic and prognostic role of extracellular vesicles in glioma: current status and future perspectives. Acta Oncol 2019; 58:353-362. [PMID: 30632857 DOI: 10.1080/0284186x.2018.1551621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lack of appropriate diagnostic/prognostic tools for glioblastoma (GB) is considered one of the major setbacks in the early diagnosis and treatment of this deadly brain tumor. The current gold standard for its diagnosis and staging still relies on invasive biopsy followed by histological examination as well as molecular profiling. Nevertheless, noninvasive approaches are being explored and one example is through the investigation of extracellular vesicles (EVs) in the biofluids of GB patients. EVs are known to carry molecular cargoes such as DNA, mRNA, miRNA, proteins and lipids in almost every type of body fluids. Thus, molecular signature of GB may be present in the EVs derived from these patients. This review focuses on the diagnostic/prognostic potential of EVs in GB, through presenting recent studies on (i) molecular components of EVs, (ii) links between EVs and GB tumor microenvironment, and (iii) clinical potential of EV biomarkers, together with the technical shortcomings researchers need to consider for future studies.
Collapse
Affiliation(s)
- Zulfikar Azam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Véronique Quillien
- Department of Biology, Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Shing-Shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Wu H, Chen X, Ji J, Zhou R, Liu J, Ni W, Qu L, Ni H, Ni R, Bao B, Xiao M. Progress of Exosomes in the Diagnosis and Treatment of Pancreatic Cancer. Genet Test Mol Biomarkers 2019; 23:215-222. [PMID: 30793953 DOI: 10.1089/gtmb.2018.0235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a digestive system tumor that is highly malignant, with an increasing incidence rate, poor prognosis, and a low 5-year survival rate. The overwhelming majority of patients with PC are in an advanced stage at the time of diagnosis and have lost the opportunity for radical surgery. The efficacy of radiotherapy and chemotherapy for PC is very poor. Therefore, it is of great significance to explore the mechanisms of PC development and new therapeutic targets. Exosomes are extracellular vesicles that mediate the exchange of substances and information between cells. In recent years, exosomes have been shown to play a key role in the development and progression of PC and might be useful for both its diagnosis and treatment. This article reviews the composition and function of exosomes and their roles in the development, diagnosis, and treatment of PC.
Collapse
Affiliation(s)
- Hongpei Wu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China.,2 Medical College, Nantong University, Nantong, P.R. China
| | - Xiaojun Chen
- 3 Office of Infection Management, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Jie Ji
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China.,2 Medical College, Nantong University, Nantong, P.R. China
| | - Rui Zhou
- 2 Medical College, Nantong University, Nantong, P.R. China
| | - Jinxia Liu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wenkai Ni
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Lishuai Qu
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Hongbing Ni
- 4 Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Runzhou Ni
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Baijun Bao
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Mingbing Xiao
- 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, P.R. China.,5 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
24
|
Qian L, Yu S, Chen Z, Meng Z, Huang S, Wang P. Functions and clinical implications of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:75-84. [PMID: 30419313 DOI: 10.1016/j.bbcan.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer is one of the most aggressive human malignancies and is associated with a dismal prognosis, which can be contributed to its atypical symptoms, metastatic propensity, and significant chemoresistance. Emerging evidence shows that pancreatic cancer cell-derived exosomes (PEXs) play critical roles in tumorigenesis and tumor development, as they are involved in drug resistance, immune evasion and metabolic reprograming, and distant metastasis of pancreatic cancer. Their numerous differentially expressed and functional contents make PEXs promising screening tools and therapeutic targets, which require further exploration. In this review, we focus on the functions of PEX contents and their clinical implications in pancreatic cancer.
Collapse
Affiliation(s)
- Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China; Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 2000332, China.
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China.
| |
Collapse
|
25
|
Moutinho-Ribeiro P, Macedo G, Melo SA. Pancreatic Cancer Diagnosis and Management: Has the Time Come to Prick the Bubble? Front Endocrinol (Lausanne) 2018; 9:779. [PMID: 30671023 PMCID: PMC6331408 DOI: 10.3389/fendo.2018.00779] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer (PC) is associated with poor prognosis and very dismal survival rates. The most effective possibility of cure is tumor resection, which is only possible in about 15% of patients diagnosed at early stages of disease progression. Recent whole-genome sequencing studies pointed genetic alterations in 12 core signaling pathways in PC. These observations hint at the possibility that the initial mutation in PC might appear nearly 20 years before any symptoms occur, suggesting that a large window of opportunity may exist for early detection. Biomarkers with the potential to identify pre-neoplastic disease or very early stages of cancer are of great promise to improve patient survival. The concept of liquid biopsy refers to a minimally invasive sampling and analysis of liquid biomarkers that can be isolated from body fluids, primarily blood, urine and saliva. A myriad of circulating molecules may be useful as tumor markers, including cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating tumor cells (CTC), circulating tumor proteins, and extracellular vesicles, more specifically exosomes. In this review, we discuss with more detail the potential role of exosomes in several aspects related to PC, from initiation to tumor progression and its applicability in early detection and treatment. Exosomes are small circulating extracellular vesicles of 50-150 nm in diameter released from the plasma membrane by almost all cells and exhibit some advantages over other biomarkers. Exosomes are central players of intercellular communication and they have been implicated in a series of biological process, including tumorigenesis, migration and metastasis. Several exosomal microRNAs and proteins have been observed to distinguish PC from benign pancreatic diseases and healthy controls. Besides their possible role in diagnosis, understanding exosomes functions in cancer has clarified the importance of microenvironment in PC progression as well as its influence in proliferation, metastasis and resistance to chemotherapy. Increasing knowledge on cancer exosomes provides valuable insights on new therapeutic targets and can potentially open new strategies to treat this disease. Continuous research is needed to ascertain the reliability of using exosomes and their content as potential biomarkers, so that, hopefully, in the near future, they will provide the opportunity for early diagnosis, treatment intervention and increase survival of PC patients.
Collapse
Affiliation(s)
- Pedro Moutinho-Ribeiro
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- *Correspondence: Guilherme Macedo
| | - Sónia A. Melo
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Institute for Research Innovation in Health (i3S), Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto, Porto, Portugal
- Sónia A. Melo
| |
Collapse
|