1
|
Yan R, Zeng S, Gao F, Li L, Xiao X. CircUBE2D2 regulates HMGB1 through miR-885-5p to promote ovarian cancer malignancy. Clinics (Sao Paulo) 2024; 79:100391. [PMID: 38848634 PMCID: PMC11214364 DOI: 10.1016/j.clinsp.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The newly discovered CircUBE2D2 has been shown to abnormally upregulate and promote cancer progression in a variety of cancers. The present study explored circUBE2D2 (hsa_circ_0005728) in Ovarian Cancer (OC) progression. METHODS CircUBE2D2, miR-885-5p, and HMGB1 were examined by RT-qPCR or WB. SKOV-3 cell functions (including cell viability, apoptosis, migration, and invasion) were validated using the CCK-8, flow cytometry, scratch assay, and transwell assay, respectively. The direct relationship between miR-885-5p and circUBE2D2 or HMGB1 was confirmed by a dual-luciferase reporter and RNA pull-down analysis. circUBE2D2's role in vivo tumor xenograft experiment was further probed. RESULTS OC tissue and cell lines had higher circUBE2D2 and HMGB1 and lower miR-885-5p. Mechanically, CircUBE2D2 shared a binding relation with miR-885-5p, while miR-885-5p can directly target HMGB1. Eliminating circUBE2D2 or miR-885-5p induction inhibited OC cell activities. However, these functions were relieved by down-regulating miR-885-5p or HMGB1 induction. Furthermore, circUBE2D2 knockout reduced tumor growth. CONCLUSION CircUBE2D2 regulates the expression of HMGB1 by acting as a sponge of ceRNA as miR-885-5p, thereby promoting the control of OC cell proliferation and migration and inhibiting cell apoptosis. Targeting CircUBE2D2 could serve as a new potential treatment strategy for OC.
Collapse
Affiliation(s)
- RuiXue Yan
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China.
| | - SaiTian Zeng
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - FangYuan Gao
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - LingLing Li
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - XiYun Xiao
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| |
Collapse
|
2
|
Qu G, Li X, Jin R, Guan D, Ji J, Li S, Shi H, Tong P, Gan W, Zhang A. MicroRNA-26a alleviates tubulointerstitial fibrosis in diabetic kidney disease by targeting PAR4. J Cell Mol Med 2024; 28:e18099. [PMID: 38164021 PMCID: PMC10844712 DOI: 10.1111/jcmm.18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.
Collapse
Affiliation(s)
- Gaoting Qu
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Xingyue Li
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Ran Jin
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Dian Guan
- Department of Pediatric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Jialing Ji
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Shanwen Li
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Huimin Shi
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Pingfan Tong
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Weihua Gan
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Aiqing Zhang
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| |
Collapse
|
3
|
Zhu M, Sun Y, Xue H, Wu G, Wang Z, Shi J, Ma J, Gu B, Yan X. NEK6 Promotes the Progression of Osteosarcoma Through Activating STAT3 Signaling Pathway by Down-Regulation of miR-26a-5p. Int J Gen Med 2023; 16:2831-2848. [PMID: 37426517 PMCID: PMC10329465 DOI: 10.2147/ijgm.s413461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Background Osteosarcoma is a malignant tumor originating from the skeletal system. There is no effective treatment other than surgery and chemotherapy, which seriously endangers the health of children and adolescents. NEK6 is a novel discovered Serine/Threonine protein kinase that can regulate cell cycle and activate several oncogenic pathways. Methods NEK6 expression in pan-cancer including sarcoma was evaluated using analysis tools of TIMER, UALCNA and GEPIA with TCGA database, and its association with overall survival in patients with sarcoma was also analyzed. TargetScan, tarbase, microT-CDS and Starbase online software were used to predict NEK6-targeted miRNAs, including miR-26a-5p. Tumor tissues from patients with osteosarcoma were collected for NEK6 and miRNA detection using RT-qPCR. NEK6 down-regulated by siRNAs or miR-26a-5p in osteosarcoma cells was detected by RT-qPCR, Western blot and Immunofluorescence staining assays. Effects of NEK6 knockdown on proliferation, migration, invasion and apoptosis of osteosarcoma cells were detected by CCK-8, wound healing, transwell and flow cytometry, respectively. The expressions of STAT3, metastasis and apoptosis-related genes were detected by Western blot. Results High expression of NEK6 and low expression of miR-26a-5p were lowly expressed in osteosarcoma and they were negative correlation. NEK6 has been confirmed as a direct target for miR-26a-5p. In addition, NEK6 down-regulated by siRNAs or miR-26a-5p led to inhibition of cell proliferation, migration and invasion while promoting cell apoptosis. The levels of phosphorylated STAT3 and metastasis genes (MMP-2, MMP-9) were inhibited, while apoptotic gene Bax was promoted and Bcl2 was inhibited by miR-26a-5p upregulation. Conclusion NEK6 can promote osteosarcoma progression via activating STAT3 signaling pathway, which is inhibited by miR-26a-5p, suggesting that NEK6 is a potential oncogene and miR-26a-5p is a suppressor of osteosarcoma. The strategy of inhibiting of NEK6 by miR-26a-5p may be an effective approach for osteosarcoma therapy.
Collapse
Affiliation(s)
- Min Zhu
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Huawei Xue
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Gang Wu
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Zhen Wang
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Junfeng Shi
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Jiye Ma
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Baorong Gu
- Department of Spine Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People’s Republic of China
| | - Xiaoling Yan
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
4
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
5
|
Yu XZ, Yang BW, Ao MY, Wu YK, Ye H, Wang RY, Xi MR, Hou MM. CircNFIX stimulates the proliferation, invasion, and stemness properties of ovarian cancer cells by enhancing SH3RF3 mRNA stability via binding LIN28B. Kaohsiung J Med Sci 2023; 39:234-243. [PMID: 36495291 DOI: 10.1002/kjm2.12632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
We aimed to study the regulatory roles and mechanism of circular nuclear factor IX (circNFIX) in cancer growth and stemness properties of ovarian cancer (OC). CircNFIX and SH3RF3 levels in OC tissues and cells were tested by quantitative real-time PCR. RNase R treatment quantified circNFIX RNA stability. Molecular interaction among circNFIX, LIN28B, and SH3RF3 was predicted by bioinformatics software and validated through RNA immunoprecipitation (RIP) assay. The gain- or loss-experiments of circNFIX on capabilities of metastasis and stemness in vitro were assessed using Cell Counting Kit-8, Transwell, western blot, and sphere-formation assays. CircNFIX and SH3RF3 were markedly elevated in OC tissues and OC cells. Knocking down circNFIX repressed the proliferation, migration, invasion, and stemness properties of A2780 and SKOV3 cells. The RIP assay verified the direct binding relationship between LIN28B, circNFIX, and SH3RF3. Additionally, overexpression of circNFIX elevated the SH3RF3 expression, while this effect was reversed by LIN28B silence. Rescue experiments demonstrated that the overexpression of SH3RF3 reversed the knockdown of circNFIX on OC cells' proliferation, metastasis, and stemness properties. CircNFIX improved the mRNA stability and translation of SH3RF3 via recruiting LIN28B, thus promoting the proliferation, invasion, and stemness properties of OC cells in vitro.
Collapse
Affiliation(s)
- Xiu-Zhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Bo-Wen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Meng-Yin Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Yu-Ke Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Hui Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Rui-Yu Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Ming-Rong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Min-Min Hou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Záveský L, Slanař O. Discovery and Evaluation of Extracellular MicroRNA Biomarkers in Plasma, Ascites, and Urine. Methods Mol Biol 2023; 2630:135-143. [PMID: 36689181 DOI: 10.1007/978-1-0716-2982-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) comprise a large group of small noncoding RNAs within a heterogeneous entity of noncoding RNAs, forming potent functional tools regulating the crucial biological processes within cells and the body. Cell-free miRNAs have become one of the novel promising diagnostic, predictive, and prognostic biomarkers for various diseases extensively investigated in recent years. This is due to their presence within extracellular fractions of various body fluids suggesting their potential as noninvasive "liquid biopsy" in case of their dysregulated expression.Among the body fluids, blood plasma and serum along with urine are the most commonly investigated sources of various types of cell-free miRNAs. Another body fluid, i.e., ascites (effusion, peritoneal/pleural fluid) may be the clinically important fluid particularly associated with carcinogenesis in ovarian carcinomas and hepatocellular carcinomas or in case of liver cirrhosis.Here, we provide a protocol for an expression profiling study based on qPCR analyses aimed at finding novel candidate miRNAs via small-scale or large-scale screening and evaluation experiments using liquid biopsies of blood plasma, ascites, and urine. Using this approach may be worth in cases where no (or limited) information is available on miRNA expression in particular diseases and geographic regions, for validation of previously published miRNAs with promising diagnostic potential, particularly in situations where follow-up study is aimed at validating miRNAs coming from (micro) array or NGS experiments, or where funding for large-scale experiments is not available. We demonstrate that assessment of plasma, ascites, and urine miRNAs expression may represent a feasible method to explore the potential for finding novel diagnostic, predictive, and prognostic biomarkers for various diseases.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, and General University Hospital in Prague, Prague, Czech Republic.
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague, and General University Hospital in Prague, Prague, Czech Republic.
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague, and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
7
|
Fang P, Zhou J, Li X, Luan S, Xiao X, Shang Q, Zhang H, Yang Y, Zeng X, Yuan Y. Prognostic value of micro-RNA 375, 133, 143, 145 in esophageal carcinoma: A systematic review and meta-analysis. Front Oncol 2022; 12:828339. [PMID: 36176382 PMCID: PMC9513119 DOI: 10.3389/fonc.2022.828339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have confirmed that micro-RNA (mir) is related to the prognosis of esophageal carcinoma (EC), suggesting the mir could be used to guide the therapeutic strategy of EC. Some of mir molecules are considered as favorable prognostic factors for EC. The purpose of our study is to evaluate the prognostic potential of mir-375, 133, 143, 145 in primary EC, we summarized all the results from available studies, aiming delineating the prognostic role of mir in EC. Relevant studies were identified by searching databases including Medline, Embase, Web of science, Cochrane Library. The studies which explored the prognostic value of mir-375, 133, 143, 145 expressions on survival outcomes in patients with EC were included in this study. The hazard ratios (HR) and their responding 95% confidence interval (CI) were also extracted. A total of 25 studies were collected, including 1260 patients, and the prognostic values of four mirs in EC were analyzed. Survival outcomes including overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS) were used as the primary endpoint to evaluate the prognostic value of mir. The pooled analysis results showed that up-regulation of mir-375 indicated favorable OS (HR=0.50; 95%CI: 0.37-0.69; P<0.001). In addition, the up-regulation of mir-133 (HR=0.40, 95%CI: 0.24-0.65, P<0.001), 143 (HR=0.40, 95%CI: 0.21-0.76, P < 0.001) and 145 (HR=0.55, 95%CI: 0.34-0.90, P<0.001) are also proved as protected factors in EC. Therefore, our study demonstrated that these mirs may have the potential to be used as prognostic biomarkers for EC in clinical practice.
Collapse
Affiliation(s)
- Pinhao Fang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qixin Shang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Yuan,
| |
Collapse
|
8
|
Zhang P, Zhang J, Quan H, Wang J, Liang Y. MicroRNA-143 expression inhibits the growth and the invasion of osteosarcoma. J Orthop Surg Res 2022; 17:236. [PMID: 35418302 PMCID: PMC9006441 DOI: 10.1186/s13018-022-03127-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/07/2022] [Indexed: 12/09/2022] Open
Abstract
Background Osteosarcoma (OS) is a common malignant tumor, which occurs in the metaphysis of the long diaphysis from mesenchymal tissue. Previous studies have indicated that expression of microRNA-143 (miR-143) could affect cancer cell proliferation, migration and invasion. The present research was performed to figure out whethermiR-143 expression inhibits the growth and the invasion of OS. Methods We conducted a literature search in the electronic databases of Medline, Embase, Web of Science, and the Cochrane Library, SinoMed, WanFang, China national knowledge infrastructure (CNKI) until January 2022. We used Review Manager 5.3 software to conduct our research. Results Twelve eligible articles were included, 5 articles were reported outcomes about mice, 11 articles were reported outcomes about human. The results of mice demonstrated that the miR-143 group had significantly better results in tumor volume, tumor weight and survival rate. The results of human demonstrated that the high level of miR-143 group had significantly better results in the 3-year, 4-year, and 5-year survival rate, lung metastasis and tumor grade. Conclusions MiR-143 has potentially important value in the treatment and prognosis of OS. However, more reliable animal and clinical trials are needed before miR-143 based therapies can be transferred from animal studies to human applications.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiale Zhang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Huahong Quan
- Department of Graduate, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Yuan Liang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|