1
|
Ejlalidiz M, Mehri-Ghahfarrokhi A, Saberiyan M. Identification of hub genes and pathways in Uterine corpus endometrial carcinoma (UCEC): A comprehensive in silico study. Biochem Biophys Rep 2024; 40:101860. [PMID: 39552710 PMCID: PMC11565547 DOI: 10.1016/j.bbrep.2024.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC), derived from the endometrium, is the most common type of endometrial malignasis. This gynecological malignancy is very common all over the world, especially in developed countries and shows a potentially rising trend correlated with the increase in obese women. Methods Differentially Expressed Genes (DEGs) analysis was conducted on GSE7305 and GSE25628 datasets from the Gene Expression Omnibus (GEO). DEGs were identified using GEO2R (adjusted p-value <0.05, |logFC| > 1). Pathway analysis employed KEGG and Gene Ontology databases, while protein-protein interactions were analyzed using Cytoscape and Gephi. GEPIA was used for target gene validation. Results We have identified 304 common DEGs and 78 hub genes using GEO and PPI analysis, respectively. The GO and KEGG pathways analysis revealed enrichment of DEGs in extracellular matrix structural constituent, extracellular space, cell adhesion, and ECM-receptor interaction. GEPIA analysis identified three genes, ENG, GNG4, and ECT2, whose expression significantly differed between normal and tumor samples. Conclusion This analysis study identified the hub genes and associated pathways involved in the pathogenesis of UCEC. The identified hub genes exhibit remarkable potential as diagnostic biomarkers, providing a significant opportunity for early diagnosis and more effective therapeutic approaches for UCEC.
Collapse
Affiliation(s)
- Mahsa Ejlalidiz
- Medical Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Renaud L, Wilson CL, Lafyatis R, Schnapp LM, Feghali-Bostwick CA. Transcriptomic characterization of lung pericytes in systemic sclerosis-associated pulmonary fibrosis. iScience 2024; 27:110010. [PMID: 38868196 PMCID: PMC11167435 DOI: 10.1016/j.isci.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by fibrosis and vascular abnormalities in the skin and internal organs, including the lung. SSc-associated pulmonary fibrosis (SSc-PF) is the leading cause of death in SSc patients. Pericytes are key regulators of vascular integrity and endothelial function. The role that pericytes play in SSc-PF remains unclear. We compared the transcriptome of pericytes from SSc-PF lungs (SScL) to pericytes from normal lungs (NORML). We identified 1,179 differentially expressed genes in SScL pericytes. Pathways enriched in SScL pericytes included prostaglandin, PI3K-AKT, calcium, and vascular remodeling signaling. Decreased cyclic AMP production and altered phosphorylation of AKT in response to prostaglandin E2 in SScL pericytes demonstrate the functional consequence of changes in the prostaglandin pathway that may contribute to fibrosis. The transcriptomic signature of SSc lung pericytes suggests that they promote vascular dysfunction and contribute to the loss of protection against lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carole L. Wilson
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lynn M. Schnapp
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | | |
Collapse
|
3
|
Marques A, Cavaco P, Torre C, Sepodes B, Rocha J. Tumor mutational burden in colorectal cancer: Implications for treatment. Crit Rev Oncol Hematol 2024; 197:104342. [PMID: 38614266 DOI: 10.1016/j.critrevonc.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Although immune checkpoint inhibitors have revolutionized the treatment of several advanced solid cancers, in colorectal cancer, the transformative benefit of these innovative medicines is currently limited to those with deficient mismatch repair or high microsatellite instability. Tumor mutational burden (TMB) has emerged as a potential predictor of immunotherapy benefit, but the lack of standardization in its assessment and reporting has hindered the introduction of this biomarker in routine clinical practice. Here, we compiled 45 colorectal cancer studies utilizing numerical thresholds for high-TMB. In this group of studies, TMB cut-offs ranged from 6.88 to 41 mut/Mb and were most often set at 10, 17, or 20 mut/Mb. Additionally, we observed divergent TMB definitions and inconsistent disclosure of specific methodological details, which collectively emphasize the substantial lack of harmonization within the field. Ongoing efforts to harmonize TMB assessment will be critical to validate TMB as a predictive marker of immunotherapy response.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Patrícia Cavaco
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal; Pharmacy Department, Centro Hospitalar de Lisboa Ocidental, Lisboa 1449-005, Portugal
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| |
Collapse
|
4
|
Wang J, Wang Y, Zhou J, Cai M, Guo P, Du T, Zhang H. GNG4, as a potential predictor of prognosis, is correlated with immune infiltrates in colon adenocarcinoma. J Cell Mol Med 2023; 27:2517-2532. [PMID: 37448185 PMCID: PMC10468912 DOI: 10.1111/jcmm.17847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The tumour microenvironment (TME) and immunosuppression play an important role in colon cancer (CC) metastasis, which seriously affects the prognosis of CC. G protein subunit gamma 4 (GNG4) has been shown to participate in tumour progression and the tumour mutation burden (TMB) in colorectal cancer. However, the effect of GNG4 on the CC TME and immunology remains elusive. Weighted gene coexpression network analysis (WGCNA) was employed for screening aberrantly expressed genes associated with the immune score, and GNG4 was then selected through prognostic and immune correlation analysis. Based on RNA sequencing data obtained from the TCGA and GEO databases, the expression pattern and immune characteristics of GNG4 were comprehensively examined using a pan-cancer analysis. Upregulation of GNG4 was linked to an adverse prognosis and immune inhibitory phenotype in CC. Pan-cancer analysis demonstrated higher GNG4 expression in tumours than in paired normal tissue in human cancers. GNG4 expression was closely related to prognosis, TMB, immune checkpoints (ICPs), microsatellite instability (MSI) and neoantigens. GNG4 promoted CC cell proliferation, migration and invasion and participated in immune regulation in the TME. Significantly, GNG4 expression was found to negatively correlate with tumour-infiltrating immune cells, ICP, TMB and MSI in CC. GNG4 expression predicted the immunotherapy response in the IMvigor210 cohort, suggesting that GNG4 could be used as a potential biomarker in CC for prognostication and immunology. Moreover, the expression of GNG4 predicted the immunotherapy response of ICB in CC.
Collapse
Affiliation(s)
- Juan Wang
- Department of OncologyDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Yanshuang Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijingChina
| | - Jiaming Zhou
- Department of EndoscopyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of SciencesHangzhouChina
| | - Mengmeng Cai
- Department of OncologyDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Peng Guo
- Department of EndoscopyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of SciencesHangzhouChina
| | - Tongde Du
- Suzhou Institute of Systems MedicineSuzhouChina
| | - Hui Zhang
- Department of EndoscopyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of SciencesHangzhouChina
| |
Collapse
|
5
|
Jiang X, Tang F, Zhang J, He M, Xie T, Tang H, Liu J, Luo K, Lu S, Liu Y, Lu J, He M, Wei Q. High GNG4 predicts adverse prognosis for osteosarcoma: Bioinformatics prediction and experimental verification. Front Oncol 2023; 13:991483. [PMID: 36845726 PMCID: PMC9950737 DOI: 10.3389/fonc.2023.991483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Background Guanine nucleotide binding (G) protein subunit γ 4 (GNG4) is closely related to the malignant progression and poor prognosis of various tumours. However, its role and mechanism in osteosarcoma remain unclear. This study aimed to elucidate the biological role and prognostic value of GNG4 in osteosarcoma. Methods Osteosarcoma samples in the GSE12865, GSE14359, GSE162454 and TARGET datasets were selected as the test cohorts. The expression level of GNG4 between normal and osteosarcoma was identified in GSE12865 and GSE14359. Based on the osteosarcoma single-cell RNA sequencing (scRNA-seq) dataset GSE162454, differential expression of GNG4 among cell subsets was identified at the single-cell level. As the external validation cohort, 58 osteosarcoma specimens from the First Affiliated Hospital of Guangxi Medical University were collected. Patients with osteosarcoma were divided into high- and low-GNG4 groups. The biological function of GNG4 was annotated using Gene Ontology, gene set enrichment analysis, gene expression correlation analysis and immune infiltration analysis. Kaplan-Meier survival analysis was conducted and receiver operating characteristic (ROC) curves were calculated to determine the reliability of GNG4 in predicting prognostic significance and diagnostic value. Functional in vitro experiments were performed to explore the function of GNG4 in osteosarcoma cells. Results GNG4 was generally highly expressed in osteosarcoma. As an independent risk factor, high GNG4 was negatively correlated with both overall survival and event-free survival. Furthermore, GNG4 was a good diagnostic marker for osteosarcoma, with an area under the receiver operating characteristic curve (AUC) of more than 0.9. Functional analysis suggested that GNG4 may promote the occurrence of osteosarcoma by regulating ossification, B-cell activation, the cell cycle and the proportion of memory B cells. In in vitro experiments, silencing of GNG4 inhibited the viability, proliferation and invasion of osteosarcoma cells. Conclusion Through bioinformatics analysis and experimental verification, high expression of GNG4 in osteosarcoma was identified as an oncogene and reliable biomarker for poor prognosis. This study helps to elucidate the significant potential of GNG4 in carcinogenesis and molecular targeted therapy for osteosarcoma.
Collapse
Affiliation(s)
- Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fuxing Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Spinal Bone Disease, Yulin Orthopedics Hospital of Chinese and Western Medicine, Yulin, Guangxi, China
| | - Junlei Zhang
- Department of Sports Medicine, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Luo
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shenglin Lu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jili Lu
- Department of Orthopaedics, the People’s Hospital of Baise, Baise, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Maolin He
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| |
Collapse
|
6
|
Zhang G, Hou Y. Screening for aberrantly methylated and differentially expressed genes in nonalcoholic fatty liver disease of hepatocellular carcinoma patients with cirrhosis. World J Surg Oncol 2022; 20:364. [PMID: 36397165 PMCID: PMC9673405 DOI: 10.1186/s12957-022-02828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Nonalcoholic fatty liver disease (NAFLD) as the leading chronic liver disease worldwide causes hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The aim of this study was to find potential aberrantly methylated and differentially expressed genes in NAFLD of HCC patients with cirrhosis.
Methods
DNA methylation data, mRNA expression data, and the corresponding clinical information of HCC were downloaded from the Cancer Genome Atlas (TCGA, tissue sample) database. HCC patients with cirrhosis were divided into two groups according to the presence of NAFLD. The differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were obtained.
Results
By overlapping 79 up-regulated genes and 1020 hypomethylated genes, we obtained 5 hypomethylated-highly expressed genes (HypoHGs). By overlapping 365 down-regulated genes and 481 hypermethylated genes, we identified 13 hypermethylated-lowly expressed genes (Hyper-LGs). Survival analysis of these 18 MDEGs indicated that the expression of DGKK and HOXD9 was significantly correlated with the overall survival time of NAFLD patients.
Conclusions
We identified several candidate genes whose expressions were regulated by DNA methylation of NAFLD of HCC with cirrhosis, which may provide a new field in understanding the clinical pathological mechanism of NAFLD of HCC with cirrhosis.
Collapse
|
7
|
Chen D, Ye Z, Lew Z, Luo S, Yu Z, Lin Y. Expression of NMU, PPBP and GNG4 in colon cancer and their influences on prognosis. Transl Cancer Res 2022; 11:3572-3583. [PMID: 36388046 PMCID: PMC9641087 DOI: 10.21037/tcr-22-1377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study aims to identify the core genes that influence the prognosis of colon cancer (CC) and analyze their relationships with clinical characteristics. METHODS The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were identified. The top ten core genes were selected by bioinformatics tools and screened through the Oncomine database. The expression of core genes in CC tissues and cells was validated by immunohistochemistry, immunoblotting and quantitative real-time polymerase chain reaction. Spearman correlation was used to analyze the relationship between different parameters. Overall survival was assessed by the Kaplan-Meier method. The area under the curve (AUC) and the receiver operating curve (ROC) were applied to assess the accuracy of genes for predicting prognosis. RESULTS There were 1,665 DEGs that were identified from TCGA database. Bioinformatics analysis found that GNGT1, NMU, PPBP, AGT, and GNG4 were differentially expressed in CC tissue. Overexpression of NMU, PPBP, AGT, and GNG4 in CC was associated with shortened survival time (P<0.05). In the validation studies, the high expression levels of NMU, PPBP and GNG4 in CC cells and tissues were confirmed compared to the control groups (P<0.05) and were adverse prognostic biomarkers (P<0.01). The combination prognostic model of the three core genes predicted the 1-, 3-, and 5-year survival of CC with AUCs of 0.868, 0.635 and 0.770, respectively. CONCLUSIONS High levels of NMU, PPBP, and GNG4 were associated with poor prognosis in CC. The combination prognostic model of these three genes could be a new option.
Collapse
Affiliation(s)
- Danyu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China;,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China;,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenxian Lew
- Department of Surgery, Guangzhou Concord Cancer Center, Guangzhou, China
| | - Simin Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China;,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China;,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China;,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Duan L, Liu X, Luo Z, Zhang C, Wu C, Mu W, Zuo Z, Pei X, Shao T. G-Protein Subunit Gamma 4 as a Potential Biomarker for Predicting the Response of Chemotherapy and Immunotherapy in Bladder Cancer. Genes (Basel) 2022; 13:693. [PMID: 35456499 PMCID: PMC9027884 DOI: 10.3390/genes13040693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND GNG4, a member of the G-protein γ family, is a marker of poor overall survival (OS) rates in some malignancies. However, the potential role of GNG4 in bladder cancer (BLCA) is unknown. It is also unclear whether GNG4 may be utilized as a marker to guide chemotherapy or immunotherapy. METHODS Single-cell RNA sequencing data were used to explore the expression of GNG4 in tumor microenvironment of BLCA. Bulk RNA sequencing data from TCGA were used to evaluate the relationship between GNG4 expression and biological features, such as immune cell infiltrations and gene mutations. The associations between GNG4 expression and survival in BLCA patients under or not under immunotherapy were evaluated using seven BLCA cohorts. RESULTS GNG4 was specifically expressed in exhausted CD4+ T cells. And the high expression of the GNG4 was associated with high level of immune cell infiltration. The high-GNG4-expression group displayed a better response to immunotherapy, whereas patients in the low-GNG4-expression group often benefited from chemotherapy. Moreover, the high-GNG4 group was more similar to the basal group, whereas the low-GNG4 group was similar to the luminal group. CONCLUSIONS GNG4 may be a potential biomarker for the prediction of the response to therapy in BLCA. Higher GNG4 expression can be used as a predictor of response to immunotherapy, and lower GNG4 expression can be used as a predictor of response to chemotherapy.
Collapse
Affiliation(s)
- Lianhui Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (C.Z.)
| | - Xuefei Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (X.L.); (Z.L.); (C.W.); (W.M.); (Z.Z.)
| | - Ziwei Luo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (X.L.); (Z.L.); (C.W.); (W.M.); (Z.Z.)
| | - Chen Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (C.Z.)
| | - Chun Wu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (X.L.); (Z.L.); (C.W.); (W.M.); (Z.Z.)
| | - Weiping Mu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (X.L.); (Z.L.); (C.W.); (W.M.); (Z.Z.)
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (X.L.); (Z.L.); (C.W.); (W.M.); (Z.Z.)
| | - Xiaoqing Pei
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (X.L.); (Z.L.); (C.W.); (W.M.); (Z.Z.)
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (C.Z.)
| |
Collapse
|
9
|
Zhou B, Zhu W, Yuan S, Wang Y, Zhang Q, Zheng H, Zhu L, Xu J. High
GNG4
expression is associated with poor prognosis in patients with lung adenocarcinoma. Thorac Cancer 2021; 13:369-379. [PMID: 34951127 PMCID: PMC8807281 DOI: 10.1111/1759-7714.14265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bodong Zhou
- Department of Pancreatic Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
| | - Wenbo Zhu
- Department of Pancreatic Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
| | - Shuai Yuan
- Department of Pancreatic Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
| | - Yifei Wang
- Department of Pancreatic Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
| | - Qing Zhang
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
| | - Hong Zheng
- Department of Intensive Care Medicine Tianjin Cancer Hospital Airport Free Trade Zone Hospital Tianjin China
| | - Lei Zhu
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
- Department of Molecular Imaging and Nuclear Medicine Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
| | - Jie Xu
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Tianjin's Clinical Research Center for Cancer Tianjin China
- Senior Ward Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
| |
Collapse
|