1
|
Si C, Yang H, Wang X, Wang Q, Feng M, Li H, Feng Y, Zhao J, Liao Y. Toxic effect and mechanism of β-cypermethrin and its chiral isomers on HTR-8/SVneo cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105849. [PMID: 38685233 DOI: 10.1016/j.pestbp.2024.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
Beta-cypermethrin (β-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of β-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17β-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of β-CYP and its specific isomers. Our results showed that β-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 μM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and β-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 μM 1R-trans-αS. Scratch assays revealed that β-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor β (ERβ), β-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of β-CYP, its isomers, and E2 for PDE3A than for ERα or ERβ. Consequently, β-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.
Collapse
Affiliation(s)
- Chaojin Si
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Hongjun Yang
- Department of Geriatric Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, 610031 Chengdu, PR China
| | - Xiaoyan Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Qiaoxin Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Min Feng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Huayue Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Yuqi Feng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China.
| | - Ying Liao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
Quan Y, Zhou M, Li J, Yang Y, Guo J, Tang T, Liu P. The m6A methyltransferase RBM15 affects tumor cell stemness and progression of cervical cancer by regulating the stability of lncRNA HEIH. Exp Cell Res 2024; 436:113924. [PMID: 38280435 DOI: 10.1016/j.yexcr.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
Cervical cancer (CC), as a common female malignant tumor in the world, is an important risk factor endangering women's health worldwide. The purpose of this study was to investigate the role of RBM15 in CC. The TCGA database was used to screen differentially expressed m6A genes in normal and tumor tissues. QRT-PCR was used to quantify HEIH, miR-802, EGFR, cell stemness, and epithelial-mesenchymal transition (EMT)-related genes. The interaction between HEIH and miR-802 was verified by dual-luciferase reporter assay and RIP assay. The occurrence of tumor cells after different treatments was detected by CCK-8, transwell and EdU staining. BALB/c nude mice were used to examine the effects of different treatments on tumor growth and cell stemness in vivo. RBM15 was upregulated in tumor tissues and cells. M6A was highly enriched in HEIH and enhances its RNA stability. HEIH acts as an oncogenic lncRNA to promote CC cell proliferation, migration and tumor growth. Mechanistically, HEIH regulates tumor cell stemness and promotes the proliferation and migration of CC cells by competitively adsorbing miR-802 and up-regulating the expression of EGFR. In short, our data shown that the m6A methyltransferase RBM15 could affect tumor cell proliferation, metastasis and cell stemness by stabilizing HEIH expression.
Collapse
Affiliation(s)
- Yi Quan
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Muchuan Zhou
- Department of Anesthesia, Sichuan Integrative Medicine Hospital, Sichuan Academy of Chinese Medicine Science (SACMS), Chengdu, 610000, PR China; Sichuan Provincial Key Laboratory of Quality of Chinese Medicinal Materials and Research on Innovative Chinese Medicine, Chengdu, 610041, Sichuan, PR China
| | - Jinhong Li
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Yihong Yang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Junliang Guo
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China.
| | - Tian Tang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| | - Ping Liu
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, PR China; Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children, Chengdu, 610041, Sichuan, PR China
| |
Collapse
|
3
|
Tang J, Li S, Zhou Z, Chang W, Wang Y, Mei J, Zhou S. Identification and validation of key miRNAs and a microRNA-mRNA regulatory network associated with liver cancer. Cell Cycle 2024; 23:353-368. [PMID: 38547309 PMCID: PMC11174128 DOI: 10.1080/15384101.2024.2335024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/15/2024] Open
Abstract
MiRNAs play crucial regulatory roles in the growth and development of tumor cells by serving as carriers of post-transcriptional regulatory information derived from genes. Investigating the potential function and clinical significance of miRNA-mediated mRNA regulatory networks in liver cancer can offer novel insights and therapeutic strategies for the treatment of this disease. We identified 300 differentially expressed miRNAs, and five miRNAs were identified to be correlated with overall survival and could be used as an independent prognostic. GO enrichment analysis mainly included carboxylic acid biosynthesis, organic acid biosynthesis, peroxisomal membrane, microsomal membrane, DNA binding, C-acyltransferase activity, etc. KEGG enrichment analysis showed that the pathways of target genes related to liver cancer were mainly focused on butyric acid metabolism and partial amino acid metabolism. Eight of the top 10 HUB genes were associated with prognosis, and the expression of four genes was positively correlated with prognosis, of which ABAT, BHMT, and SHMT1 were target genes of hsa-miR-5003-3p. MiR-5003-3p inhibits ABAT/BHMT/SHMT1 expression, thereby promoting liver cancer development. Overall, our study provides new ideas for the treatment of liver cancer, and these five miRNAs may be independent prognostic biomarkers and therapeutic targets for liver cancer patients. And miR-5003-3p may be a critical factor in the mechanism of liver cancer development.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Song Li
- Department of Hepatobiliary pancreatic gastrointestinal Surgery, JinHua People’s Hospital, JinHua, China
| | - Zixiao Zhou
- Xiangya Medical College, Central South University, Changsha, China
| | - Weicai Chang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yongqiang Wang
- General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Juan Mei
- Pathology Department, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shaobo Zhou
- General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
4
|
Fu G, Wu H, Wu X, Yang Y, Fan C. LncRNA LBX2-AS1 inhibits acute myeloid leukemia progression through miR-455-5p/MYLIP axis. Heliyon 2024; 10:e24812. [PMID: 38312562 PMCID: PMC10835375 DOI: 10.1016/j.heliyon.2024.e24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common blood cancer primarily affecting the bone marrow and blood cells, which is prevalent among adults. Long non-coding RNAs (lncRNAs) have been shown to play a crucial role in the development and progression of AML. LBX2-AS1 is a recently discovered lncRNA that has been linked to the pathogenesis and progression of several types of cancer. This study aimed to investigate the role and possible mechanisms of LBX2-AS1 in AML. Expression levels of LBX2-AS1, miR-455-5p, and their target genes were detected in AML samples and cells by RT-qPCR. Cell proliferation and apoptosis were determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, and flow cytometry, respectively. LBX2-AS1 was downregulated in AML specimens and cells, and overexpression of LBX2-AS1 significantly inhibited cell proliferation and enhanced apoptosis in vitro. We also determined the effects of LBX2-AS1 overexpression in an AML mouse model by in vivo bioluminescence imaging. Mechanistically, LBX2-AS1 acts as a competitive endogenous RNA, which promotes myosin regulatory light chain interacting protein (MYLIP) expression by sponging miR-455-5p. Knockdown of MYLIP or upregulation of miR-455-5p antagonized the effect of LBX2-AS1 overexpression on the progression of AML. LBX2-AS1 may thus be a valuable therapeutic target for AML.
Collapse
Affiliation(s)
- Gongli Fu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Hao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Xiaomiao Wu
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Yang Yang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cuihua Fan
- Department of Hematology Ward, Shulan (Hangzhou)Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Chen X, Lin L, Wu Q, Li S, Wang H, Sun Y. Tumor Necrosis Factor- α Promotes the Tumorigenesis, Lymphangiogenesis, and Lymphatic Metastasis in Cervical Cancer via Activating VEGFC-Mediated AKT and ERK Pathways. Mediators Inflamm 2023; 2023:5679966. [PMID: 37124061 PMCID: PMC10147529 DOI: 10.1155/2023/5679966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/14/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background Lymphatic metastasis is a common phenomenon of cervical cancer. Tumor necrosis factor-α (TNF-α) was found to be closely associated with lymphatic cancer metastasis. However, the mechanism through which TNF-α regulates lymphatic metastasis in cervical cancer remains unclear. Methods In this study, cervical cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with or without TNF-α for 48 h, and then the corresponding conditional medium (CM-TNF-α or CM) was collected. The level of vascular endothelial growth factor (VEGFC) in the corresponding CM was then detected using an enzyme-linked immunosorbent assay (ELISA). Next, human lymphatic endothelial cells (HLECs) were cultured in CM-TNF-α or CM for 48 h. Cell viability was measured using the cell counting kit-8 (CCK-8) assay, and angiogenesis was detected using a tube formation assay. Subsequently, the expressions of AKT, p-AKT, ERK, and p-ERK in HLECs were detected using western blotting. In addition, to further investigate the effect of TNF-α on the progression of cervical cancer, a C33A subcutaneous xenograft model was established in vivo. Results We found that TNF-α significantly stimulated cervical cancer cells to secrete VEGFC. Additionally, the CM collected from the TNF-α-treated cervical cancer cells notably promoted the proliferation, migration, and angiogenesis of HLECs; however, these changes were reversed by MAZ51, a VEGFR3 inhibitor. Moreover, TNF-α obviously elevated D2-40 and VEGFC protein expressions in tumor tissues, promoting lymphangiogenesis and lymphatic metastasis in vivo. Meanwhile, TNF-α markedly upregulated p-AKT and p-ERK expressions in tumor tissues, whereas these changes were reversed by MAZ51. Conclusion Collectively, TNF-α could promote tumorigenesis, lymphangiogenesis, and lymphatic metastasis in vitro and in vivo in cervical cancer via activating VEGFC-mediated AKT and ERK pathways. These results may provide new directions for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Luping Lin
- Department of Abdominal Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Qiaoling Wu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Sang Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Huihui Wang
- Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| |
Collapse
|
7
|
Li M, Xiao Y, Liu M, Ning Q, Xiang Z, Zheng X, Tang S, Mo Z. MiR-26a-5p regulates proliferation, apoptosis, migration and invasion via inhibiting hydroxysteroid dehydrogenase like-2 in cervical cancer cell. BMC Cancer 2022; 22:876. [PMID: 35948893 PMCID: PMC9367141 DOI: 10.1186/s12885-022-09970-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/02/2022] [Indexed: 12/18/2022] Open
Abstract
Background Evidences have indicated that miR-26a-5p regulates the malignant properties of various tumor cells. However, the influences of miR-26a-5p on proliferation, apoptosis and invasion are still vague in the cervical cancer (CC) cells. Methods The miRNA microarray and real-time quantitative PCR (RT-qPCR) analysis were utilized to detect the expression of miR-26a-5p in the patients with CC. Kaplan–Meier plotter was performed to evaluate the overall survival (OS) of the patients with CC. The CCK-8, flow cytometry, transwell and wound healing analyses were respectively used to analyze proliferation, migration and invasion in the CC cells. RT-qPCR, western blot and IHC analysis were executed to measure the expression of hydroxysteroid dehydrogenase like-2 (HSDL2) in the patients with CC. Bioinformatics and luciferase reporter assay were carried out to verify the relationship of miR-26a-5p and HSDL2. Results The expression of miR-26a-5p was downregulated and low expression of miR-26a-5p indicated a poor OS in patients with CC. Overexpression of miR-26a-5p significantly inhibited proliferation, migration and invasion, accelerated apoptosis in the Hela and C33A cells. The expression of HSDL2 was upregulated, and negatively correlated with miR-26a-5p in the patients with CC. HSDL2 was directly targeted by miR-26a-5p and rescue experiments displayed that HSDL2 partially abolished proliferation, apoptosis, migration, and invasion induced by miR-26a-5p in CC cells. Conclusions MiR-26a-5p alleviated progression of CC by suppressing proliferation, migration and invasion, promoting apoptosis through downregulating HSDL2. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09970-x.
Collapse
Affiliation(s)
- Ming Li
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, Hunan, China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yubo Xiao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, Hunan, China
| | - Minqi Liu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, China.,Guangxi Province Postgraduate Co-Training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Yueyang, 414000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, Hunan, China
| | - Ziye Xiang
- School of Medical Laboratory Science, Changsha Medical University, Changsha, 410000, Hunan, China
| | - Xiang Zheng
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, Hunan, China. .,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, China. .,Guangxi Province Postgraduate Co-Training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children's Medical Center), Yueyang, 414000, China.
| |
Collapse
|
8
|
Tang Y, Guo Y. A Ubiquitin-Proteasome Gene Signature for Predicting Prognosis in Patients With Lung Adenocarcinoma. Front Genet 2022; 13:893511. [PMID: 35711913 PMCID: PMC9194557 DOI: 10.3389/fgene.2022.893511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Dysregulation of the ubiquitin-proteasome system (UPS) can lead to instability in the cell cycle and may act as a crucial factor in both tumorigenesis and tumor progression. However, there is no established prognostic signature based on UPS genes (UPSGs) for lung adenocarcinoma (LUAD) despite their value in other cancers. Methods: We retrospectively evaluated a total of 703 LUAD patients through multivariate Cox and Lasso regression analyses from two datasets, the Cancer Genome Atlas (n = 477) and GSE31210 (n = 226). An independent dataset (GSE50081) containing 128 LUAD samples were used for validation. Results: An eight-UPSG signature, including ARIH2, FBXO9, KRT8, MYLIP, PSMD2, RNF180, TRIM28, and UBE2V2, was established. Kaplan-Meier survival analysis and time-receiver operating characteristic curves for the training and validation datasets revealed that this risk signature presented with good performance in predicting overall and relapsed-free survival. Based on the signature and its associated clinical features, a nomogram and corresponding web-based calculator for predicting survival were established. Calibration plot and decision curve analyses showed that this model was clinically useful for both the training and validation datasets. Finally, a web-based calculator (https://ostool.shinyapps.io/lungcancer) was built to facilitate convenient clinical application of the signature. Conclusion: An UPSG based model was developed and validated in this study, which may be useful as a novel prognostic predictor for LUAD.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yinhong Guo
- Department of Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| |
Collapse
|
9
|
Sheng J, Liu J, Du J, Wang Y. circ-RANGAP1/MicroRNA-542-3p/Myosin Regulatory Light Chain Interacting Protein Axis Modulates the Osteosarcoma Cell Progression. Appl Bionics Biomech 2022; 2022:4247670. [PMID: 35747400 PMCID: PMC9213143 DOI: 10.1155/2022/4247670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Objective This study is aimed at exploring the influence of circular RNA- (circRNA-) RANGAP1 targeting microRNA- (miR-) 542-3p/myosin regulatory light chain interacting protein (MYLIP) on the biological function of osteosarcoma (OS) cells. Methods Tumor tissues and normal tissues were collected from OS patients and circ-RANGAP1, miR-542-3p, and MYLIP expression was tested by RT-qPCR. The correlation between the clinicopathology/prognosis of patients with OS and circ-RANGAP1 expression was observed. Human OS cell line MG-63 was screened to determine the influences of circ-RANGAP1 and miR-542-3p on OS cell progression. The targeting relation of circ-RANGAP1, miR-542-3p, and MYLIP was probed. Results circ-RANGAP1 expression was elevated in tumor tissues from OS patients, which was correlated to the poor clinicopathology. circ-RANGAP1 expression was augmented in males or patients younger than 20 years old or patients with advanced OS. Higher circ-RANGAP1 expression indicated a poor prognosis in OS patients. After silencing circ-RANGAP1 or elevating miR-542-3p in MG63 cells, cell progression was limited. miR-542-3p downregulation reduced the therapeutic efficacy of silenced circ-RANGAP1. circ-RANGAP1 bound with miR-542-3p to target MYLIP. Conclusion Silenced circ-RANGAP1 boosts MYLIP expression via competitive binding of miR-542-3p to facilitate OS cell progression.
Collapse
Affiliation(s)
- Jundong Sheng
- Department of Orthopedics, First People's Hospital of Tianshui, Tianshui, 741000 Gansu, China
| | - Jin Liu
- Department of Orthopedics, First People's Hospital of Tianshui, Tianshui, 741000 Gansu, China
| | - Junwang Du
- Department of Anesthesiology, First People's Hospital of Tianshui, Tianshui, 741000 Gansu, China
| | - Yongping Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China
| |
Collapse
|
10
|
Jin B, Li H, Zhang H, Yang J, Ma W, Lv M, Zheng X, Li X, Liu L, Wang K. Effects of carnosic acid on arsenic-induced liver injury in mice: A comparative transcriptomics analysis. J Trace Elem Med Biol 2022; 71:126953. [PMID: 35202923 DOI: 10.1016/j.jtemb.2022.126953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Long-term chronic exposure to arsenic can cause different degrees of liver injury. Till date, its molecular mechanism has not meant fully elucidated. Evidence indicates that Carnosic acid (CA) has a protective role in arsenic-induced liver injury. This study aimed to reveal the potential targets and evaluate the potential effect of CA intervention at transcriptional level, and provide reference for the intervention of arsenic-induced liver injury. METHODS Arsenic-induced liver injury and CA intervention models were established in C57BL/6 mice. RNA sequencing technique was carried out to obtain the differentially expressed gene (DEG) profiles. The common covariant DEGs between arsenic induction and CA intervention was screened by comparative transcriptomic analysis methods. QRT-PCR was used to verify the covariant DEGs. RESULTS Transcriptome results showed that 220 DEGs were identified after arsenic induction. 267 DEGs were identified after CA intervention (|fold change| > 2.0 and adjusted P < 0.05). 42 covariant DEGs were discovered between the comparison of "AS vs Control" and "AS & CA vs AS". In addition, hub gene analysis revealed a total of 8 covariant DEGs (Ehhadh, Fgf21, Cyp2b10, Plin2, Aacs, Cyp7a1, Per2 and Mylip). The mRNA expressions of Fgf21 and Plin2 were significantly increased (P < 0.05) and the mRNA expressions of Cyp2b10, Cyp7a1, Per2 and Mylip were significantly decreased (P < 0.05) after arsenic induction. On the contrary, the changes of these DEGs were reversed after CA intervention. CONCLUSION The present study would be helpful to understand the potential health effects of arsenic-induced liver injury and identify new potential targets, and provide a reference for the intervention of CA.
Collapse
Affiliation(s)
- Baiming Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China; Department of Preventive Medicine, Qiqihar Medical University, Qiqihar 161006, PR China.
| | - Haonan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Hua Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Jie Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Wenjing Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Xiujuan Zheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China; Harbin Municipal Center for Disease Control and Prevention, Harbin 150056, PR China.
| | - Xuying Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Lele Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
11
|
Chen L, Li H, Yao D, Zou Q, Yu W, Zhou L. The novel circ_0084904/miR-802/MAL2 axis promotes the development of cervical cancer. Reprod Biol 2022; 22:100600. [PMID: 35033901 DOI: 10.1016/j.repbio.2021.100600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) have been identified as critical regulators in human cancers, including cervical cancer (CC). However, the precise action of circ_0084904 in cervical carcinogenesis remains to be elucidated. The levels of circ_0084904, microRNA (miR)-802, and Mal, T cell differentiation protein 2 (MAL2) were checked by quantitative real-time PCR (qRT-PCR) or western blot. Ribonuclease R (RNase R) and subcellular localization assays were used to detect the stability and localization of circ_0084904, respectively. Cell colony formation ability was assessed by colony formation assay. Cell cycle and apoptosis were detected by flow cytometry. Cell migration and invasion abilities were gauged by transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were applied to determine the direct relationship between miR-802 and circ_0084904 or MAL2. The xenograft experiments were performed to evaluate the role of circ_0084904 in tumor growth in vivo. Circ_0084904 was markedly up-regulated in CC tissues and cell lines. Silencing endogenous circ_0084904 impeded cell colony formation, cell cycle progression, migration, invasion, epithelial-mesenchymal transition (EMT), and promoted apoptosis in vitro, as well as diminished tumor growth in vivo. Mechanistically, circ_0084904 targeted miR-802, and the effects of circ_0084904 silencing were mediated by miR-802. MAL2 was directly targeted and inhibited by miR-802, and MAL2 was a functional target of miR-802. Moreover, circ_0084904 modulated MAL2 expression via miR-802. Our study identified circ_0084904 as a novel oncogenic driver in CC depending on the modulation of the miR-802/MAL2 axis, establishing the notion that silencing of circ_0084904 might represent a promising targeted therapy for CC.
Collapse
Affiliation(s)
- Lu Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Hongying Li
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Dongmei Yao
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Qian Zou
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Weichang Yu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Limin Zhou
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China.
| |
Collapse
|
12
|
Identification of Circulating Exosomal miR-101 and miR-125b Panel Act as a Potential Biomarker for Hepatocellular Carcinoma. Int J Genomics 2022; 2021:1326463. [PMID: 34988221 PMCID: PMC8723878 DOI: 10.1155/2021/1326463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high mortality, and there is an urgent need of new diagnosis measures. This study is aimed at investigating whether circulating exosomal miRNAs could act as biomarkers for the diagnosis of HCC. Methods A four-stage strategy was adopted in this study. Candidate miRNA was selected by comprehensive analysis of four GEO datasets and TCGA database. The expression of candidate miRNAs in serum exosomal samples were examined through qRT-PCR. The diagnostic utility of the final validated miRNAs was examined by receiver operating characteristic (ROC) curve analysis. Results After synthetical analysis of four GEO datasets, six miRNAs were selected as candidates due to their higher differential fold change. miR-101 and miR-125b were selected as candidate miRNAs to further investigate their potential as biomarkers for HCC due to their differential fold change and their influence on overall survival based on the TCGA database. As a result, miR-101 and miR-125b expressions were remarkably downregulated in both tissues and serum exosomes of patients with HCC. The area under the ROC curves (AUCs) of circulating exosomal miR-101 and miR-125b were 0.894 (95% CI, 0.793–0.994) and 0.812 (95% CI, 0.675–0.950), respectively. The combination of the two miRNAs presented higher diagnostic utility for HCC (AUC = 0.953). Conclusion The exosomal miR-101 and miR-125b panel in the serum may act as a noninvasive biomarker for HCC detection.
Collapse
|
13
|
Liu L, He H, Peng Y, Yang Z, Gao S. A four-gene prognostic signature for predicting the overall survival of patients with lung adenocarcinoma. PeerJ 2021; 9:e11911. [PMID: 34631307 PMCID: PMC8465999 DOI: 10.7717/peerj.11911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/14/2021] [Indexed: 01/12/2023] Open
Abstract
Background The prognosis of patients for lung adenocarcinoma (LUAD) is known to vary widely; the 5-year overall survival rate is just 63% even for the pathological IA stage. Thus, in order to identify high-risk patients and facilitate clinical decision making, it is vital that we identify new prognostic markers that can be used alongside TNM staging to facilitate risk stratification. Methods We used mRNA expression from The Cancer Genome Atlas (TCGA) cohort to identify a prognostic gene signature and combined this with clinical data to develop a predictive model for the prognosis of patients for lung adenocarcinoma. Kaplan-Meier curves, Lasso regression, and Cox regression, were used to identify specific prognostic genes. The model was assessed via the area under the receiver operating characteristic curve (AUC-ROC) and validated in an independent dataset (GSE50081) from the Gene Expression Omnibus (GEO). Results Our analyses identified a four-gene prognostic signature (CENPH, MYLIP, PITX3, and TRAF3IP3) that was associated with the overall survival of patients with T1-4N0-2M0 in the TCGA dataset. Multivariate regression suggested that the total risk score for the four genes represented an independent prognostic factor for the TCGA and GEO cohorts; the hazard ratio (HR) (high risk group vs low risk group) were 2.34 (p < 0.001) and 2.10 (p = 0.017). Immune infiltration estimations, as determined by an online tool (TIMER2.0) showed that CD4+ T cells were in relative abundance in the high risk group compared to the low risk group in both of the two cohorts (both p < 0.001). We established a composite prognostic model for predicting OS, combined with risk-grouping and clinical factors. The AUCs for 1-, 3-, 5- year OS in the training set were 0.750, 0.737, and 0.719; and were 0.645, 0.766, and 0.725 in the validation set. The calibration curves showed a good match between the predicted probabilities and the actual probabilities. Conclusions We identified a four-gene predictive signature which represents an independent prognostic factor and can be used to identify high-risk patients from different TNM stages of LUAD. A new prognostic model that combines a prognostic gene signature with clinical features exhibited better discriminatory ability for OS than traditional TNM staging.
Collapse
Affiliation(s)
- Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huayu He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Gao T, Zou M, Shen T, Duan S. Dysfunction of miR-802 in tumors. J Clin Lab Anal 2021; 35:e23989. [PMID: 34558723 PMCID: PMC8605121 DOI: 10.1002/jcla.23989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that miR-802 is abnormally expressed in many tumors. miR-802 is expressed at low levels in tissues and cells of gastric cancer, colorectal cancer, breast cancer, cervical cancer, epithelial ovarian cancer, tongue squamous cell carcinoma, oral squamous cell carcinoma, esophageal squamous cell carcinoma, laryngeal squamous cell carcinoma, and melanoma. In contrast, miR-802 is overexpressed in hepatocellular carcinoma, bladder urothelial cancer, osteosarcoma, and cholesteatoma tissue cells. It should be noted that the results of studies on the expression of miR-802 in pancreatic cancer, prostate cancer, and lung cancer are inconsistent. Current studies have found that miR-802 can target and regulate genes in different tumors, and affect the regulation of the Wnt signaling pathway, EMT signaling pathway, PI3K/AKT signaling pathway, ERK signaling pathway, and Hedgehog signaling pathway. At the same time, miR-802 is regulated by the endogenous competition of four ceRNAs, including circDONSON, IGFL2-AS1, MIR155HG, and MIR4435-2HG. This article reviews the abnormal expression of miR-802 in a variety of tumors, expounds the mechanism by which miR-802 affects tumor progression by regulating different target genes, and elaborates the network of miR-802-related ceRNAs. We also summarized the limitations of miR-802 research and looked forward to the potential application of miR-802 in the diagnosis and prognosis of tumors.
Collapse
Affiliation(s)
- Tong Gao
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Mengsha Zou
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Tiancheng Shen
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Shiwei Duan
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China.,School of Medicine, Zhejiang University City College, Hangzhou, China
| |
Collapse
|
15
|
Li M, Tian X, Guo H, Xu X, Liu Y, Hao X, Fei H. A novel lncRNA-mRNA-miRNA signature predicts recurrence and disease-free survival in cervical cancer. Braz J Med Biol Res 2021; 54:e11592. [PMID: 34550275 PMCID: PMC8457683 DOI: 10.1590/1414-431x2021e11592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
Cervical cancer (CC) patients have a poor prognosis due to the high recurrence rate. However, there are still no effective molecular signatures to predict the recurrence and survival rates for CC patients. Here, we aimed to identify a novel signature based on three types of RNAs [messenger RNA (mRNAs), microRNA (miRNAs), and long non-coding RNAs (lncRNAs)]. A total of 763 differentially expressed mRNAs (DEMs), 46 lncRNAs (DELs), and 22 miRNAs (DEMis) were identified between recurrent and non-recurrent CC patients using the datasets collected from the Gene Expression Omnibus (GSE44001; training) and The Cancer Genome Atlas (RNA- and miRNA-sequencing; testing) databases. A competing endogenous RNA network was constructed based on 23 DELs, 15 DEMis, and 426 DEMs, in which 15 DELs, 13 DEMis, and 390 DEMs were significantly associated with disease-free survival (DFS). A prognostic signature, containing two DELs (CD27-AS1, LINC00683), three DEMis (hsa-miR-146b, hsa-miR-1238, hsa-miR-4648), and seven DEMs (ARMC7, ATRX, FBLN5, GHR, MYLIP, OXCT1, RAB39A), was developed after LASSO analysis. The built risk score could effectively separate the recurrence rate and DFS of patients in the high- and low-risk groups. The accuracy of this risk score model for DFS prediction was better than that of the FIGO (International Federation of Gynecology and Obstetrics) staging (the area under receiver operating characteristic curve: training, 0.954 vs 0.501; testing, 0.882 vs 0.656; and C-index: training, 0.855 vs 0.539; testing, 0.711 vs 0.508). In conclusion, the high predictive accuracy of our signature for DFS indicated its potential clinical application value for CC patients.
Collapse
Affiliation(s)
- Mengxiong Li
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaohui Tian
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongling Guo
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoyu Xu
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yun Liu
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiulan Hao
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hui Fei
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Liu T, Yang C, Wang W, Liu C. LncRNA SGMS1-AS1 regulates lung adenocarcinoma cell proliferation, migration, invasion, and EMT progression via miR-106a-5p/MYLI9 axis. Thorac Cancer 2021; 12:2104-2112. [PMID: 34061466 PMCID: PMC8287014 DOI: 10.1111/1759-7714.14043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lung cancer mainly includes non-small cell lung cancer (NSCLC). Lung adenocarcinoma (LUAD) is the main subtype of NSCLC. Long non-coding RNAs (LncRNAs) had been found to exert numerous functions on the progressions of cancers. MicroRNAs often exist as the target of LncRNAs to regulate a series of signaling pathways in human. We explored the effects and molecular mechanism of LncRNA SGMS1-AS1 on the procedures of LUAD cells. METHODS The ENCORI and GEPIA databases were used to analyze the differences in SGMS1, miR-106a-5p, and MYLIP between LUAD and normal tissue. Their expression levels were examined by RT-PCR. CCK8, colony formation, migration, and invasion assay were conducted in LUAD cells which had silenced SGMS1-AS1. To verify the relationship between SGMS1-AS1, miR-106a-5p, and MYLIP, we overexpressed miR-106a-5p inhibitor or MYLIP in LUAD cells after decreasing SGMS1-AS1 and repeated the above assays. RESULTS SGMS1-AS1 was downregulated in LUAD tissue as well as cells, which was related to good prognosis of patients with lung adenocarcinoma. Additionally, knockdown of SGMS1-AS1 promoted proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression of LUAD cells, which meant that SGMS1-AS1 inhibited the progression of LUAD cells. Furthermore, miR-106a-5p was the direct target of SGMS1-AS1 and transfecting miR-106a-5p inhibitor could reversed the impact induced by knockdown of SGMS1-AS1. Subsequently, we found that MYLIP was the target of miR-106a-5p, which was negatively correlated with miR-106a-5p, but had high positive correlation with SGMS1-AS1. Consistently, overexpression MYLIP partly eliminated the effects on A549 cells induced by silencing of SGMS1-AS1. CONCLUSION LncRNA SGMS1-AS1 inhibits the proliferation, invasion, migration and EMT progression of LUAD cells via targeting miR-106a-5p/MYLIP axis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| | - Chunli Yang
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| | - Weizhen Wang
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| | - Chunmei Liu
- Department of Plumonary and Critical Care Medicine, Weifang People's Hospital, Weifang, China
| |
Collapse
|