1
|
O'Brien DP, Thorne AM, Huang H, Pappalardo E, Yao X, Thyrrestrup PS, Ravlo K, Secher N, Norregaard R, Ploeg RJ, Jespersen B, Kessler BM. Integrative omics reveals subtle molecular perturbations following ischemic conditioning in a porcine kidney transplant model. Clin Proteomics 2022; 19:6. [PMID: 35164671 PMCID: PMC8903695 DOI: 10.1186/s12014-022-09343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. METHODS Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. RESULTS In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). CONCLUSIONS Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Adam M Thorne
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Honglei Huang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elisa Pappalardo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Xuan Yao
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Søndergaard Thyrrestrup
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Anaesthesiology, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian Ravlo
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Secher
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Norregaard
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Korei C, Szabo B, Varga A, Barath B, Deak A, Vanyolos E, Hargitai Z, Kovacs I, Nemeth N, Peto K. Hematological, Micro-Rheological, and Metabolic Changes Modulated by Local Ischemic Pre- and Post-Conditioning in Rat Limb Ischemia-Reperfusion. Metabolites 2021; 11:metabo11110776. [PMID: 34822434 PMCID: PMC8625580 DOI: 10.3390/metabo11110776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
In trauma and orthopedic surgery, limb ischemia-reperfusion (I/R) remains a great challenge. The effect of preventive protocols, including surgical conditioning approaches, is still controversial. We aimed to examine the effects of local ischemic pre-conditioning (PreC) and post-conditioning (PostC) on limb I/R. Anesthetized rats were randomized into sham-operated (control), I/R (120-min limb ischemia with tourniquet), PreC, or PostC groups (3 × 10-min tourniquet ischemia, 10-min reperfusion intervals). Blood samples were taken before and just after the ischemia, and on the first postoperative week for testing hematological, micro-rheological (erythrocyte deformability and aggregation), and metabolic parameters. Histological samples were also taken. Erythrocyte count, hemoglobin, and hematocrit values decreased, while after a temporary decrease, platelet count increased in I/R groups. Erythrocyte deformability impairment and aggregation enhancement were seen after ischemia, more obviously in the PreC group, and less in PostC. Blood pH decreased in all I/R groups. The elevation of creatinine and lactate concentration was the largest in PostC group. Histology did not reveal important differences. In conclusion, limb I/R caused micro-rheological impairment with hematological and metabolic changes. Ischemic pre- and post-conditioning had additive changes in various manners. Post-conditioning showed better micro-rheological effects. However, by these parameters it cannot be decided which protocol is better.
Collapse
Affiliation(s)
- Csaba Korei
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary;
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Zoltan Hargitai
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Ilona Kovacs
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Correspondence: ; Tel./Fax: +36-52-416-915
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| |
Collapse
|
3
|
Oltean M. Ischemic Preconditioning in Liver Transplantation: Lost in Translation? J INVEST SURG 2021; 35:910-911. [PMID: 34212818 DOI: 10.1080/08941939.2021.1943574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mihai Oltean
- Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute for Clinical Sciences, Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury-An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int J Mol Sci 2021; 22:ijms22041864. [PMID: 33668478 PMCID: PMC7918617 DOI: 10.3390/ijms22041864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.
Collapse
|
5
|
Zhu J, Kang J, Li X, Wang M, Shang M, Luo Y, Xiong M, Hu K. Chronic intermittent hypoxia vs chronic continuous hypoxia: Effects on vascular endothelial function and myocardial contractility. Clin Hemorheol Microcirc 2020; 74:417-427. [PMID: 31683472 DOI: 10.3233/ch-190706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Both chronic intermittent hypoxia (CIH) and chronic continuous hypoxia (CCH) are risk factors for cardiovascular disease, which are associated with cardiac systolic function and associated with dysfunction of endothelia and coagulation-fibrinolysis system in the vasculature. However, the different effects of these two hypoxic models are not fully understood. In our study, we systemically compared the effects of CIH and CCH on cardiac function and related factor levels in serum using rat model. METHODS Forty-five male Sprague-Dawley rats were randomly divided into the normoxia control (NC), CIH and CCH groups. The rat CIH and CCH models were established, then the blood and tissue samples were collected to analyze the function of endothelium and the coagulation-fibrinolysis system. Also, the ultrasound cardiogram was performed to directly assess myocardial contractility. RESULTS Both CIH and CCH significantly decreased the NO, eNOS, P-eNOS and AT-III levels in the rat serum but significantly increased the levels of ET-1, vWF, COX-2, NF-κB, FIB, FVIII and PAI-1 in the rat serum (P < 0.05). The expression of ET-1, VWF and ICAM-1 in CIH group were higher than CCH group (P < 0.05), however, the expression of CD62p was increased in CCH group but not in CIH group. The expression of t-PA in CIH group were lower than CCH group (P < 0.05), but there were no significant differences in CCH group and NC group (P > 0.05). Using transmission electron microscope, we found that the mitochondrial ultrastructure of thoracic aorta endothelial cells in CIH and CCH group were damaged. Moreover, the myocardial contractility in CIH and CCH group were significantly decreased compared with NC group. CONCLUSION Our results suggested that CIH and CCH could cause endothelial dysfunction, dysfunction of the coagulation-fibrinolysis system and decreasing of myocardial contractility. Compared with CCH, CIH has greater effect on vasoconstriction and adhesion of vascular endothelial cells, and stronger procoagulant effect.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Kang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaochen Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmei Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Shang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuchuan Luo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Li J, Jiang J, Chu Z, Zhang Y, Cai W, Zhu J, Grimm R, Ji Q. Multiparametric MRI Evaluation of Liposomal Prostaglandins E1 Intervention on Hepatic Warm Ischemia‐Reperfusion Injury in Rabbits. J Magn Reson Imaging 2019; 52:217-228. [PMID: 31829483 DOI: 10.1002/jmri.27022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jingyao Li
- First Central Clinical College of Tianjin Medical University Nankai DistrictTianjin China
- Department of RadiologyTianjin First Central Hospital Nankai DistrictTianjin China
| | - Jiabing Jiang
- First Central Clinical College of Tianjin Medical University Nankai DistrictTianjin China
- Department of RadiologyTianjin First Central Hospital Nankai DistrictTianjin China
| | - Zhiqiang Chu
- Department of TransplantationTianjin First Central Hospital Nankai DistrictTianjin China
| | - Yuling Zhang
- First Central Clinical College of Tianjin Medical University Nankai DistrictTianjin China
- Department of RadiologyTianjin First Central Hospital Nankai DistrictTianjin China
| | - Wenjuan Cai
- Department of PathologyTianjin First Central Hospital Nankai DistrictTianjin China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Beijing China
| | | | - Qian Ji
- Department of RadiologyTianjin First Central Hospital Nankai DistrictTianjin China
| |
Collapse
|
7
|
Varga G, Ghanem S, Szabo B, Nagy K, Pal N, Tanczos B, Somogyi V, Barath B, Deak A, Peto K, Nemeth N. Renal ischemia-reperfusion-induced metabolic and micro-rheological alterations and their modulation by remote organ ischemic preconditioning protocols in the rat. Clin Hemorheol Microcirc 2019; 71:225-236. [DOI: 10.3233/ch-189414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gabor Varga
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Nagy
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noemi Pal
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|