Hong SJ, Jeon EJ, Oh JH, Seo EJ, Choi SW, Rhyu MG. The gene-reduction effect of chromosomal losses detected in gastric cancers.
BMC Gastroenterol 2010;
10:138. [PMID:
21092121 PMCID:
PMC2994793 DOI:
10.1186/1471-230x-10-138]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/20/2010] [Indexed: 11/10/2022] Open
Abstract
Background
The level of loss of heterozygosity (LOH) that reduces a gene dose and exerts a cell-adverse effect is known to be a parameter for the genetic staging of gastric cancers. This study investigated if the cell-adverse effect induced with the gene reduction was a rate-limiting factor for the LOH events in two distinct histologic types of gastric cancers, the diffuse- and intestinal-types.
Methods
The pathologic specimens obtained from 145 gastric cancer patients were examined for the level of LOH using 40 microsatellite markers on eight cancer-associated chromosomes (3p, 4p, 5q, 8p, 9p, 13q, 17p and 18q).
Results
Most of the cancer-associated chromosomes were found to belong to the gene-poor chromosomes and to contain a few stomach-specific genes that were highly expressed. A baseline-level LOH involving one or no chromosome was frequent in diffuse-type gastric cancers. The chromosome 17 containing a relatively high density of genes was commonly lost in intestinal-type cancers but not in diffuse-type cancers. A high-level LOH involving four or more chromosomes tended to be frequent in the gastric cancers with intestinal and mixed differentiation. Disease relapse was common for gastric cancers with high-level LOH through both the hematogenous (38%) and non-hematogenous (36%) routes, and for the baseline-level LOH cases through the non-hematogenous route (67%).
Conclusions
The cell-adverse effect of gene reduction is more tolerated in intestinal-type gastric cancers than in diffuse-type cancers, and the loss of high-dose genes is associated with hematogenous metastasis.
Collapse