1
|
Wen D, Zhang H, Zhou Y, Jian N, Jiang C, Wang J. MicroRNA-503 Suppresses Oral Mucosal Fibroblast Differentiation by Regulating RAS/RAF/MEK/ERK Signaling Pathway. Biomolecules 2024; 14:1259. [PMID: 39456192 PMCID: PMC11505938 DOI: 10.3390/biom14101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The abnormal proliferation and differentiation of oral mucosal fibroblasts (FBs) is the key to the progression of oral submucosal fibrosis. To clarify the mechanism of platelet-derived growth factor (PDGF-BB)-induced FBs fibrosis in oral mucosa, real-time quantitative polymerase chain reaction and Western blot were used in this study to detect the expression of miR-503 and the expression of p-MEK, p-ERK, miR-503, RAF, smooth actin and type I collagen under different time and concentration stimulation of PDGF-BB. The effects of overexpression of miR-503 or RAF on the proliferation and migration of FBs were detected by cell counting kit 8 and cell scratch assay, respectively. A dual luciferase reporter gene assay was used to verify the targeting effect of miR-503 on RAF. The results showed that miR-503 was downregulated in a dose- and time-dependent manner in PDGF-BB-induced FBs. In addition, RAF is a direct target of miR-503 and can be negatively regulated. Overexpression of RAF can promote FB proliferation, migration, differentiation, collagen synthesis, and activation of downstream molecules (MEK/ERK), while overexpression of miR-503 can partially reverse the effects of RAF. Therefore, miR-503 regulates the biological behavior of PDGF-BB-induced oral mucosal FBs by influencing the activation of the RAS/RAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Dada Wen
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Huamin Zhang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China;
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (D.W.); (H.Z.); (Y.Z.); (N.J.)
| |
Collapse
|
2
|
Wenbo Z, Jianwei H, Hua L, Lei T, Guijuan C, Mengfei T. The potential of flavonoids in hepatic fibrosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155932. [PMID: 39146877 DOI: 10.1016/j.phymed.2024.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathophysiological process of extracellular matrix abnormal deposition induced by multiple pathogenic factors. Currently, there is still a lack of effective and non-toxic drugs for treating fibrosis in clinic. Flavonoids are polyphenolic compounds synthesized in plants and modern pharmacological studies confirmed flavonoids exhibit potent hepatoprotective effect. PURPOSE Summarize literature to elaborate the mechanism of HF and evaluate the potential of flavonoids in HF, aiming to provide a new perspective for future research. METHODS The literatures about hepatic fibrosis and flavonoids are collected via a series of scientific search engines including Google Scholar, Elsevier, PubMed, CNKI, WanFang, SciFinder and Web of Science database. The key words are "flavonoids", "hepatic fibrosis", "pharmacokinetic", "toxicity", "pathogenesis" "traditional Chinese medicine" and "mechanism" as well as combination application. RESULTS Phytochemical and pharmacological studies revealed that about 86 natural flavonoids extracted from Chinese herbal medicines possess significantly anti-fibrosis effect and the mechanisms maybe through anti-inflammatory, antioxidant, inhibiting hepatic stellate cells activation and clearing activated hepatic stellate cells. CONCLUSIONS This review summarizes the flavonoids which are effective in HF and the mechanisms in vivo and in vitro. However, fewer studies are focused on the pharmacokinetics of flavonoids in HF model and most studies are limited to preclinical studies, therefore there is no reliable data from clinical trials for the development of new drugs. Further in-depth research related it can be conducted to improve the bioavailability of flavonoids and serve the development of new drugs.
Collapse
Affiliation(s)
- Zhu Wenbo
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China.
| | - Han Jianwei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Liu Hua
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Tang Lei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Chen Guijuan
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Tian Mengfei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| |
Collapse
|
3
|
Meng Q, Zhu H, Li Y, Peng X, Wang T, Huang H, Zhou H, Liu Y, Ru S, Wu J, Ma Y. Quantitative proteomics reveals the protective effects of Yinchenzhufu decoction against cholestatic liver fibrosis in mice by inhibiting the PDGFRβ/PI3K/AKT pathway. Front Pharmacol 2024; 15:1341020. [PMID: 38469403 PMCID: PMC10926276 DOI: 10.3389/fphar.2024.1341020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction: Yinchenzhufu decoction (YCZFD) is a traditional Chinese medicine formula with hepatoprotective effects. In this study, the protective effects of YCZFD against cholestatic liver fibrosis (CLF) and its underlying mechanisms were evaluated. Methods: A 3, 5-diethoxycarbonyl-1, 4-dihydro-collidine (DDC)-induced cholestatic mouse model was used to investigate the amelioration of YCZFD on CLF. Data-independent acquisition-based mass spectrometry was performed to investigate proteomic changes in the livers of mice in three groups: control, model, and model treated with high-dose YCZFD. The effects of YCZFD on the expression of key proteins were confirmed in mice and cell models. Results: YCZFD significantly decreased the levels of serum biochemical, liver injury, and fibrosis indicators of cholestatic mice. The proteomics indicated that 460 differentially expressed proteins (DEPs) were identified among control, model, and model treated with high-dose YCZFD groups. Enrichment analyses of these DEPs revealed that YCZFD influenced multiple pathways, including PI3K-Akt, focal adhesion, ECM-receptor interaction, glutathione metabolism, and steroid biosynthesis pathways. The expression of platelet derived growth factor receptor beta (PDGFRβ), a receptor associated with the PI3K/AKT and focal adhesion pathways, was upregulated in the livers of cholestatic mice but downregulated by YCZFD. The effects of YCZFD on the expression of key proteins in the PDGFRβ/PI3K/AKT pathway were further confirmed in mice and transforming growth factor-β-induced hepatic stellate cells. We uncovered seven plant metabolites (chlorogenic acid, scoparone, isoliquiritigenin, glycyrrhetinic acid, formononetin, atractylenolide I, and benzoylaconitine) of YCZFD that may regulate PDGFRβ expression. Conclusion: YCZFD substantially protects against DDC-induced CLF mainly through regulating the PDGFRβ/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qian Meng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hongwen Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaotian Peng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Huang
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuejia Liu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sujie Ru
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Boo YC. Therapeutic Potential and Mechanisms of Rosmarinic Acid and the Extracts of Lamiaceae Plants for the Treatment of Fibrosis of Various Organs. Antioxidants (Basel) 2024; 13:146. [PMID: 38397744 PMCID: PMC10886237 DOI: 10.3390/antiox13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Fibrosis, which causes structural hardening and functional degeneration in various organs, is characterized by the excessive production and accumulation of connective tissue containing collagen, alpha-smooth muscle actin (α-SMA), etc. In traditional medicine, extracts of medicinal plants or herbal prescriptions have been used to treat various fibrotic diseases. The purpose of this narrative review is to discuss the antifibrotic effects of rosmarinic acid (RA) and plant extracts that contain RA, as observed in various experimental models. RA, as well as the extracts of Glechoma hederacea, Melissa officinalis, Elsholtzia ciliata, Lycopus lucidus, Ocimum basilicum, Prunella vulgaris, Salvia rosmarinus (Rosmarinus officinalis), Salvia miltiorrhiza, and Perilla frutescens, have been shown to attenuate fibrosis of the liver, kidneys, heart, lungs, and abdomen in experimental animal models. Their antifibrotic effects were associated with the attenuation of oxidative stress, inflammation, cell activation, epithelial-mesenchymal transition, and fibrogenic gene expression. RA treatment activated peroxisomal proliferator-activated receptor gamma (PPARγ), 5' AMP-activated protein kinase (AMPK), and nuclear factor erythroid 2-related factor 2 (NRF2) while suppressing the transforming growth factor beta (TGF-β) and Wnt signaling pathways. Interestingly, most plants that are reported to contain RA and exhibit antifibrotic activity belong to the family Lamiaceae. This suggests that RA is an active ingredient for the antifibrotic effect of Lamiaceae plants and that these plants are a useful source of RA. In conclusion, accumulating scientific evidence supports the effectiveness of RA and Lamiaceae plant extracts in alleviating fibrosis and maintaining the structural architecture and normal functions of various organs under pathological conditions.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
5
|
Liu F, Li S, Chen P, Gu Y, Wang S, Wang L, Chen C, Wang R, Yuan Y. Salvianolic acid B inhibits hepatic stellate cell activation and liver fibrosis by targeting PDGFRβ. Int Immunopharmacol 2023; 122:110550. [PMID: 37451016 DOI: 10.1016/j.intimp.2023.110550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Liver fibrosis is a reversible pathological process and a wound healing response to liver injury. As an early stage of various liver diseases, liver fibrosis can develop into cirrhosis, liver failure, and even liver cancer if not controlled in time. Salvia miltiorrhiza is a medicinal plant with hepatoprotective effects. Salvianolic acid B (Sal B) is the representative component of S. miltiorrhiza. Many studies have reported the anti-liver fibrosis effects and mechanisms of Sal B. However, the direct anti-fibrotic targets of Sal B have not yet been reported. Platelet-derived growth factor receptor β (PDGFRβ) is one of the most classical targets in liver fibrosis, which is closely related to hepatic stellate cells (HSCs) activated. Previously, we established and applied a PDGFRβ affinity chromatography model, and found that Sal B binds well to PDGFRβ. Therefore, this study aimed to investigate the direct targets of Sal B against liver fibrosis. We confirmed the binding ability of Sal B to PDGFRβ by molecular docking and a surface plasmon resonance biosensor. Our findings indicated that Sal B targeted PDGFRβ to inhibit the activation, migration and proliferation of HSCs and suppressed the PDGF-BB-induced PDGFRβ signaling pathway. Annexin V-FITC/PI assay showed that Sal B reversed the PDGF-BB-induced decrease in HSC apoptosis rate. In the mouse liver fibrosis model, Sal B inhibited the PDGFRβ signaling pathway, HSC activation and reduced inflammatory response, ultimately improved CCl4-induced liver fibrosis. In summary, the direct anti-fibrotic targets of Sal B may be PDGFRβ, and this study clarified the anti-liver fibrosis effects and mechanism of Sal B.
Collapse
Affiliation(s)
- Fangbin Liu
- School of Medicine, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Lei Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Chun Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Rd, Shanghai 201999, China.
| |
Collapse
|
6
|
Pericytes in the tumor microenvironment. Cancer Lett 2023; 556:216074. [PMID: 36682706 DOI: 10.1016/j.canlet.2023.216074] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Pericytes are a type of mural cell located between the endothelial cells of capillaries and the basement membrane, which function to regulate the capillary vasomotor and maintain normal microcirculation of local tissues and organs and have been identified as a significant component in the tumor microenvironment (TME). Pericytes have various interactions with different components of the TME, such as constituting the pre-metastatic niche, promoting the growth of cancer cells and drug resistance through paracrine activity, and inducing M2 macrophage polarization. While changes in the TME can affect the number, phenotype, and molecular markers of pericytes. For example, pericyte detachment from endothelial cells in the TME facilitates tumor cells in situ to invade the circulating blood and is beneficial to local capillary basement membrane enzymatic hydrolysis and endothelial cell proliferation and budding, which contribute to tumor angiogenesis and metastasis. In this review, we discuss the emerging role of pericytes in the TME, and tumor treatment related to pericytes. This review aimed to provide a more comprehensive understanding of the function of pericytes and the relationship between pericytes and tumors and to provide ideas for the treatment and prevention of malignant tumors.
Collapse
|
7
|
Zhang H, Zhou Y, Wen D, Wang J. Noncoding RNAs: Master Regulator of Fibroblast to Myofibroblast Transition in Fibrosis. Int J Mol Sci 2023; 24:1801. [PMID: 36675315 PMCID: PMC9861037 DOI: 10.3390/ijms24021801] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Myofibroblasts escape apoptosis and proliferate abnormally under pathological conditions, especially fibrosis; they synthesize and secrete a large amount of extracellular matrix (ECM), such as α-SMA and collagen, which leads to the distortion of organ parenchyma structure, an imbalance in collagen deposition and degradation, and the replacement of parenchymal cells by fibrous connective tissues. Fibroblast to myofibroblast transition (FMT) is considered to be the main source of myofibroblasts. Therefore, it is crucial to explore the influencing factors regulating the process of FMT for the prevention, treatment, and diagnosis of FMT-related diseases. In recent years, non-coding RNAs, including microRNA, long non-coding RNAs, and circular RNAs, have attracted extensive attention from scientists due to their powerful regulatory functions, and they have been found to play a vital role in regulating FMT. In this review, we summarized ncRNAs which regulate FMT during fibrosis and found that they mainly regulated signaling pathways, including TGF-β/Smad, MAPK/P38/ERK/JNK, PI3K/AKT, and WNT/β-catenin. Furthermore, the expression of downstream transcription factors can be promoted or inhibited, indicating that ncRNAs have the potential to be a new therapeutic target for FMT-related diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Xiangya Road, Changsha 410000, China
| |
Collapse
|
8
|
Liu Y, Jian J, Zhang Y, Wang L, Liu X, Chen Z. Construction of cancer- associated fibroblasts related risk signature based on single-cell RNA-seq and bulk RNA-seq data in bladder urothelial carcinoma. Front Oncol 2023; 13:1170893. [PMID: 37124542 PMCID: PMC10140328 DOI: 10.3389/fonc.2023.1170893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background The ability of cancer-associated fibroblasts (CAFs) to encourage angiogenesis, tumor cell spread, and increase treatment resistance makes them pro-tumorigenic. We aimed to investigate the CAF signature in Bladder urothelial carcinoma (BLCA) and, for clinical application, to build a CAF-based risk signature to decipher the immune landscape and screen for suitable treatment BLCA samples. Methods CAF-related genes were discovered by superimposing CAF marker genes discovered from single-cell RNA-seq (scRNA-seq) data taken from the GEO database with CAF module genes discovered by weighted gene co-expression network analysis (WGCNA) using bulk RNA-seq data from TCGA. After identifying prognostic genes related with CAF using univariate Cox regression, Lasso regression was used to build a risk signature. With microarray data from the GEO database, prognostic characteristics were externally verified. For high and low CAF-risk categories, immune cells and immunotherapy responses were analyzed. Finally, a nomogram model based on the risk signature and prospective chemotherapeutic drugs were examined. Results Combining scRNA-seq and bulk-seq data analysis yielded a total of 124 CAF-related genes. LRP1, ANXA5, SERPINE2, ECM1, RBP1, GJA1, and FKBP10 were the seven BLCA prognostic genes that remained after univariate Cox regression and LASSO regression analyses. Then, based on these genes, prognostic characteristics were created and validated to predict survival in BLCA patients. Additionally, risk signature had a strong correlation with known CAF scores, stromal scores, and certain immune cells. The CAF-risk signature was identified as an independent prognostic factor for BLCA using multifactorial analysis, and its usefulness in predicting immunotherapy response was confirmed. Based on risk classification, we projected six highly sensitive anticancer medicines for the high-risk group. Conclusion The prognosis of BLCA may be accurately predicted using CAF-based risk signature. With a thorough understanding of the BLCA CAF-signature, it might be able to explain the BLCA patients' response to immunotherapy and identify a potential target for BLCA treatment.
Collapse
Affiliation(s)
- Yunxun Liu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jun Jian
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, China
- *Correspondence: Xiuheng Liu, ; Zhiyuan Chen,
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, China
- *Correspondence: Xiuheng Liu, ; Zhiyuan Chen,
| |
Collapse
|
9
|
Zhou Y, Liu X, She H, Wang R, Bai F, Xiang B. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects. Regen Ther 2022; 21:307-321. [PMID: 36110973 PMCID: PMC9459434 DOI: 10.1016/j.reth.2022.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose With the goal of increasing the translational efficiency of bone tissue engineering for practical clinical applications, biomimetic composite scaffolds combined with autologous endogenous growth factors for repairing bone defects have become a current research hotspot. In this study, we prepared a silk fibroin/chitosan/nanohydroxyapatite (SF/CS/nHA) composite biomimetic scaffold and then combined it with autologous concentrated growth factor (CGF) to explore the effect of this combination on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the efficiency of repairing critical radial defects. Methods Three kinds of SF/CS/nHA composite biomimetic scaffolds with mass fractions of 3%, 4%, and 5% were prepared by vacuum freeze-drying and chemical cross-linking methods, and the characteristics of the scaffolds were evaluated. In vitro, BMSCs were seeded on SF/CS/nHA scaffolds, and then CGF was added. The morphology and proliferation of BMSCs were evaluated by live-dead staining, phalloidin staining, and CCK-8 assays. ALP staining, alizarin red staining, cellular immunofluorescence, RT-PCR, and Western blotting were used to detect the osteogenic differentiation of BMSCs. In vivo, a rabbit radius critical bone defect model was constructed, and the SF/CS/nHA-BMSC scaffold cell complex combined with CGF was implanted. The effect on bone defect repair was evaluated by 3D CT scanning, HE staining, Masson staining, and immunohistochemistry. Results The characteristics of 4% SF/CS/nHA were the most suitable for repairing bone defects. In vitro, the SF/CS/nHA combined CGF group showed better adhesion, cell morphology, proliferation, and osteogenic differentiation of BMSCs than the other groups (P < 0.05 for all). In vivo imaging examination and histological analysis demonstrated that the SF/CS/nHA scaffold combined with CGF had better efficiency in bone defect repair than the other scaffolds (P < 0.05 for all). Conclusions A SF/CS/nHA composite biomimetic bone scaffold combined with autologous CGF promoted the proliferation and osteogenic differentiation of BMSCs in vitro and improved the repair efficiency of critical bone defects in vivo. This combination may have the potential for clinical translation due to its excellent biocompatibility.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Xiaoyan Liu
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Hongjiang She
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Rui Wang
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Fan Bai
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Bingyan Xiang
- Department of Orthopaedics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| |
Collapse
|
10
|
Chen Y, Jiang L, Lyu K, Lu J, Long L, Wang X, Liu T, Li S. A Promising Candidate in Tendon Healing Events—PDGF-BB. Biomolecules 2022; 12:biom12101518. [PMID: 36291727 PMCID: PMC9599567 DOI: 10.3390/biom12101518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Tendon injuries are one of the most common musculoskeletal disorders for which patients seek medical aid, reducing not only the quality of life of the patient but also imposing a significant economic burden on society. The administration of growth factors at the wound site is a feasible solution for enhancing tendon healing. Platelet-derived growth factor-BB (PDGF-BB) has a well-defined safety profile compared to other growth factors and has been approved by the Food and Drug Administration (FDA). The purpose of this review is to summarize the role of PDGF-BB in tendon healing through a comprehensive review of the published literature. Experimental studies suggest that PDGF-BB has a positive effect on tendon healing by enhancing inflammatory responses, speeding up angiogenesis, stimulating tendon cell proliferation, increasing collagen synthesis and increasing the biomechanics of the repaired tendon. PDGF-BB is regarded as a promising candidate in tendon healing. However, in order to realize its full potential, we still need to carefully consider and study key issues such as dose and application time in the future, so as to explore further applications of PDGF-BB in the tendon healing process.
Collapse
Affiliation(s)
- Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou 646000, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou 646000, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou 646000, China
| | - Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou 646000, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tianzhu Liu
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (T.L.); (S.L.)
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (T.L.); (S.L.)
| |
Collapse
|
11
|
Jiang S, Ito-Hirano R, Shen TNY, Fujimura S, Mizuno H, Tanaka R. Effect of MNCQQ Cells on Migration of Human Dermal Fibroblast in Diabetic Condition. Biomedicines 2022; 10:biomedicines10102544. [PMID: 36289806 PMCID: PMC9599466 DOI: 10.3390/biomedicines10102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022] Open
Abstract
A major symptom of diabetes mellitus (DM) is unfit hyperglycemia, which leads to impaired wound healing. It has been reported that the migration of fibroblasts can be suppressed under high glucose (HG) conditions. In our previous study, we introduced a serum-free culture method for mononuclear cells (MNCs) called quantity and quality control culture (QQc), which could improve the vasculogenic and tissue regeneration ability of MNCs. In this study, we described a culture model in which we applied a high glucose condition in human dermal fibroblasts to simulate the hyperglycemia condition in diabetic patients. MNC-QQ cells were cocultured with fibroblasts in this model to evaluate its role in improving fibroblasts dysfunction induced by HG and investigate its molecular mechanism. It was proven in this study that the impaired migration of fibroblasts induced by high glucose could be remarkably enhanced by coculture with MNC-QQ cells. PDGF B is known to play important roles in fibroblasts migration. Quantitative PCR revealed that MNC-QQ cells enhanced the gene expressions of PDGF B in fibroblasts under HG. Taken with these results, our data suggested a possibility that MNC-QQ cells accelerate wound healing via improving the fibroblasts migration and promote the gene expressions of PDGF B under diabetic conditions.
Collapse
Affiliation(s)
- Sen Jiang
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Rie Ito-Hirano
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsubame Nishikai-Yan Shen
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Fujimura
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroshi Mizuno
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Rica Tanaka
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence:
| |
Collapse
|
12
|
Xu S, Liu Y, Zhang D, Huang H, Li J, Wei J, Yang Y, Cui Y, Xie J, Zhou X. PDGF-AA promotes gap junction intercellular communication in chondrocytes via the PI3K/Akt pathway. Connect Tissue Res 2022; 63:544-558. [PMID: 35152816 DOI: 10.1080/03008207.2022.2036733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gap junction intercellular communication (GJIC) plays an important role in cell growth, development and homeostasis. Connexin 43 (Cx43) is an important half-channel protein responsible for gap junction formation. Platelet-derived growth factor AA (PDGF-AA) regulates the proliferation, migration, metabolism, apoptosis and cell cycle of chondrocytes. However, the role of PDGF-AA in gap junction intercellular communication in chondrocytes is not fully understood. In the current study, we performed experiments to explore the effect of PDGF-AA on GJIC and its underlying biomechanical mechanism. METHODS qPCR was performed to determine the expression of PDGF, PDGFR and connexin family genes in chondrocytes and/or cartilage. A scrape loading/dye transfer assay was used to determine GJIC. Western blot analysis was applied to detect the expression of Cx43 and PI3K/Akt signaling pathway proteins. Immunofluorescence staining was utilized to examine protein distribution. Scanning electron microscopy was used to delineate the morphology of chondrocytes. RESULTS Expression of PDGF-A mRNA was highest among the PDGF family in chondrocytes and cartilage tissues. PDGF-AA promoted functional GJIC formation in chondrocytes by upregulating the expression of Cx43. Enhanced functional GJIC formation in chondrocytes induced by PDGF-AA occurred through the activation of PI3K/Akt signaling and its nuclear accumulation. CONCLUSION For the first time, this study provides evidence demonstrating the role of PDGF-AA in cell-to-cell communication in chondrocytes through mediating Cx43 expression.
Collapse
Affiliation(s)
- Siqun Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongcan Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiachi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Menko AS, Walker JL. The Pro-Fibrotic Response to Lens Injury Is Signaled in a PI3K Isoform-Specific Manner. Biomolecules 2022; 12:1181. [PMID: 36139020 PMCID: PMC9496593 DOI: 10.3390/biom12091181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/11/2022] Open
Abstract
The signaling inputs that function to integrate biochemical and mechanical cues from the extracellular environment to alter the wound-repair outcome to a fibrotic response remain poorly understood. Here, using a clinically relevant post-cataract surgery wound healing/fibrosis model, we investigated the role of Phosphoinositide-3-kinase (PI3K) class I isoforms as potential signaling integrators to promote the proliferation, emergence and persistence of collagen I-producing alpha smooth muscle actin (αSMA+) myofibroblasts that cause organ fibrosis. Using PI3K isoform specific small molecule inhibitors, our studies revealed a requisite role for PI3K p110α in signaling the CD44+ mesenchymal leader cell population that we previously identified as resident immune cells to produce and organize a fibronectin-EDA rich provisional matrix and transition to collagen I-producing αSMA+ myofibroblasts. While the PI3K effector Akt was alone insufficient to regulate myofibroblast differentiation, our studies revealed a role for Rac, another potential PI3K effector, in this process. Our studies further uncovered a critical role for PI3K p110α in signaling the proliferation of CD44+ leader cells, which is important to the emergence and expansion of myofibroblasts. Thus, these studies identify activation of PI3K p110α as a critical signaling input following wounding to the development and progression of fibrotic disease.
Collapse
Affiliation(s)
- A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Li T, Wu Y, Chen WC, Xue X, Suo MJ, Li P, Sheng W, Huang GY. Functional analysis of HECA variants identified in congenital heart disease in the Chinese population. J Clin Lab Anal 2022; 36:e24649. [PMID: 35949005 PMCID: PMC9459261 DOI: 10.1002/jcla.24649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
Background Congenital heart disease (CHD) is a class of cardiovascular defects that includes septal defects, outflow tract abnormalities, and valve defects. Human homolog of Drosophila headcase (HECA) is a novel cell cycle regulator whose role in CHD has not been elucidated. This is the first study to determine the frequency of HECA mutations in patients with CHD and the association between HECA variants and CHD. Methods In this study, we identified a candidate gene, HECA, by whole‐exome sequencing of an atrial septal defect family. To investigate the association between HECA variants and CHD risk, targeted exon sequencing was conducted in 689 individuals with sporadic CHD. We further analyzed the effect of HECA gene abnormalities on cardiomyocyte phenotype behavior and related signaling pathways by Western blotting, reverse transcription‐quantitative polymerase chain reaction, and scratch assay. Results We found a novel de novo mutation, c.409_410insA (p. W137fs), in the HECA gene and identified five rare deleterious variants that met the filtering criteria in 689 individuals with sporadic CHD. Fisher's exact test revealed a significant association between HECA variations and CHD compared with those in gnomADv2‐East Asians(p = 0.0027). Further functional analysis suggested that the variant p. W137fs resulted in a deficiency of the normal HECA protein, and HECA deficiency altered AC16 cell cycle progression, increased cell proliferation, and migration, and promoted the activation of the PDGF‐BB/PDGFRB/AKT pathway. Conclusions Our study identified HECA and its six rare variants, expanding the spectrum of genes associated with CHD pathogenesis in the Chinese population.
Collapse
Affiliation(s)
- Ting Li
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yao Wu
- Children's Hospital of Fudan University, Shanghai, China
| | - Wei-Cheng Chen
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Xing Xue
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Mei-Jiao Suo
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Ping Li
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guo-Ying Huang
- Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases(2018RU002), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|