1
|
Li MJ, Yan SB, Dong H, Huang ZG, Li DM, Tang YL, Pan YF, Yang Z, Pan HB, Chen G. Clinical assessment and molecular mechanism of the upregulation of Toll-like receptor 2 (TLR2) in myocardial infarction. BMC Cardiovasc Disord 2022; 22:314. [PMID: 35840880 PMCID: PMC9287878 DOI: 10.1186/s12872-022-02754-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/08/2022] [Indexed: 09/13/2024] Open
Abstract
Objective The prevalence and mortality of cardiovascular diseases remain ranked first worldwide. Myocardial infarction (MI) is the central cause of death from cardiovascular diseases, seriously endangering human health. The clinical implication of toll-like receptor 2 (TLR2) remains contradictory, and its mechanism is still unknown. Hence, the objective of this study was to elucidate the clinical value and molecular mechanism of TLR2 in MI. Methods All high-throughput datasets and eligible literature were screened, and the expression levels of TLR2 were collected from the MI. The integrated expression level of TLR2 was displayed by calculating the standardized mean difference (SMD) and the area under the curve (AUC) of the summary receiver operating characteristic curve (sROC). The related TLR2 genes were sent for pathway analyses by gene ontology (GO), Kyoto encyclopedia of genes and genome (KEGG), and disease ontology (DO). Single-cell RNA-seq was applied to ascertain the molecular mechanism of TLR2 in MI. Results Nine microarrays and four reported data were available to calculate the comprehensive expression level of TLR2 in MI, including 325 cases of MI and 306 cases of controls. The SMD was 2.55 (95% CI = 1.35–3.75), and the AUC was 0.76 (95% CI = 0.72–0.79), indicating the upregulation of TLR2 in MI. The related TLR2 genes were primarily enriched in the pathways of atherosclerosis, arteriosclerotic cardiovascular disease, and arteriosclerosis, suggesting the clinical role of TLR2 in the progression of MI. Afterward, TLR2 was upregulated in myeloid cells in MI. Conclusions TLR2 may have a crucial role in progressing from coronary atherosclerosis to MI. The upregulation of TLR2 may have a favorable screening value for MI. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02754-y.
Collapse
Affiliation(s)
- Ming-Jie Li
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shi-Bai Yan
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Dong
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Ming Li
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Lu Tang
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yan-Fang Pan
- Department of Pathology, Hospital of Guangxi Liugang Medical Co., LTD./Guangxi Liuzhou Dingshun Forensic Expert Institute, No. 9, Queershan Rd, Liuzhou, 545002, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhen Yang
- Department of Gerontology, NO. 923 Hospital of Chinese People's Liberation Army, No. 1 Tangcheng Rd, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong-Bo Pan
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology/Forensic Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
He FY, Chen G, He RQ, Huang ZG, Li JD, Wu WZ, Chen JT, Tang YL, Li DM, Pan SL, Feng ZB, Dang YW. Expression of IER3 in hepatocellular carcinoma: clinicopathology, prognosis, and potential regulatory pathways. PeerJ 2022; 10:e12944. [PMID: 35291486 PMCID: PMC8918148 DOI: 10.7717/peerj.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Background Immediate early response 3 (IER3) is correlated to the prognosis of several cancers, but the precise mechanisms underlying the regulation by IER3 of the occurrence and development of hepatocellular carcinoma (HCC) remain unknown. Methods The expression level of IER3 was examined by using in-house immunohistochemistry (IHC), public gene chip, and public RNA-sequencing (RNA-seq). The standardized mean difference (SMD) was calculated to compare the expression levels of IER3 between HCC patients and controls. The summary receiver operating characteristics (sROC) was plotted to comprehensively understand the discriminatory capability of IER3 between HCC and non-HCC group. The Kaplan-Meier curves and the combined hazard ratios (HRs) were used to determine the prognostic value of IER3 in HCC. Moreover, differentially expressed genes (DEGs) and co-expression genes (CEGs) were used to explored the molecular mechanisms of IER3 underlying HCC. hTFtarget was used to predict the transcription factors (TFs) of IER3. The binding site of TFs and the IER3 promoter region was forecasted using the JASPAR website. The relevant ChIP-seq data were used to determine whether TF peaks were present in the IER3 transcription initiation. Results A significantly increased expression of IER3 protein was found in HCC tissue relative to non-HCC tissue as detected by IHC (p < 0.001). Compared to 1,263 cases of non-HCC tissues, IER3 in 1483 cases of HCC tissues was upregulated (SMD = 0.42, 95% confidence interval [CI] [0.09-0.76]). The sROC showed that IER3 had a certain ability at differentiating HCC tissues (area under the curve (AUC) = 0.65, 95% CI [0.61-0.69]). Comprehensive analysis of the effect of IER3 on the prognosis of patients with HCC demonstrated that higher IER3 expression was associated with poor prognosis in HCC (HRs = 1.30, 95% CI [1.03-1.64]). Pathway enrichment analysis revealed that IER3-related genes were mostly enriched in the PI3K-Akt signaling pathway, cancer-related signaling pathways, the p53 signaling pathway, and other signaling pathways. Regulatory factor X5 (RFX5) was identified as a possible regulator of IER3-related TF. Conclusion IER3 may be a potential prognostic marker for HCC. The molecular mechanisms of IER3 in HCC warrant further study.
Collapse
Affiliation(s)
- Fei-Yan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Rong-quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wei-Zi Wu
- Department of Pathology, People’s Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ji-Tian Chen
- Department of Pathology, People’s Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yu-Lu Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Dong-Ming Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
3
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
4
|
A Comprehensive Evaluation of miR-144-3p Expression and Its Targets in Laryngeal Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6684186. [PMID: 34326893 PMCID: PMC8302387 DOI: 10.1155/2021/6684186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/04/2021] [Indexed: 01/22/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is an aggressive type of head and neck squamous cell carcinoma (HNSCC) with a relatively high rate of morbidity and mortality. An altered miR-144-3p level in LSCC with a small number of patients has been previously reported. However, the clinical implication of miR-144-3p and its involved mechanism underlying this disease is not clearly elucidated. In this work, we aimed to confirm the expression of miR-144-3p with larger samples and also to identify target genes for the investigation of the underlying mechanism of miR-144-3p in LSCC. The levels of miR-144-3p were downregulated in 155 samples of LSCC tissues as compared to 26 non-LSCC samples (SMD: -0.78; 95% confidence interval (CI): -1.23, -0.32). The AUC of 0.90 in the summarized ROC curve also indicated a potential ability to differentiate LSCC from non-LSCC tissues, with a sensitivity of 0.78 and a specificity of 0.88. With respect to the molecular mechanism, we predicted the potential targets from online-based prediction, peer-reviewed publications, and RNA-seq and microarray data. In particular, the genes influenced by transfection with miR-144-3p in the LSCC FaDu cell line were collected from the microarray GSE56243. Lastly, 12 novel targets for miR-144-3p in LSCC were obtained by different algorithms. In conclusion, our study confirmed the loss or downregulation of miR-144-3p in LSCC, which might contribute to the LSCC tumorigenesis and progression via regulation of the 12 novel targets, such as IL24, ITGA6, and CEP55. In the future, further investigations are required to validate the present results.
Collapse
|
5
|
Mo BY, Li GS, Huang SN, Wei ZX, Su YS, Dai WB, Ruan L. Laryngeal Squamous Cell Carcinoma: Potential Molecular Mechanism and Prognostic Signature Based on Immune-Related Genes. Med Sci Monit 2020; 26:e928185. [PMID: 33361747 PMCID: PMC7772955 DOI: 10.12659/msm.928185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune-related genes (IRGs) are closely related to the incidence and progression of tumors, potentially indicating that IRGs play an important role in laryngeal squamous cell carcinoma (LSCC). MATERIAL AND METHODS An RNA sequencing dataset containing 123 samples was collected from The Cancer Genome Atlas. Based on immune-related differentially expressed genes (IRDEGs), a potential molecular mechanism of LSCC was explored through analysis of information in the Gene Ontology (GO) resource and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPIs). A regulatory network of transcriptional regulators and IRDEGs was constructed to explore the underlying molecular mechanism of LSCC at the upstream level. Candidates from IRDEGs for signature were screened via univariate Cox analysis and using the least absolute shrinkage and selection operator (LASSO) technique. The IRDEG signature of LSCC was constructed by using a multivariate Cox proportional hazards model. RESULTS GO and KEGG analysis showed that IRDEGs may participate in the progression of LSCC through immune-related reactions. PPI analysis demonstrated that, among the IRDEGs in LSCC, the Kininogen 1; C-X-X motif chemokine ligand 10; elastase, neutrophil expressed; and LYZ genes are hub genes in the development of LSCC. At the upstream level, SPI1, SP140, signal transducer and activator of transcription 4, zinc finger E-box binding homeobox, and Ikaros family zinc finger 2 are the hub transcriptional regulators of IRDEGs. The risk score based on the IRDEG signature was able to distinguish prognosis in patients with LSCC and represents an independent prognostic risk factor for LSCC. CONCLUSIONS From the perspective of IRGs, we first constructed an IRDEG signature related to the prognosis of LSCC, which can be used as a novel marker to predict prognosis in patients with LSCC.
Collapse
Affiliation(s)
- Bin-Yu Mo
- Department of Otolaryngology, Liuzhou People's Hospital of Guangxi, Liuzhou, Guangxi, China (mainland)
| | - Guo-Sheng Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ya-Si Su
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China (mainland)
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China (mainland)
| | - Lin Ruan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|