1
|
Ssedyabane F, Obuku EA, Namisango E, Ngonzi J, Castro CM, Lee H, Randall TC, Ocan M, Apunyo R, Annet Kinengyere A, Kajabwangu R, Tahirah Kisawe A, Nambi Najjuma J, Tusubira D, Niyonzima N. The diagnostic accuracy of serum and plasma microRNAs in detection of cervical intraepithelial neoplasia and cervical cancer: A systematic review and meta-analysis. Gynecol Oncol Rep 2024; 54:101424. [PMID: 38939506 PMCID: PMC11208915 DOI: 10.1016/j.gore.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024] Open
Abstract
Studies suggest a need for new diagnostic approaches for cervical cancer including microRNA technology. In this review, we assessed the diagnostic accuracy of microRNAs in detecting cervical cancer and Cervical Intraepithelial Neoplasia (CIN). We performed a systematic review following the Preferred Reporting Items for Systematic Review and Meta-Analysis guideline for protocols (PRISMA-P). We searched for all articles in online databases and grey literature from 01st January 2012 to 16th August 2022. We used the quality assessment of diagnostic accuracy studies tool (QUADAS-2) to assess the risk of bias of included studies and then conducted a Random Effects Meta-analysis. We identified 297 articles and eventually extracted data from 24 studies. Serum/plasma concentration miR-205, miR-21, miR-192, and miR-9 showed highest diagnostic accuracy (AUC of 0.750, 0.689, 0.980, and 0.900, respectively) for detecting CIN from healthy controls. MicroRNA panels (miR-21, miR-125b and miR-370) and (miR-9, miR-10a, miR-20a and miR-196a and miR-16-2) had AUC values of 0.897 and 0.886 respectively for detecting CIN from healthy controls. For detection of cervical cancer from healthy controls, the most promising microRNAs were miR-21, miR-205, miR-192 and miR-9 (AUC values of 0.723, 0.960, 1.00, and 0.99 respectively). We report higher diagnostic accuracy of upregulated microRNAs, especially miR-205, miR-9, miR-192, and miR-21. This highlights their potential as stand-alone screening or diagnostic tests, either with others, in a new algorithm, or together with other biomarkers for purposes of detecting cervical lesions. Future studies could standardize quantification methods, and also study microRNAs in higher prevalence populations like in sub-Saharan Africa and South Asia. Our review protocol was registered in PROSPERO (CRD42022313275).
Collapse
Affiliation(s)
- Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Ekwaro A. Obuku
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072 Kampala, Uganda
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, University of London, London, UK
| | - Eve Namisango
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Cesar M. Castro
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas C. Randall
- Department of Global Health and Social Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Ocan
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Robert Apunyo
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Alison Annet Kinengyere
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Sir Albert Cook Medical Library, College of Health Sciences, Makerere University P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Rogers Kajabwangu
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Aziza Tahirah Kisawe
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Josephine Nambi Najjuma
- Department of Nursing, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Nixon Niyonzima
- Research and Training Directorate, Uganda Cancer Institute, P. O. Box 3935 Kampala, Uganda
| |
Collapse
|
2
|
miRNAs role in cervical cancer pathogenesis and targeted therapy: Signaling pathways interplay. Pathol Res Pract 2023; 244:154386. [PMID: 36868096 DOI: 10.1016/j.prp.2023.154386] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Cervical cancer (CC) is the primary cause of cancer deaths in underdeveloped countries. The persistence of infection with high-risk human papillomavirus (HPV) is a significant contributor to the development of CC. However, few women with morphologic HPV infection develop invasive illnesses, suggesting other mechanisms contribute to cervical carcinogenesis. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. They had the power to regulate CC's invasion, pathophysiology, angiogenesis, apoptosis, proliferation, and cell cycle phases. Further research is required, even though novel methods have been developed for employing miRNAs in the diagnosis, and treatment of CC. We'll go through some of the new findings about miRNAs and their function in CC below. The function of miRNAs in the development of CC and its treatment is one of these. Clinical uses of miRNAs in the analysis, prediction, and management of CC are also covered.
Collapse
|
3
|
Ruiz Esparza Garrido R, Gutiérrez M, Ángel Velázquez Flores M. Circulating cervical cancer biomarkers potentially useful in medical attention (Review). Mol Clin Oncol 2023; 18:13. [PMID: 36761385 PMCID: PMC9892968 DOI: 10.3892/mco.2023.2609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Cervical cancer (CC) is a public health problem worldwide, including Mexico. This type of cancer is the fourth most frequent in women worldwide; in Mexico it is the second most common type in women after breast cancer. The diagnosis of CC is based mainly on Pap smears and colposcopy and the identification of molecular tools that serve as a support for these methods is urgent. Regarding this, differential expressions of specific circulating biomolecules has been detected and, based on this, they have been postulated as potential biomarkers for CC diagnosis, prognosis, and/or to identify the response to treatments. Importantly, the combined analysis of these molecules considerably improves their efficacy as biomarkers and their potential use in the medical attention is promising.
Collapse
Affiliation(s)
- Ruth Ruiz Esparza Garrido
- Investigadora por México, Non-coding RNAs Laboratory, Medical Research Unit in Human Genetics, Children's Hospital ‘Dr. Silvestre Frenk Freund’, National Medical Center XXI Century, Mexican Institute of Social (Instituto Mexicano del Seguro Social, IMSS), Doctores, Mexico City 06720, Mexico
| | - Mercedes Gutiérrez
- ATSO PHARMA Laboratory, Jardines del Pedregal, Álvaro Obregón, Mexico City 01900, Mexico
| | - Miguel Ángel Velázquez Flores
- Non-coding RNAs Laboratory, Medical Research Unit in Human Genetics, Children's Hospital ‘Dr. Silvestre Frenk Freund’, National Medical Center XXI Century, Mexican Institute of Social (Instituto Mexicano del Seguro Social, IMSS), Doctores, Mexico City 06720, Mexico,Correspondence to: Dr Miguel Ángel Velázquez Flores, Non-coding RNAs Laboratory, Medical Research Unit in Human Genetics, Children's Hospital ‘Dr. Silvestre Frenk Freund’, National Medical Center XXI Century, Mexican Institute of Social Security, 330 Cuauhtémoc Avenue, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Systematic review of circulating MICRORNAS as biomarkers of cervical carcinogenesis. BMC Cancer 2022; 22:862. [PMID: 35933332 PMCID: PMC9357301 DOI: 10.1186/s12885-022-09936-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cervical cancer is a preventable disease, but it is a major public health problem despite having a good prognosis when diagnosed early. Although the Pap smear has led to huge drops in rates of cervical cancer and death from the disease, it has some limitations, making new approaches necessary for early diagnosis and biomarkers discovery. MiRNAs have been considered a new class of non-invasive biomarkers and may have great clinical value for screening early-stage cervical intraepithelial neoplasia. Well-designed studies have emerged as a necessary strategy for the identification of miRNAs that could be used safely and reliably for a differential diagnosis. This review aims to provide an up-to-date perspective on the assessment of circulating miRNA expression from precursor lesions to cervical cancer, identifying circulating miRNAs or specific miRNA signatures that can be used as potential biomarkers of different stages of cervical carcinogenesis. Methods A systematic review was performed and searches were conducted in the PubMed, LILACS, and Scopus electronic databases. Results Most studies involved Chinese ethnic women and searched for circulating miRNAs in serum samples. Thirty three microRNAs were evaluated in the eligible studies and 17 (miR-196a, miR-16-2, miR-497, miR-1290, miR-425-5p, hsa-miR- 92a, miR-1266, miR-9, miR-192, miR-205, miR-21, miR-152, miR-15b, miR-34a, miR-218, miR-199a-5p and miR-155-5p) showed up-regulation in women with precursor lesion and cervical cancer and 16 microRNAs showed decreased expression in these same groups of women compared to healthy controls (miR-195, miR-2861, miR-145, miR-214, miR-34a, miR-200a, let-7d-3p, miR-30d-5p, miR-638, miR-203a-3p, miR-1914-5p, miR-521, miR-125b, miR-370, miR-218 and miR-100). Conclusion Therefore, defining promising circulating miRNAs or specific miRNA signatures of biological fluid samples can be useful for the screening, diagnosis, prognosis and clinical monitoring of women undergoing cervical carcinogenesis, but greater standardization of studies seems to be necessary for greater consolidation of information.
Collapse
|
5
|
Liu J, Wang Y. Long non-coding RNA KCNQ1OT1 facilitates the progression of cervical cancer and tumor growth through modulating miR-296-5p/HYOU1 axis. Bioengineered 2021; 12:8753-8767. [PMID: 34704918 PMCID: PMC8806506 DOI: 10.1080/21655979.2021.1982230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Literature reports that lncRNA KCNQ1OT1 is markedly up-regulated in cervical cancer (CC) tissues and cell lines, and KCNQ1OT1 can promote the proliferation and metastasis of CC cells. This current work was designed to investigate the molecular mechanism underlying the participation of KCNQ1OT1 in CC progression. Herein, RT-qPCR was utilized for determining the levels of KCNQ1OT1, miR-296-5p and HYOU1 in clinical tumor tissue specimens and CC cell lines. Then, starBase predicted the complementary binding sites of KCNQ1OT1 and miR-296-5p or miR-296-5p and HYOU1. Dual-luciferase reporter assay/RIP assay validated the interplays among KCNQ1OT1/miR-296-5p/HYOU1. In addition, CCK-8, wound healing and transwell assays were employed to assess the proliferative, migrative and invasive properties of CC cells. Moreover, nude mice xenograft model was established by subcutaneously injection with SiHa cells in order to validate the precise functions of KCNQ1OT1/miR-296-5p/HYOU1 axis in CC in vivo. Besides, Immunohistochemical staining examined Ki-67 expression in xenograft tumors and western blotting analysis detected expressions of MMP2/9 and Wnt/β-catenin signaling pathway in CC cells and xenograft tumors. Elevated KCNQ1OT1 and HYOU1 as well as reduced miR-296-5p were observed in clinical tumor tissue specimens and CC cell lines. Results revealed that upregulation of miR-296-5p counteracted the enhancing effects of overexpressed KCNQ1OT1 on the proliferative, migrative and invasive abilities of CC cells. Additionally, HYOU1 overexpression abolished the suppressing effects of silenced KCNQ1OT1 on the malignant behaviors of CC cells and tumor growth. To conclude, KCNQ1OT1 could aggravate the malignant behaviors of CC and facilitate tumor growth through modulating miR-296-5p/HYOU1 axis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Obstetrics and Gynecology,Hohhot First Hospital, Hohhot, Inner Mongolia, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|