1
|
Sipos F, Műzes G. Sirtuins Affect Cancer Stem Cells via Epigenetic Regulation of Autophagy. Biomedicines 2024; 12:386. [PMID: 38397988 PMCID: PMC10886574 DOI: 10.3390/biomedicines12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) are stress-responsive proteins that regulate several post-translational modifications, partly by acetylation, deacetylation, and affecting DNA methylation. As a result, they significantly regulate several cellular processes. In essence, they prolong lifespan and control the occurrence of spontaneous tumor growth. Members of the SIRT family have the ability to govern embryonic, hematopoietic, and other adult stem cells in certain tissues and cell types in distinct ways. Likewise, they can have both pro-tumor and anti-tumor effects on cancer stem cells, contingent upon the specific tissue from which they originate. The impact of autophagy on cancer stem cells, which varies depending on the specific circumstances, is a very intricate phenomenon that has significant significance for clinical and therapeutic purposes. SIRTs exert an impact on the autophagy process, whereas autophagy reciprocally affects the activity of certain SIRTs. The mechanism behind this connection in cancer stem cells remains poorly understood. This review presents the latest findings that position SIRTs at the point where cancer cells and autophagy interact. Our objective is to highlight the various roles of distinct SIRTs in cancer stem cell-related functions through autophagy. This would demonstrate their significance in the genesis and recurrence of cancer and offer a more precise understanding of their treatment possibilities in relation to autophagy.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
2
|
Oladejo M, Nguyen HM, Wood L. CD105 in the progression and therapy of renal cell carcinoma. Cancer Lett 2023; 570:216327. [PMID: 37499740 DOI: 10.1016/j.canlet.2023.216327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Molecular biomarkers that interact with the vascular and immune compartments play an important role in the progression of solid malignancies. CD105, which is a component of the transforming growth factor beta (TGF β) signaling cascade, has long been studied for its role in potentiating angiogenesis in numerous cancers. In renal cell carcinoma (RCC), the role of CD105 is more complicated due to its diverse expression profile on the tumor cells, tumor vasculature, and the components of the immune system. Since its discovery, its angiogenic role has overshadowed other potential functions, especially in cancers. In this review, we aim to summarize the recent evidence and findings of the multifunctional roles of CD105 in angiogenesis and immunomodulation in the context of the various subtypes of RCC, with a specific emphasis on the clear cell RCC subtype. Since CD105 is an established biomarker and tumor antigen, we also provide an update on the preclinical and clinical applications of CD105 as a therapeutic platform in RCC.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
3
|
Luo Q, Liu P, Yu P, Qin T. Cancer Stem Cells are Actually Stem Cells with Disordered Differentiation: the Monophyletic Origin of Cancer. Stem Cell Rev Rep 2023; 19:827-838. [PMID: 36648606 PMCID: PMC10185654 DOI: 10.1007/s12015-023-10508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Cancer stem cells (CSCs) play an important role in cancer development. Based on advancements in CSC research, we propose a monophyletic model of cancer. This model is based on the idea that CSCs are stem cells with disordered differentiation whose original purpose was to repair damaged tissues. Inflammatory responses and damage repair signals are crucial for the creation and maintenance of CSCs. Normal quiescent stem cells are activated by environmental stimulation, such as an inflammatory response, and undergo cell division and differentiation. In the initial stage of cancer development, stem cell differentiation leads to heteromorphism due to the accumulation of gene mutations, resulting in the development of metaplasia or precancerosis. In the second stage, accumulated mutations induce poor differentiation and lead to cancer development. The monophyletic model illustrates the evolution, biological behavior, and hallmarks of CSCs, proposes a concise understanding of the origin of cancer, and may encourage a novel therapeutic approach.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China.
| |
Collapse
|
4
|
Oladejo M, Nguyen HM, Seah H, Datta A, Wood LM. Tumoral CD105 promotes immunosuppression, metastasis, and angiogenesis in renal cell carcinoma. Cancer Immunol Immunother 2022; 72:1633-1646. [PMID: 36586013 DOI: 10.1007/s00262-022-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
CD105 (endoglin) is a transmembrane protein that functions as a TGF-beta coreceptor and is highly expressed on endothelial cells. Unsurprisingly, preclinical and clinical evidence strongly suggests that CD105 is an important contributor to tumor angiogenesis and tumor progression. Emerging evidence suggests that CD105 is also expressed by tumor cells themselves in certain cancers such as renal cell carcinoma (RCC). In human RCC tumor cells, CD105 expression is associated with stem cell-like properties and contributes to the malignant phenotype in vitro and in xenograft models. However, as a regulator of TGF-beta signaling, there is a striking lack of evidence for the role of tumor-expressed CD105 in the anti-tumor immune response and the tumor microenvironment. In this study, we report that tumor cell-expressed CD105 potentiates both the in vitro and in vivo tumorigenic potential of RCC in a syngeneic murine RCC tumor model. Importantly, we find that tumor cell-expressed CD105 sculpts the tumor microenvironment by enhancing the recruitment of immunosuppressive cell types and inhibiting the polyfunctionality of tumor-infiltrating CD4+ and CD8+ T cells. Finally, while CD105 expression by endothelial cells is a well-established contributor to tumor angiogenesis, we also find that tumor cell-expressed CD105 significantly contributes to tumor angiogenesis in RCC.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Hannah Seah
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Arani Datta
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Laurence M Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA.
| |
Collapse
|
5
|
Oladejo M, Nguyen HM, Silwal A, Reese B, Paulishak W, Markiewski MM, Wood LM. Listeria-based immunotherapy directed against CD105 exerts anti-angiogenic and anti-tumor efficacy in renal cell carcinoma. Front Immunol 2022; 13:1038807. [PMID: 36439126 PMCID: PMC9692019 DOI: 10.3389/fimmu.2022.1038807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/29/2023] Open
Abstract
Targeting tumor-associated angiogenesis is currently at the forefront of renal cell carcinoma (RCC) therapy, with sunitinib and bevacizumab leading to increased survival in patients with metastatic RCC (mRCC). However, resistance often occurs shortly after initiation of therapy, suggesting that targeting the tumor-associated vascular endothelium may not be sufficient to eradicate RCC. This study reports the therapeutic efficacy of a Listeria (Lm)-based vaccine encoding an antigenic fragment of CD105 (Lm-LLO-CD105A) that targets both RCC tumor cells and the tumor-associated vasculature. Lm-LLO-CD105A treatment reduced primary tumor growth in both subcutaneous and orthotopic models of murine RCC. The vaccine conferred anti-tumor immunity and remodeled the tumor microenvironment (TME), resulting in increased infiltration of polyfunctional CD8+ and CD4+ T cells and reduced infiltration of immunosuppressive cell types within the TME. We further provide evidence that the therapeutic efficacy of Lm-LLO-CD105A is mediated by CD8+ T cells and is dependent on the robust antigenic expression of CD105 by RCC tumor cells. The result from this study demonstrates the safety and promising therapeutic efficacy of targeting RCC-associated CD105 expression with Lm-based immunotherapy.
Collapse
|
6
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, McDonald PP, Ekindi-Ndongo N, Jeldres C, Dubois CM. Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing. Front Med (Lausanne) 2022; 9:1003914. [PMID: 36275794 PMCID: PMC9582329 DOI: 10.3389/fmed.2022.1003914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive subtype of renal cell carcinoma accounting for the majority of deaths in kidney cancer patients. Advanced ccRCC has a high mortality rate as most patients progress and develop resistance to currently approved targeted therapies, highlighting the ongoing need for adequate drug testing models to develop novel therapies. Current animal models are expensive and time-consuming. In this study, we investigated the use of the chick chorioallantoic membrane (CAM), a rapid and cost-effective model, as a complementary drug testing model for ccRCC. Our results indicated that tumor samples from ccRCC patients can be successfully cultivated on the chick chorioallantoic membrane (CAM) within 7 days while retaining their histopathological characteristics. Furthermore, treatment of ccRCC xenografts with sunitinib, a tyrosine kinase inhibitor used for the treatment of metastatic RCC, allowed us to evaluate differential responses of individual patients. Our results indicate that the CAM model is a complementary in vivo model that allows for rapid and cost-effective evaluation of ccRCC patient response to drug therapy. Therefore, this model has the potential to become a useful platform for preclinical evaluation of new targeted therapies for the treatment of ccRCC.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Claudio Jeldres
- Division of Urology, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Claire M. Dubois
| |
Collapse
|
7
|
Filipiak-Duliban A, Brodaczewska K, Majewska A, Kieda C. Spheroid culture models adequately imitate distinctive features of the renal cancer or melanoma microenvironment. In Vitro Cell Dev Biol Anim 2022; 58:349-364. [PMID: 35536385 DOI: 10.1007/s11626-022-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
Tumor development studies should adapt to cancer cells' specific mechanisms in connection with their microenvironment. Standard two-dimensional cultures and gas composition are not relevant to the real cancer environment. Existing three-dimensional models are often requiring sophisticated conditions. Here, we propose and characterize, in two cancer models, melanoma (B16F10) and kidney cancer (RenCa), a three-dimensional culture method, reporting the presence of hypoxia-related genes/proteins and aggressiveness mechanisms (epithelial mesenchymal transition and cancer stem cells). We validate the designed three-dimensional method by comparing it with in vivo growing tumors. The developed method brings simplicity and data reproducibility. Melanoma spheroid-growing cells reached a cell cycle arrest at the G0/G1 phase and showed induction of hypoxia. Spheroid-recovered RenCa cells were enriched in proliferating cells and displayed delayed hypoxia. Moreover, the responses to hypoxia observed in spheroids were validated by in vivo tumor studies for both lines. Three-dimensional shapes induced cancer stem cells in renal cancer, whereas epithelial to mesenchymal transition occurred in the melanoma model. Such distinction in the use of different aggressiveness-leading pathways was observed in in vivo melanoma vs kidney tumors. Thus, this 3D culture model approach is adequate to uncover crucial molecular pathways using distinct mechanisms to reach aggressiveness; i.e., B16F10 cells perform epithelial to mesenchymal transition while RenCa cells dedifferentiate into cancer stem cells. Such three-dimensional models help mimic the in vivo tumor features, i.e., hypoxia and aggressiveness mechanisms as validated here by next-generation sequencing analysis, and are proposed for further alternative methods to in vivo studies.
Collapse
Affiliation(s)
- Aleksandra Filipiak-Duliban
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Center for Molecular Biophysics UPR 4301 CNRS, 45071, Orleans, France
| |
Collapse
|
8
|
Effect of resveratrol and oxyresveratrol on deferoxamine-induced cancer stem cell marker expression in human head and neck squamous cell carcinoma. J Oral Biol Craniofac Res 2022; 12:253-257. [DOI: 10.1016/j.jobcr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
|
9
|
Li L, Zhong L, Tang C, Gan L, Mo T, Na J, He J, Huang Y. CD105: tumor diagnosis, prognostic marker and future tumor therapeutic target. Clin Transl Oncol 2022; 24:1447-1458. [PMID: 35165838 DOI: 10.1007/s12094-022-02792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the diseases with the highest morbidity and mortality rates worldwide, and its therapeutic options are inadequate. The endothelial glycoprotein, also known as CD105, is a type I transmembrane glycoprotein located on the surface of the cell membranes and it is one of the transforming growth factor-β (TGF-β) receptor complexes. It regulates the responses associated with binding to transforming growth factor β1 egg (Activin-A), bone morphogenetic protein 2 (BMP-2), and bone morphogenetic protein 7 (BMP-7). Additionally, it is involved in the regulation of angiogenesis. This glycoprotein is indispensable in the treatment of tumor angiogenesis, and it also plays a leading role in tumor angiogenesis therapy. Therefore, CD105 is considered to be a novel therapeutic target. In this study, we explored the significance of CD105 in the diagnosis, treatment and prognosis of various tumors, and provided evidence for the effect and mechanism of CD105 on tumors.
Collapse
Affiliation(s)
- Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
10
|
Wang Y, Yang Z, Gu J, Zhang Y, Wang X, Teng Z, Wang D, Gao L, Li W, Yeh S, Han Z. Estrogen receptor beta increases clear cell renal cell carcinoma stem cell phenotype via altering the circPHACTR4/miR-34b-5p/c-Myc signaling. FASEB J 2022; 36:e22163. [PMID: 35061326 DOI: 10.1096/fj.202101645r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022]
Abstract
Early clinical studies indicated that estrogen receptor beta (ERβ) might play key roles to impact the progression of clear cell renal cell carcinoma (ccRCC). The detailed molecular mechanisms, however, remain unclear. Here, we found ERβ could increase the cancer stem cell (CSC) population via altering the circPHACTR4/miR-34b-5p/c-Myc signaling. Mechanism dissection revealed that ERβ could suppress circular RNA PHACTR4 (circPHACTR4) expression via direct binding to the estrogen response elements (EREs) on the 5' promoter region of its host gene, phosphatase and actin regulator 4 (PHACTR4) to decrease miR-34b-5p expression. The decreased miRNA-34b-5p could then increase c-Myc mRNA translation via targeting its 3' untranslated region (3' UTR). The in vivo mouse model with subcutaneous xenografts of ccRCC cells also validated the in vitro data. Importantly, analysis results from ccRCC TCGA database and our clinical data further confirmed the above in vitro/in vivo data. Together, these results suggest that ERβ may increase CSC population in ccRCC via altering ERβ/circPHACTR4/miR-34b-5p/c-Myc signaling and that targeting this newly identified signal pathway may help physicians to better suppress ccRCC progression.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Junfei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dandan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuyuan Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, New York, USA
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Liu Q, Gu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26:2038-2056. [PMID: 32250210 DOI: 10.2174/1381612826666200403131514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients' survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: "biomarkers", "cancer stem cells", "targeting/targeted therapy", "prostate cancer", bladder cancer" and "kidney cancer". We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.
Collapse
Affiliation(s)
- Qiang Liu
- Yaopharma Co., Ltd. Chongqing, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26:1964-1978. [PMID: 32188377 DOI: 10.2174/1381612826666200318153106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.
Collapse
Affiliation(s)
- Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuting Zhou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lee Y Lim
- Department of Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA 6009, Perth, Australia
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
15
|
Fiedorowicz M, Khan MI, Strzemecki D, Orzeł J, Wełniak-Kamińska M, Sobiborowicz A, Wieteska M, Rogulski Z, Cheda L, Wargocka-Matuszewska W, Kilian K, Szczylik C, Czarnecka AM. Renal carcinoma CD105-/CD44- cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep 2020; 10:5379. [PMID: 32214151 PMCID: PMC7096525 DOI: 10.1038/s41598-020-62205-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer. Prognosis for ccRCC is generally poor since it is largely resistant to chemo- and radiotherapy. Many studies suggested that cancer stem cells/tumor initiating cells (CSCs/TICs) are responsible for development of tumor, disease progression, aggressiveness, metastasis and drug resistance. However, tumorigenic potential of CSCs/TICs isolated from established RCC cell lines - basic ccRCC research model - has never been investigated in vivo. CD105+, CD105-, CD44+ and CD44- as well as CD44-/CD105- CD44+/CD105+ and CD44-/CD105+ cells were isolated from Caki-1 RCC cell line, confirming coexistence of multiple subpopulations of stem-related phenotype in stable cell line. Sorted cells were injected subcutaneously into NOD SCID mice and tumor growth was monitored with MRI and PET/CT. Tumor growth was observed after implantation of CD105+, CD44+, CD44-, CD44-/CD105+ and CD44-/CD105- but not CD105- or CD44+/CD105+. Implantation of CD44-/CD105- cells induced tumors that were characterized by longer T1 and distinct metabolic pattern than other tumors. All the tumors were characterized by low uptake of [18F]FDG. CD105+ and CD44- tumors expresses Nanog and Oct-4, while CD44- tumors additionally expressed endothelial cell marker - CD31.
Collapse
Affiliation(s)
- M Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | - M I Khan
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, ON, N6A 3K7, Canada
| | - D Strzemecki
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - J Orzeł
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - M Wełniak-Kamińska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - A Sobiborowicz
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - M Wieteska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Z Rogulski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - L Cheda
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - W Wargocka-Matuszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - K Kilian
- Heavy Ion Laboratory, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - C Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
- Department of Oncology, European Health Centre, Otwock, Poland
- Medical Center for Postgraduate Education, Warsaw, Poland
| | - A M Czarnecka
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
16
|
Microglial Phenotyping in Neurodegenerative Disease Brains: Identification of Reactive Microglia with an Antibody to Variant of CD105/Endoglin. Cells 2019; 8:cells8070766. [PMID: 31340569 PMCID: PMC6678308 DOI: 10.3390/cells8070766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered a key pathological process in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), but there are still mechanisms not understood. In the brain, most microglia are performing essential homeostatic functions, but can also respond to pathogenic stimuli by producing harmful pro-inflammatory cytokines or free radicals. Distinguishing between damaging and homeostatic microglia in human diseased brain tissues is a challenge. This report describes findings using a monoclonal antibody to CD105/Endoglin (R&D Systems MAB1097) that identifies subtypes of activated microglia. CD105/Endoglin is a co-receptor for transforming growth factor beta (TGFβ) receptor that antagonizes TGFβ signaling. CD105/Endoglin is a marker for vascular endothelial cells, but was originally identified as a marker for activated macrophages. This antibody did not identify endothelial cells in brain sections, only microglia-like cells. In this study, we examined with this antibody tissue section from middle temporal gyrus derived from human brains from normal control subjects with low-plaque pathology, high-plaque pathology, and AD cases, and also substantia nigra samples from control and PD cases, in conjunction with antibodies to markers of pathology and microglia. In low-plaque pathology cases, CD105-positive microglia were mostly absent, but noticeably increased with increasing pathology. CD105-positive cells strongly colocalized with amyloid-beta plaques, but not phosphorylated tau positive tangles. In substantia nigra, strong microglial CD105 staining was observed in microglia associated with degenerating dopaminergic neurons and neuromelanin. In PD cases with few surviving dopaminergic neurons, this staining had decreased. By Western blot, this antibody identified polypeptide bands of 70 kDa in brain samples, and samples from microglia, macrophages, and brain endothelial cells. In comparison with other tested CD105 antibodies, this antibody did not recognize the glycosylated forms of CD105 on Western blots. Overall, the data indicate that this antibody and this marker could have utility for subtyping of microglia in pathologically-involved tissue.
Collapse
|
17
|
Shi D, Che J, Yan Y, Peng B, Yao X, Guo C. Expression and clinical value of CD105 in renal cell carcinoma based on data mining in The Cancer Genome Atlas. Exp Ther Med 2019; 17:4499-4505. [PMID: 31086581 PMCID: PMC6489005 DOI: 10.3892/etm.2019.7493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
The objective of the present study was to assess the expression of CD105 and its association with overall survival in three subtypes of renal cell carcinoma (RCC), namely clear cell (cc)RCC, papillary (p)RCC and chromophobe (ch)RCC. Data regarding the transcriptome and copy number of genes in RCC tumor samples and survival were obtained from The Cancer Genome Atlas. Bioinformatics analysis revealed that CD105 is overexpressed in ccRCC tumor tissue vs. normal renal tissue, and a higher CD105 copy number in ccRCC tissues was significantly associated with longer patient survival. The effect of the mRNA expression of CD105 in all three types of RCC and the copy number in pRCC and chRCC on patient survival was insignificant, but certain trends were observed. In addition, CD105 mRNA expression was associated with the metastasis and tumor stage, as well as pathological stage in ccRCC and pRCC. Pathway enrichment analysis revealed that CD105 may, through translation initiation of associated genes, promote RCC progression. The results of the present study suggest that in RCC tumors, the association of CD105 with different stages is complex. To evaluate the role of CD105 in RCC, its function should be assessed in addition to its expression. The exact influence of CD105 mRNA expression and copy number in RCC tumors on patient survival and the underlying mechanisms require further elucidation.
Collapse
Affiliation(s)
- Donghui Shi
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China.,Department of Urology, Suzhou Wu Zhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jianping Che
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yang Yan
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Changcheng Guo
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
18
|
Yu M, Li X, Liang R, Yang J, Zhang Y, Wang H. A new ligand of CD105 screened out by phage display technology provides a reliable identification of recurrent or metastasizing pleomorphic adenoma from pleomorphic adenoma. Int Immunopharmacol 2018; 65:37-43. [PMID: 30273915 DOI: 10.1016/j.intimp.2018.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To assess CD105 expression in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA) and metastasizing pleomorphic adenoma (MPA), to identify new epitopes and screen a ligand with high affinity to CD105 by phage display technology, to evaluate the reliability of the new ligand for identifying RPA/MPA from PA. METHODS Phage display technology was used to screen ligands with high affinity to recombinant human CD105. The ligand with strongest affinity to CD105 was synthesized by FMOC Chemistry according to the sequencing results. The archived formalin fixed paraffin-embedded (FFPE) tissues of 35 PA cases, 12 RPA cases and 2 MPA cases were sliced and immunofluorescent stained. CD105 expression were detected by Confocal laser scanning microscopy (CLSM). The relative fluorescence intensity was calculated with the image processing software Image J. Statistical analyses were performed by the software Graph Pad Prism (Version 7.0a). Using PROC logistic, receiver operating characteristic (ROC) curves, area under ROC curves (AUCs) were generated to assess the sensitivity and specificity of the new ligand for identifying RPA/MPA from PA cases. RESULTS A ligand with specialty and high affinity to CD105 i.e. ligand nABPK296 were developed. FITC-labeled ligand nABPK296 confirmed the difference of CD105 expression in RPA/MPA and PA. The AUC of nABPK296 was 0.9418. CONCLUSIONS CD105 is a promising biomarker for identification of RPA/MPA from PA cases. Ligand nABPK296 provides a promising approach to CD105 detection. This study also validated the reliability of phage display technology in finding new episodes and ligands with high affinity for antigens.
Collapse
Affiliation(s)
- Mei Yu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, SunYat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, SunYat-sen University, Guangzhou 510055, China
| | - Xiaolong Li
- Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Rui Liang
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming 650100, China
| | - Jing Yang
- Department of Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, SunYat-sen University, Guangzhou 510055, China
| | - Yan Zhang
- Laboratory of Cancer and Stem Cell Biology, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, SunYat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, SunYat-sen University, Guangzhou 510055, China.
| |
Collapse
|
19
|
Roney MSI, Park SK. Antipsychotic dopamine receptor antagonists, cancer, and cancer stem cells. Arch Pharm Res 2018; 41:384-408. [PMID: 29556831 DOI: 10.1007/s12272-018-1017-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world. Despite extensive studies, treating metastatic cancers remains challenging. Years of research have linked a rare set of cells known as cancer stem cells (CSCs) to drug resistance, leading to the suggestion that eradication of CSCs might be an effective therapeutic strategy. However, few drug candidates are active against CSCs. New drug discovery is often a lengthy process. Drug screening has been advantageous in identifying drug candidates. Current understanding of cancer biology has revealed various clues to target cancer from different points of view. Many studies have found dopamine receptors (DRs) in various cancers. Therefore, DR antagonists have attracted a lot of attention in cancer research. Recently, a group of antipsychotic DR antagonists has been demonstrated to possess remarkable abilities to restrain and sensitize CSCs to existing chemotherapeutics by a process called differentiation approach. In this review, we will describe current aspects of CSC-targeting therapeutics, antipsychotic DR antagonists, and their extraordinary abilities to fight cancer.
Collapse
Affiliation(s)
- Md Saiful Islam Roney
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
- Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, 08308, Republic of Korea.
| |
Collapse
|