1
|
Leonard RL, Bull AB, Xue F, Haycook CP, Gray SK, Bond CW, Bond PE, McDearman JC, Woods DP, Mayfield J, Brown LR, Giorgio TD, Johnson JA. Biocompatibility of Antifogging SiO-doped Diamond-Like Carbon Laparoscope Coatings. APPLIED SURFACE SCIENCE 2023; 634:157606. [PMID: 37389357 PMCID: PMC10306171 DOI: 10.1016/j.apsusc.2023.157606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Laparoscopes can suffer from fogging and contamination difficulties, resulting in a reduced field of view during surgery. A series of diamond-like carbon films, doped with SiO, were produced by pulsed laser deposition for evaluation as biocompatible, antifogging coatings. DLC films doped with SiO demonstrated hydrophilic properties with water contact angles under 40°. Samples subjected to plasma cleaning had improved contact angle results, with values under 5°. Doping the DLC films with SiO led to an average 40% decrease in modulus and 60% decrease in hardness. Hardness of the doped films, 12.0 - 13.2 GPa, was greater than that of the uncoated fused silica substrate, 9.2 GPa. The biocompatibility was assessed through CellTiter-Glo assays, with the films demonstrating statistically similar levels of cell viability when compared to the control media. The absence of ATP released by blood platelets in contact with the DLC coatings suggests in vivo hemocompatibility. The SiO doped films displayed improved transparency levels in comparison to undoped films, achieving up to an average of 80% transmission over the visible spectrum and an attenuation coefficient of 1.1 × 104 cm-1 at the 450 nm wavelength. The SiO doped DLC films show promise as a method of fog prevention for laparoscopes.
Collapse
Affiliation(s)
- R L Leonard
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - A B Bull
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| | - F Xue
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - C P Haycook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - S K Gray
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| | - C W Bond
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| | - P E Bond
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| | - J C McDearman
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| | - D P Woods
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| | - J Mayfield
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| | - L R Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235
| | - T D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - J A Johnson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388
| |
Collapse
|
2
|
Antonova LV, Sevostianova VV, Silnikov VN, Krivkina EO, Velikanova EA, Mironov AV, Shabaev AR, Senokosova EA, Khanova MY, Glushkova TV, Akentieva TN, Sinitskaya AV, Markova VE, Shishkova DK, Lobov AA, Repkin EA, Stepanov AD, Kutikhin AG, Barbarash LS. Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model. Int J Mol Sci 2023; 24:ijms24108540. [PMID: 37239889 DOI: 10.3390/ijms24108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The lack of suitable autologous grafts and the impossibility of using synthetic prostheses for small artery reconstruction make it necessary to develop alternative efficient vascular grafts. In this study, we fabricated an electrospun biodegradable poly(ε-caprolactone) (PCL) prosthesis and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) (PHBV/PCL) prosthesis loaded with iloprost (a prostacyclin analog) as an antithrombotic drug and cationic amphiphile with antibacterial activity. The prostheses were characterized in terms of their drug release, mechanical properties, and hemocompatibility. We then compared the long-term patency and remodeling features of PCL and PHBV/PCL prostheses in a sheep carotid artery interposition model. The research findings verified that the drug coating of both types of prostheses improved their hemocompatibility and tensile strength. The 6-month primary patency of the PCL/Ilo/A prostheses was 50%, while all PHBV/PCL/Ilo/A implants were occluded at the same time point. The PCL/Ilo/A prostheses were completely endothelialized, in contrast to the PHBV/PCL/Ilo/A conduits, which had no endothelial cells on the inner layer. The polymeric material of both prostheses degraded and was replaced with neotissue containing smooth-muscle cells; macrophages; proteins of the extracellular matrix such as type I, III, and IV collagens; and vasa vasorum. Thus, the biodegradable PCL/Ilo/A prostheses demonstrate better regenerative potential than PHBV/PCL-based implants and are more suitable for clinical use.
Collapse
Affiliation(s)
- Larisa V Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Viktoriia V Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Vladimir N Silnikov
- Laboratory of Organic Synthesis, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgeniya O Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena A Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey V Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Amin R Shabaev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia A Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Yu Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Tatiana V Glushkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Tatiana N Akentieva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anna V Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria E Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria K Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy A Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, St. Petersburg 194064, Russia
| | - Egor A Repkin
- Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, St. Petersburg 199034, Russia
| | - Alexander D Stepanov
- Institute of Medicine, Kemerovo State University, 6 Krasnaya Street, Kemerovo 650000, Russia
| | - Anton G Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid S Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|
3
|
Rezvova MA, Klyshnikov KY, Gritskevich AA, Ovcharenko EA. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int J Mol Sci 2023; 24:3963. [PMID: 36835389 PMCID: PMC9967268 DOI: 10.3390/ijms24043963] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The development of a novel artificial heart valve with outstanding durability and safety has remained a challenge since the first mechanical heart valve entered the market 65 years ago. Recent progress in high-molecular compounds opened new horizons in overcoming major drawbacks of mechanical and tissue heart valves (dysfunction and failure, tissue degradation, calcification, high immunogenic potential, and high risk of thrombosis), providing new insights into the development of an ideal artificial heart valve. Polymeric heart valves can best mimic the tissue-level mechanical behavior of the native valves. This review summarizes the evolution of polymeric heart valves and the state-of-the-art approaches to their development, fabrication, and manufacturing. The review discusses the biocompatibility and durability testing of previously investigated polymeric materials and presents the most recent developments, including the first human clinical trials of LifePolymer. New promising functional polymers, nanocomposite biomaterials, and valve designs are discussed in terms of their potential application in the development of an ideal polymeric heart valve. The superiority and inferiority of nanocomposite and hybrid materials to non-modified polymers are reported. The review proposes several concepts potentially suitable to address the above-mentioned challenges arising in the R&D of polymeric heart valves from the properties, structure, and surface of polymeric materials. Additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools have given the green light to set new directions for polymeric heart valves.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Kirill Y. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | | | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| |
Collapse
|
4
|
de la Harpe KM, Marimuthu T, Kondiah PPD, Kumar P, Ubanako P, Choonara YE. Synthesis of a novel monofilament bioabsorbable suture for biomedical applications. J Biomed Mater Res B Appl Biomater 2022; 110:2189-2210. [PMID: 35373911 PMCID: PMC9546231 DOI: 10.1002/jbm.b.35069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/07/2022]
Abstract
In this research, a novel bioabsorbable suture that is, monofilament and capable of localized drug delivery, was developed from a combination of natural biopolymers that where not previously applied for this purpose. The optimized suture formulation comprised of sodium alginate (6% wt/vol), pectin (0.1% wt/vol), and gelatin (3% wt/vol), in the presence of glycerol (4% vol/vol) which served as a plasticizer. The monofilament bioabsorbable sutures where synthesized via in situ ionic crosslinking in a barium chloride solution (2% wt/vol). The resulting suture was characterized in terms of mechanical properties, morphology, swelling, degradation, drug release, and biocompatibility, in addition to Fourier-transform infrared (FTIR) spectroscopy, Powder X-ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The drug loaded and non-drug loaded sutures had a maximum breaking strength of 4.18 and 4.08 N, in the straight configuration and 2.44 N and 2.59 N in the knot configuration, respectively. FTIR spectrum of crosslinked sutures depicted Δ9 cm-1 downward shift for the carboxyl stretching band which was indicative of ionic interactions between barium ions and sodium alginate. In vitro analysis revealed continued drug release for 7 days and gradual degradation by means of surface erosion, which was completed by day 28. Biocompatibility studies revealed excellent hemocompatibility and no cytotoxicity. These results suggest that the newly developed bioabsorbable suture meets the basic requirements of a suture material and provides a viable alternative to the synthetic polymer sutures that are currently on the market.
Collapse
Affiliation(s)
- Kara M. de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Pierre P. D. Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the Witwatersrand, ParktownJohannesburgSouth Africa
| |
Collapse
|
5
|
Hemocompatibility Evaluation of Thai Bombyx mori Silk Fibroin and Its Improvement with Low Molecular Weight Heparin Immobilization. Polymers (Basel) 2022; 14:polym14142943. [PMID: 35890719 PMCID: PMC9319666 DOI: 10.3390/polym14142943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Bombyx mori silk fibroin (SF), from Nangnoi Srisaket 1 Thai strain, has shown potential for various biomedical applications such as wound dressing, a vascular patch, bone substitutes, and controlled release systems. The hemocompatibility of this SF is one of the important characteristics that have impacts on such applications. In this study, the hemocompatibility of Thai SF was investigated and its improvement by low molecular weight heparin (LMWH) immobilization was demonstrated. Endothelial cell proliferation on the SF and LMWH immobilized SF (Hep/SF) samples with or without fibroblast growth factor-2 (FGF-2) was also evaluated. According to hemocompatibility evaluation, Thai SF did not accelerate clotting time, excess stimulate complement and leukocyte activation, and was considered a non-hemolysis material compared to the negative control PTFE sheet. Platelet adhesion of SF film was comparable to that of the PTFE sheet. For hemocompatibility enhancement, LMWH was immobilized successfully and could improve the surface hydrophilicity of SF films. The Hep/SF films demonstrated prolonged clotting time and slightly lower complement and leukocyte activation. However, the Hep/SF films could not suppress platelet adhesion. The Hep/SF films demonstrated endothelial cell proliferation enhancement, particularly with FGF-2 addition. This study provides fundamental information for the further development of Thai SF as a hemocompatible biomaterial.
Collapse
|
6
|
Seyrek A, Günal G, Aydin HM. Development of Antithrombogenic ECM-Based Nanocomposite Heart Valve Leaflets. ACS APPLIED BIO MATERIALS 2022; 5:3883-3895. [PMID: 35839464 PMCID: PMC9382671 DOI: 10.1021/acsabm.2c00423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Thrombogenicity, which is commonly encountered in artificial
heart
valves after replacement surgeries, causes valvular failure. Even
life-long anticoagulant drug use may not be sufficient to prevent
thrombogenicity. In this study, it was aimed to develop a heart valve
construct with antithrombogenic properties and suitable mechanical
strength by combining multiwalled carbon nanotubes within a decellularized
bovine pericardium. In this context, the decellularization process
was performed by using the combination of freeze–thawing and
sodium dodecyl sulfate (SDS). Evaluation of decellularization efficiency
was determined by histology (Hematoxylin and Eosin, DAPI and Masson’s
Trichrome) and biochemical (DNA, sGAG and collagen) analyses. After
the decellularization process of the bovine pericardium, composite
pericardial tissues were prepared by incorporating −COOH-modified
multiwalled carbon nanotubes (MWCNTs). Characterization of MWCNT incorporation
was performed by ATR-FTIR, TGA, and mechanical analysis, while SEM
and AFM were used for morphological evaluations. Thrombogenicity assessments
were studied by platelet adhesion test, Calcein-AM staining, kinetic
blood clotting, hemolysis, and cytotoxicity analyses. As a result
of this study, the composite pericardial material revealed improved
mechanical and thermal stability and hemocompatibility in comparison
to decellularized pericardium, without toxicity. Approximately 100%
success is achieved in preventing platelet adhesion. In addition,
kinetic blood-coagulation analysis demonstrated a low rate and slow
coagulation kinetics, while the hemolysis index was below the permissible
limit for biomaterials.
Collapse
Affiliation(s)
- Ahsen Seyrek
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Gülçin Günal
- Bioengineering Division, Institute of Science, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Beytepe, 06800, Ankara, Turkey.,Centre for Bioengineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
7
|
An electrospun PGS/PU fibrous scaffold to support and promote endothelial differentiation of mesenchymal stem cells under dynamic culture condition. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Krivkina EO, Velikanova EA, Senokosova EA, Khanova MY, Glushkova TV, Antonova LV, Barbarash LS. Hemocompatibility And Cytotoxicity Of Small-Diameter Bioabsorbable Tissue-Engineered Vascular Grafts Depending On Anti-Thrombogenic And Antimicrobial Coating. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Anti-thrombogenic and antimicrobial coatings of polymer grafts constitute a promising approach to preventing infection and thrombosis of vascular grafts. The objective was to study the hemocompatibility and cytotoxicity of PHBV/PCL grafts with iloprost and amphiphilic coating. Material and Methods — Polymer matrices were manufactured by electrospinning a mixture of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) polymers. Several matrices were modified by complexation between polyvinylpyrrolidone (PVP) and cationic amphiphile and/or iloprost. The amphiphile was covalently cross-linked to the surface of other PHBV/PCL matrices. Unmodified PHBV/PCL matrices were used as the control group. Hemocompatibility and cytotoxicity of scaffolds before and after the modification were evaluated. Results — The hemocompatibility assessment revealed that hemolysis degree did not exceed normal values in all types of matrices. The PHBV/PCL/PVP matrices had increased platelet aggregation on the surface of the grafts. Subsequent addition of iloprost and amphiphile resulted in a sevenfold reduction of platelet aggregation. In PHBV/PCL/PVP matrices, the degree of platelet adhesion increased without changing the platelet deformation index values. Iloprost and amphiphilic coating of PHBV/PCL/PVP matrices diminished the number of adhered platelets and platelet deformation index by 1.5 times. The amphiphile, covalently cross-linked to PHBV/PCL matrices, caused a negative effect on the platelet adhesion, aggregation, and deformation index values. Evaluation of cytotoxicity of PHBV/PCL/PVP matrices, coated with iloprost and/or cationic amphiphile, demonstrated a slight decline in the rates of cell growth and proliferation after three days. Moreover, after three days, cell deaths and a sharp drop in the cell index values were noted in PHBV/PCL matrices with covalently cross-linked amphiphile. Conclusion — Iloprost and amphiphilic coating of PHBV/PCL grafts has increased their hemocompatibility. Also, there were no signs of cytotoxicity while using the complexation technique. However, covalently cross-linked amphiphile caused an increase in the cytotoxicity of matrices, which may have been indicative of the negative effect observed in this type of surface modification.
Collapse
Affiliation(s)
- Eugenia O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | | | - Maryam Yu. Khanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Tatyana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Larisa V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | | |
Collapse
|
9
|
Strohbach A, Busch R. Predicting the In Vivo Performance of Cardiovascular Biomaterials: Current Approaches In Vitro Evaluation of Blood-Biomaterial Interactions. Int J Mol Sci 2021; 22:ijms222111390. [PMID: 34768821 PMCID: PMC8583792 DOI: 10.3390/ijms222111390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The therapeutic efficacy of a cardiovascular device after implantation is highly dependent on the host-initiated complement and coagulation cascade. Both can eventually trigger thrombosis and inflammation. Therefore, understanding these initial responses of the body is of great importance for newly developed biomaterials. Subtle modulation of the associated biological processes could optimize clinical outcomes. However, our failure to produce truly blood compatible materials may reflect our inability to properly understand the mechanisms of thrombosis and inflammation associated with biomaterials. In vitro models mimicking these processes provide valuable insights into the mechanisms of biomaterial-induced complement activation and coagulation. Here, we review (i) the influence of biomaterials on complement and coagulation cascades, (ii) the significance of complement-coagulation interactions for the clinical success of cardiovascular implants, (iii) the modulation of complement activation by surface modifications, and (iv) in vitro testing strategies.
Collapse
Affiliation(s)
- Anne Strohbach
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
- Correspondence:
| | - Raila Busch
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| |
Collapse
|
10
|
Jalaie H, Schleimer K, Toonder IM, Gombert A, Afify M, Doganci S, Modabber A, Razavi MK, Barbati ME. Effect of Stent Strut Interval on Neointima Formation After Venous Stenting in an Ovine Model. Eur J Vasc Endovasc Surg 2021; 62:276-283. [PMID: 34053840 DOI: 10.1016/j.ejvs.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The impact of stent design on venous patency is not well studied. The purpose of this study was to investigate the effect of stent material burden on endothelial coverage of stented venous segments, which may contribute to vessel healing and patency. METHODS Segmented self expanding bare nitinol stents (18 × 50 mm) comprising 5 mm long attached metallic rings separated by 2, 5, or 8 mm gaps were implanted in the inferior vena cava (IVC) of 10 sheep. These stents were designed and manufactured for the purposes of this study. At six, 12, and 24 weeks after implantation the animals were euthanised and the stented vessels harvested for histomorphometric analysis. Three sections from the metallic part as well as the gaps between the struts were reviewed for quantification of endothelialisation after six, 12, and 24 weeks. The intimal thickness over and between the stent struts was measured. The endothelialisation score (graded from 1 for complete luminal endothelialisation to 5 for absence of endothelial cells) was determined. RESULTS All stents were successfully deployed and all 10 sheep survived until the time of harvesting. Macroscopic inspection after 24 weeks showed only partial endothelialisation over stents with 2 mm and 5 mm skipped segments, whereas the stents with 8 mm skipped segments were totally incorporated into the vein wall. After 24 weeks, the mean (SD) neointimal thicknesses over stent struts with 2 mm, 5 mm, and 8 mm skipped segments were 254.0 (51.6), 182.2 (98.1), and 194.6 (101.1) μm, respectively. Comparison of endothelialisation scores of stents over time showed statistically significantly better endothelialisation over stents with 8 mm gaps after 12 and 24 weeks. CONCLUSION Stent designs providing structural support to veins with larger gaps between the scaffold material appear to lead to faster and more complete endothelialisation as well as a thinner intimal layer.
Collapse
Affiliation(s)
- Houman Jalaie
- Clinic of Vascular and Endovascular Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Karina Schleimer
- Clinic of Vascular and Endovascular Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Irwin M Toonder
- Clinic of Vascular and Endovascular Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Alexander Gombert
- Clinic of Vascular and Endovascular Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mamdouh Afify
- Clinic of Cardiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Suat Doganci
- Department of Cardiovascular Surgery, University of Health Sciences, Ankara, Turkey
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Mohammad E Barbati
- Clinic of Vascular and Endovascular Surgery, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
11
|
Meng X, Cheng Y, Wang P, Chen K, Chen Z, Liu X, Fu X, Wang K, Liu K, Liu Z, Duan X. Enhanced Hemocompatibility of a Direct Chemical Vapor Deposition-Derived Graphene Film. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4835-4843. [PMID: 33474941 DOI: 10.1021/acsami.0c19790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A wide range of biomedical devices are being used to treat cardiovascular diseases, and thus they routinely come into contact with blood. Insufficient hemocompatibility has been found to impair the functionality and safety of these devices through the activation of blood coagulation and the immune system. Numerous attempts have been made to develop surface modification approaches of the cardiovascular devices to improve their hemocompatibility. However, there are still no ideal "blood-friendly" coating materials, which possess the desired hemocompatibility, tissue compatibility, and mechanical properties. As a novel multifunctional material, graphene has been proposed for a wide range of biomedical applications. The chemical inertness, atomic smoothness, and high durability make graphene an ideal candidate as a surface coating material for implantable devices. Here, we evaluated the hemocompatibility of a graphene film prepared on quartz glasses (Gra-glasses) from a direct chemical vapor deposition process. We found that the graphene coating, which is free of transfer-mediating polymer contamination, significantly suppressed platelet adhesion and activation, prolonged coagulation time, and reduced ex vivo thrombosis formation. We attribute the excellent antithrombogenic properties of the Gra-glasses to the low surface roughness, low surface energy (especially the low polar component of the surface energy), and the negative surface charge of the graphene film. Given these excellent hemocompatible properties, along with its chemical inertness, high durability, and molecular impermeability, a graphene film holds great promise as an antithrombogenic coating for next-generation cardiovascular devices.
Collapse
Affiliation(s)
- Xuejuan Meng
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yi Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Puxin Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ke Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhaolong Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaojun Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xuefeng Fu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kun Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kaihui Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhongfan Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Antonova L, Krivkina E, Rezvova M, Sevostyanova V, Tkachenko V, Glushkova T, Akentyeva T, Kudryavtseva Y, Barbarash L. A Technology for Anti-Thrombogenic Drug Coating of Small-Diameter Biodegradable Vascular Prostheses. Sovrem Tekhnologii Med 2020; 12:6-12. [PMID: 34796013 PMCID: PMC8596239 DOI: 10.17691/stm2020.12.6.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to develop a technology for anti-thrombogenic drug coating of biodegradable porous scaffolds and to evaluate the physicomechanical and hemocompatible properties of functionally active vascular prostheses with and without a drug coating. MATERIALS AND METHODS Vascular prostheses from polyhydroxybutyrate/valerate and polycaprolactone with the incorporated vascular endothelial growth factor, the main fibroblast growth factor, and the chemoattractant SDF-1α were made by emulsion electrospinning. Additional surface modification of the prostheses was carried out by forming a hydrogel coating of polyvinylpyrrolidone capable of binding drugs as a result of complexation. Unfractionated heparin and iloprost were used as anti-thrombogenic drugs. RESULTS We show that after the modification of vascular prostheses with heparin and iloprost, a 5.8-fold increase in the Young's modulus value was noted, which indicated a greater stiffness of these grafts compared to the unmodified controls. Platelet aggregation on the surface of heparin + iloprost coated vascular prostheses was 3.3 times less than that with the unmodified controls, and 1.8 times less compared to intact platelet-rich plasma. The surface of vascular prostheses with heparin and iloprost was resistant to adhesion of platelets and blood proteins. CONCLUSION Drug (unfractionated heparin and iloprost) coating of the surface of biodegradable prostheses significantly improved the anti-thrombogenic properties of these grafts but contributed to the increased stiffness of the prostheses.
Collapse
Affiliation(s)
- L.V. Antonova
- Head of the Laboratory of Cell Technologies, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| | - E.O. Krivkina
- Junior Researcher, Laboratory of Cell Technologies, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| | - M.A. Rezvova
- Junior Researcher, Laboratory of New Biomaterials, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| | - V.V. Sevostyanova
- Researcher, Laboratory of Cell Technologies, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| | - V.O. Tkachenko
- Senior Researcher; Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, 11 Acad. Lavrentieva Avenue, Novosibirsk, 630090, Russia
| | - T.V. Glushkova
- Researcher, Laboratory of New Biomaterials, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| | - T.N. Akentyeva
- Junior Researcher, Laboratory of New Biomaterials, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| | - Yu.A. Kudryavtseva
- Head of the Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| | - L.S. Barbarash
- Professor, Academician of the Russian Academy of Sciences, Chief Researcher Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Blvd, Kemerovo, 650002, Russia
| |
Collapse
|
13
|
Kulyk K, Azizova L, Cunningham JM, Mikhalovska L, Borysenko M, Mikhalovsky S. Nanosized copper(ii) oxide/silica for catalytic generation of nitric oxide from S-nitrosothiols. J Mater Chem B 2020; 8:4267-4277. [DOI: 10.1039/d0tb00137f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The findings of this study suggest that copper(ii) oxide–silica nanoparticles produce NO from the GSNO species at physiological conditions in situ and could be used for designing biomedical materials with NO generating activity.
Collapse
Affiliation(s)
| | - Liana Azizova
- Chuiko Institute of Surface Chemistry
- 03164 Kyiv
- Ukraine
- University of Brighton
- School of Pharmacy and Biomolecular Sciences
| | - James M. Cunningham
- University of Brighton
- School of Pharmacy and Biomolecular Sciences
- Brighton
- UK
| | - Lyuba Mikhalovska
- University of Brighton
- School of Pharmacy and Biomolecular Sciences
- Brighton
- UK
| | | | - Sergey Mikhalovsky
- Chuiko Institute of Surface Chemistry
- 03164 Kyiv
- Ukraine
- ANAMAD Ltd
- Sussex Innovation Centre
| |
Collapse
|
14
|
Patel SK, Behera B, Swain B, Roshan R, Sahoo D, Behera A. A review on NiTi alloys for biomedical applications and their biocompatibility. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.03.538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Zheng X, Wu W, Zhang Y, Wu G. Changes in and significance of platelet function and parameters in Kawasaki disease. Sci Rep 2019; 9:17641. [PMID: 31776411 PMCID: PMC6881449 DOI: 10.1038/s41598-019-54113-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Kawasaki disease (KD) is a systemic febrile, inflammatory vascular disease of unknown etiology. The coronary artery abnormality (CAA) caused by KD has become the most commonly acquired heart disease in children. Initial treatment of intravenous immunoglobulin (IVIG) can reduce the incidence of CAA. Thrombocytosis is common during the course of KD, but changes in and significances of platelet function and parameters are unclear. In this study, we enrolled 120 patients, including 40 patients with KD, 40 febrile controls, and 40 afebrile controls. The platelet function was assessed using the platelet function analyzer (PFA)-200. Platelet parameters, including platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and platelet hematocrit (PCT) were measured. In the febrile period, the PDW and MPV were lower in KD patients (P < 0.05). The platelet function did not change significantly during the febrile period of KD but weakened in the defervescence phase. No significant differences between the CAA and normal groups, and between IVIG resistance and response groups. The diagnostic cutoff value of the PDW level for predicting KD was 10.85 fL with a sensitivity of 55% and a specificity of 77.5% (area under curve (AUC) = 0.690, 95% confidence interval (CI): 0.574–0.806, P < 0.01). Besides, the MPV level was 9.55 fL with sensitivity of 75% and specificity of 70% (AUC = 0.733, 95%CI: 0.620–0.846, P < 0.001). This is the first longitudinal study of platelet function changes in KD patients using PFA-200. Besides, lower PDW and MPV may be available markers for early diagnosis of KD.
Collapse
Affiliation(s)
- Xiaolan Zheng
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhang
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Gang Wu
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
16
|
Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In Vitro Thrombogenicity Testing of Biomaterials. Adv Healthc Mater 2019; 8:e1900527. [PMID: 31612646 DOI: 10.1002/adhm.201900527] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed.
Collapse
Affiliation(s)
- Steffen Braune
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Robert A. Latour
- Rhodes Engineering Research CenterDepartment of BioengineeringClemson University Clemson SC 29634 USA
| | - Markus Reinthaler
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Ulf Landmesser
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam Karl‐Liebknecht‐Strasse 24‐25 14476 Potsdam Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| |
Collapse
|
17
|
Reinthaler M, Johansson JB, Braune S, Al-Hindwan HSA, Lendlein A, Jung F. Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system. Clin Hemorheol Microcirc 2019; 71:183-191. [PMID: 30584128 DOI: 10.3233/ch-189410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circulating blood cells are prone to varying flow conditions when contacting cardiovascular devices. For a profound understanding of the complex interplay between the blood components/cells and cardiovascular implant surfaces, testing under varying shear conditions is required. Here, we study the influence of arterial and venous shear conditions on the in vitro evaluation of the thrombogenicity of polymer-based implant materials.Medical grade poly(dimethyl siloxane) (PDMS), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) films were included as reference materials. The polymers were exposed to whole blood from healthy humans. Blood was agitated orbitally at low (venous shear stress: 2.8 dyne · cm-2) and high (arterial shear stress: 22.2 dyne · cm-2) agitation speeds in a well-plate based test system. Numbers of non-adherent platelets, platelet activation (P-Selectin positive platelets), platelet function (PFA100 closure times) and platelet adhesion (laser scanning microscopy (LSM)) were determined.Microscopic data and counting of the circulating cells revealed increasing numbers of material-surface adherent platelets with increasing agitation speed. Also, activation of the platelets was substantially increased when tested under the high shear conditions (P-Selectin levels, PFA-100 closure times). At low agitation speed, the platelet densities did not differ between the three materials. Tested at the high agitation speed, lowest platelet densities were observed on PDMS, intermediate levels on PET and highest on PTFE. While activation of the circulating platelets was affected by the implant surfaces in a similar manner, PFA closure times did not reflect this trend.Differences in the thrombogenicity of the studied polymers were more pronounced when tested at high agitation speed due to the induced shear stresses. Testing under varying shear stresses, thus, led to a different evaluation of the implant thrombogenicity, which emphasizes the need for testing under various flow conditions. Our data further confirmed earlier findings where the same reference implants were tested under static (and not dynamic) conditions and with fresh human platelet rich plasma instead of whole blood. This supports that the application of common reference materials may improve inter-study comparisons, even under varying test conditions.
Collapse
Affiliation(s)
- Markus Reinthaler
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Department of Cardiology, Medical Clinic II, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Johan Bäckemo Johansson
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Haitham Saleh Ali Al-Hindwan
- Department of Cardiology, Medical Clinic II, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
18
|
Biocompatibility of Small-Diameter Vascular Grafts in Different Modes of RGD Modification. Polymers (Basel) 2019; 11:polym11010174. [PMID: 30960158 PMCID: PMC6401695 DOI: 10.3390/polym11010174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Modification with Arg-Gly-Asp (RGD) peptides is a promising approach to improve biocompatibility of small-calibre vascular grafts but it is unknown how different RGD sequence composition impacts graft performance. Here we manufactured 1.5 mm poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) grafts modified by distinct linear or cyclic RGD peptides immobilized by short or long amine linker arms. Modified vascular prostheses were tested in vitro to assess their mechanical properties, hemocompatibility, thrombogenicity and endothelialisation. We also implanted these grafts into rat abdominal aortas with the following histological examination at 1 and 3 months to evaluate their primary patency, cellular composition and detect possible calcification. Our results demonstrated that all modes of RGD modification reduce ultimate tensile strength of the grafts. Modification of prostheses does not cause haemolysis upon the contact with modified grafts, yet all the RGD-treated grafts display a tendency to promote platelet aggregation in comparison with unmodified counterparts. In vivo findings identify that cyclic Arg-Gly-Asp-Phe-Lys peptide in combination with trioxa-1,13-tridecanediamine linker group substantially improve graft biocompatibility. To conclude, here we for the first time compared synthetic small-diameter vascular prostheses with different modes of RGD modification. We suggest our graft modification regimen as enhancing graft performance and thus recommend it for future use in tissue engineering.
Collapse
|
19
|
Bui HT, Friederich ARW, Li E, Prawel DA, James SP. Hyaluronan enhancement of expanded polytetrafluoroethylene cardiovascular grafts. J Biomater Appl 2018; 33:52-63. [DOI: 10.1177/0885328218776807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart disease continues to be the leading cause of death in the United States. The demand for cardiovascular bypass procedures increases annually. Expanded polytetrafluoroethylene is a popular material for replacement implants, but it does have drawbacks such as high thrombogenicity and low patency, particularly in small diameter grafts. Hyaluronan, a naturally occurring polysaccharide in the human body, is known for its wound healing and anticoagulant properties. In this work, we demonstrate that treating the luminal surface of expanded polytetrafluoroethylene grafts with hyaluronan improves hemocompatibility without notably changing its mechanical properties and without significant cytotoxic effects. Surface characterization such as ATR-FTIR and contact angle goniometry demonstrates that hyaluronan treatment successfully changes the surface chemistry and increases hydrophilicity. Tensile properties such as elastic modulus, tensile strength, yield stress and ultimate strain are unchanged by hyaluronan enhancement. Durability data from flow loop studies demonstrate that hyaluronan is durable on the expanded polytetrafluoroethylene inner lumen. Hemocompatibility tests reveal that hyaluronan-treated expanded polytetrafluoroethylene reduces blood clotting and platelet activation. Together our results indicate that hyaluronan-enhanced expanded polytetrafluoroethylene is a promising candidate material for cardiovascular grafts.
Collapse
Affiliation(s)
- Hieu T Bui
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Aidan RW Friederich
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Emily Li
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David A Prawel
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Susan P James
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
20
|
Munisso MC, Mahara A, Yamaoka T. Design of in situ porcine closed-circuit system for assessing blood-contacting biomaterials. J Artif Organs 2018; 21:317-324. [DOI: 10.1007/s10047-018-1042-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
|
21
|
Ding X, Chin W, Lee CN, Hedrick JL, Yang YY. Peptide-Functionalized Polyurethane Coatings Prepared via Grafting-To Strategy to Selectively Promote Endothelialization. Adv Healthc Mater 2018; 7. [PMID: 29205938 DOI: 10.1002/adhm.201700944] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Indexed: 01/02/2023]
Abstract
Endothelialization, formation of endothelial cells (ECs) layer on cardiovascular implant surface, is considered an ideal approach to prevent restenosis (renarrowing of blood vessel mainly due to the accumulation of proliferated vascular smooth muscle cells, SMCs) and thrombosis. In this study, the possibility of using polyurethane (PU) as a coating platform for functionalization with peptide to enhance endothelialization on implants is explored. PUs are synthesized through metal-free organocatalytic polymerization followed by chemical conjugation with an EC-specific REDV peptide through thiol-ene reaction. Meanwhile, the free isocyanate groups of PU allow for covalent grafting of REDV-functionalized PU (PU/REDV) to silanize implant materials (nitinol and PET). PU/REDV coating with peptide grafting density of ≈2 nmol cm-2 selectively accommodates primary human umbilical vein ECs (HUVECs) and retards spreading of primary human umbilical artery SMCs (HUASMCs). In addition, a layer of HUVECs is formed within 3 d on PU/REDV-coated surfaces, while proliferation of HUASMCs is inhibited. The selectivity is further confirmed by coculture of HUVECs and HUASMCs. Moreover, the PU/REDV-coated surfaces are less thrombogenic as evidenced by reduced number and activity of adhered platelets. Therefore, PU/REDV can be potentially used as a coating of cardiovascular implants to prevent restenosis and thrombosis by promoting endothelialization.
Collapse
Affiliation(s)
- Xin Ding
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way, The Nanos 138669 Singapore Singapore
| | - Willy Chin
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way, The Nanos 138669 Singapore Singapore
| | - Chuen Neng Lee
- Department of Cardiac, Thoracic and Vascular Surgery; National University Hospital Singapore; 5 Lower Kent Ridge Road 119074 Singapore Singapore
- Department of Surgery; Yong Loo Lin School of Medicine; National University of Singapore; 5 Lower Kent Ridge Road 119074 Singapore Singapore
| | - James L. Hedrick
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way, The Nanos 138669 Singapore Singapore
| |
Collapse
|
22
|
Movafaghi S, Leszczak V, Wang W, Sorkin JA, Dasi LP, Popat KC, Kota AK. Response to "Correspondence Concerning Hemocompatibility of Superhemophobic Titania Surfaces". Adv Healthc Mater 2017; 6. [PMID: 28703490 DOI: 10.1002/adhm.201700647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- S. Movafaghi
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - V. Leszczak
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - W. Wang
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - J. A. Sorkin
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - L. P. Dasi
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO 80523 USA
- Department of Biomedical Engineering; Dorothy Davis Heart and Lung Research Institute; Ohio State University; Columbus OH 43210 USA
| | - K. C. Popat
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO 80523 USA
| | - A. K. Kota
- Department of Mechanical Engineering; Colorado State University; Fort Collins CO 80523 USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO 80523 USA
| |
Collapse
|
23
|
Brockman KS, Lai BFL, Kizhakkedathu JN, Santerre JP. Hemocompatibility of Degrading Polymeric Biomaterials: Degradable Polar Hydrophobic Ionic Polyurethane versus Poly(lactic-co-glycolic) Acid. Biomacromolecules 2017. [PMID: 28621927 DOI: 10.1021/acs.biomac.7b00456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of degradable polymers in vascular tissue regeneration has sparked the need to characterize polymer biocompatibility during degradation. While tissue compatibility has been frequently addressed, studies on polymer hemocompatibility during degradation are limited. The current study evaluated the differences in hemocompatibility (platelet response, complement activation, and coagulation cascade initiation) between as-made and hydrolyzed poly(lactic-co-glycolic) acid (PLGA) and degradable polar hydrophobic ionic polyurethane (D-PHI). Platelet activation decreased (in whole blood) and platelet adhesion decreased (in blood without leukocytes) for degraded versus as-made PLGA. D-PHI showed minimal hemocompatibility changes over degradation. Leukocytes played a major role in mediating platelet activation for samples and controls, as well as influencing platelet-polymer adhesion on the degraded materials. This study demonstrates the importance of assessing the blood compatibility of biomaterials over the course of degradation since the associated changes in surface chemistry and physical state could significantly change biomaterial hemocompatibility.
Collapse
Affiliation(s)
- Kathryne S Brockman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3R5, Canada.,Institute of Biomaterials and Biomedical Engineering, Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5G 1M1, Canada
| | - Benjamin F L Lai
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine and Centre for Blood Research, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - J Paul Santerre
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3R5, Canada.,Institute of Biomaterials and Biomedical Engineering, Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto , Toronto, Ontario M5G 1M1, Canada.,Faculty of Dentistry, University of Toronto , Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
24
|
Ma L, Xia C, Sun X, Zuo Y, Zhao L. The effects of oral acetylsalicylic acid on blood fluidity and infusion speed in the cancer patients with PICC. Clin Hemorheol Microcirc 2017; 65:11-22. [PMID: 27258204 DOI: 10.3233/ch-162068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to examine the influence of oral acetylsalicylic acid on blood fluidity and infusion speed in the cancer patients with Peripherally Inserted Central Catheter (PICC). BACKGROUND PICC is placed for prolonged chemotherapy of cancer patients. The fibrin sheaths, which consist of cellular substance and non-cellular substance, generate at the place of insertion and grow down all over the catheter. Finally they cover the vent of the catheter and lead to catheter dysfunctions such as the decrease of infusion speed. In addition, the high viscosity status of cancer patients could lead to acute embolization, which adds to the high risk of death. DESIGN Randomized controlled trial. METHODS This research was carried out between April 2013 and January 2014 in the second hospital of Xiangya, Central South University in Changsha, China. Initially 96 cancer participants with PICC were chosen and randomly allocated to experimental and control group. The participants of the experimental group were conducted route PICC maintain technique and took acetylsalicylic acid 100 mg per day after dinner, while the control group received route PICC maintain technique only. The infusion speed and hemorheology indexes of the two groups were tested before our study and at the end of the 2nd and 4th months with several instruments. RESULTS Repeated measures analysis of variance indicated that taking acetylsalicylic acid orally had significant main effect on high shear blood viscosity and red blood cell deformability index (P < 0.05), and it also had significant main effect as well as time effect on plasma viscosity (P < 0.05); and time had significant main effect as well as interaction effect with oral acetylsalicylic acid on low shear blood viscosity and red blood cell aggregation index (P < 0.05). Repeated measures ANOVA also showed that taking acetylsalicylic acid orally had significant main effect, time effect and interaction effect on infusion speed (P < 0.01). CONCLUSION Oral acetylsalicylic acid could improve hemorheology condition and the infusion speed related to fibrin sheath in the cancer patients.
Collapse
Affiliation(s)
- Lili Ma
- School of Nursing, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chunfang Xia
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Sun
- School of Nursing, Central South University, Changsha, Hunan, China
| | - Yulan Zuo
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liping Zhao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Kuo ZK, Fang MY, Wu TY, Yang T, Tseng HW, Chen CC, Cheng CM. Hydrophilic films: How hydrophilicity affects blood compatibility and cellular compatibility. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zong-Keng Kuo
- Institute of Nanoengineering and Microsystems; National Tsing Hua University; Hsinchu City Taiwan
| | - Mei-Yen Fang
- New Research Department; Eternal Materials Co. Ltd.; Kaohsiung City Taiwan
| | - Tu-Yi Wu
- New Research Department; Eternal Materials Co. Ltd.; Kaohsiung City Taiwan
| | - Ted Yang
- New Research Department; Eternal Materials Co. Ltd.; Kaohsiung City Taiwan
| | - Hsiang-Wen Tseng
- Department and Institute of Pharmacology; National Yang Ming University; Taipei City Taiwan
| | - Chih-Chen Chen
- Institute of Nanoengineering and Microsystems; National Tsing Hua University; Hsinchu City Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering; National Tsing Hua University; Hsinchu City Taiwan
| |
Collapse
|
26
|
Sukavaneshvar S. Device thrombosis and pre-clinical blood flow models for assessing antithrombogenic efficacy of drug-device combinations. Adv Drug Deliv Rev 2017; 112:24-34. [PMID: 27496706 DOI: 10.1016/j.addr.2016.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Thrombosis associated with blood-contacting devices is a complex process involving several component interactions that have eluded precise definition. Extensive investigations of individual biological modules such as protein adsorption, coagulation cascade activation and platelet activation/adhesion/aggregation have provided an initial foundation for developing biomaterials for blood-contacting devices, but a material that is intrinsically non-thrombogenic is yet to be developed. The well-recognized association between fluid dynamics parameters such as shear stress, vortices, stagnation and thrombotic processes such as platelet aggregation and coagulation aggravate thrombosis on most device geometries that elicit these flow disturbances. Thus, antithrombotic drugs that were developed to treat thrombosis associated with vascular diseases such as atherosclerosis have also been adapted to mitigate the risk of device thrombosis. However, balancing the risk of bleeding with the antithrombotic efficacy of these drugs continues to be a challenge, and surface modification of devices with these drug molecules to mitigate device thrombosis locally has been explored. Pre-clinical blood flow models to test the effectiveness of these drug-device combinations have also evolved and several in-vitro, ex-vivo, and in-vivo test configurations are available with their attendant merits and limitations. Despite considerable efforts toward iterative design and testing of blood contacting devices and antithrombogenic surface modifications, device thrombosis remains an unsolved problem.
Collapse
|
27
|
Nemeth N, Sogor V, Kiss F, Ulker P. Interspecies diversity of erythrocyte mechanical stability at various combinations in magnitude and duration of shear stress, and osmolality. Clin Hemorheol Microcirc 2017; 63:381-398. [PMID: 26890103 DOI: 10.3233/ch-152031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesized that the results of red blood cell mechanical stability test show interspecies differences. The comparative investigations were performed on blood samples obtained from rats, beagle dogs, pigs and healthy volunteers. Mechanical stress was applied in nine combinations: 30, 60 or 100 Pa shear stress for 100, 200 or 300 seconds. Generally, rat erythrocytes showed the highest capability of resistance. With the applied combinations of mechanical stress pig erythrocytes were the most sensitive. On human erythrocytes 60 Pa for 200 s was the minimum combination to result significant deformability deterioration. By increasing the magnitude and duration of the applied mechanical stress we experienced escalating deformability impairment in all species. 100 Pa shear stress for 300 seconds on human erythrocytes showed the largest deformability impairment. The mechanical stability test results were also dependent on osmolality. At hypoosmolar range (200 mOsmol/kg) the mechanical stress improved EI data mostly in rat and porcine blood. At higher osmolality (500 mOsmol/kg), the test did not show detectable difference, while in 250-300 mOsmol/kg range the differences were well observable. In summary, erythrocytes' capability of resistance against mechanical stress shows interspecies differences depending on the magnitude and duration of the applied stress, and on the osmolality.
Collapse
Affiliation(s)
- Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Viktoria Sogor
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Kiss
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Pinar Ulker
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
28
|
Braune S, Fröhlich GM, Lendlein A, Jung F. Effect of temperature on platelet adherence. Clin Hemorheol Microcirc 2017; 61:681-8. [PMID: 26639771 DOI: 10.3233/ch-152028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Thrombogenicity is one of the main parameters tested in vitro to evaluate the hemocompatibility of artificial surfaces. While the influence of the temperature on platelet aggregation has been addressed by several studies, the temperature influence on the adherence of platelets to body foreign surfaces as an important aspect of biomedical device handling has not yet been explored. Therefore, we analyzed the influence of two typically applied incubation-temperatures (22°C and 37°C) on the adhesion of platelets to biomaterials. MATERIAL AND METHODS Thrombogenicity of three different polymers - medical grade poly(dimethyl siloxane) (PDMS), polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) - were studied in an in vitro static test. Platelet adhesion was studied with stringently characterized blood from apparently healthy subjects. Collection of whole blood and preparation of platelet rich plasma (PRP) was carried out at room temperature (22°C). PRP was incubated with the polymers either at 22°C or 37°C. Surface adherent platelets were fixed, fluorescently labelled and assessed by an image-based approach. RESULTS AND DISCUSSION Differences in the density of adherent platelets after incubation at 22°C and 37°C occurred on PDMS and PET. Similar levels of adherent platelets were observed on the very thrombogenic PTFE. The covered surface areas per single platelet were analyzed to measure the state of platelet activation and revealed no differences between the two incubation temperatures for any of the analyzed polymers. Irrespective of the observed differences between the low and medium thrombogenic PDMS and PET and the higher variability at 22°C, the thrombogenicity of the three investigated polymers was evaluated being comparable at both incubation temperatures.
Collapse
Affiliation(s)
- S Braune
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
| | | | - A Lendlein
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - F Jung
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
| |
Collapse
|
29
|
Badiei N, Sowedan AM, Curtis DJ, Brown MR, Lawrence MJ, Campbell AI, Sabra A, Evans PA, Weisel JW, Chernysh IN, Nagaswami C, Williams PR, Hawkins K. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels. Clin Hemorheol Microcirc 2016; 60:451-64. [PMID: 25624413 PMCID: PMC4923731 DOI: 10.3233/ch-151924] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.
Collapse
Affiliation(s)
- N Badiei
- College of Engineering, Swansea University, Swansea, UK
| | - A M Sowedan
- College of Engineering, Swansea University, Swansea, UK.,College of Medicine, Swansea University, Swansea, UK
| | - D J Curtis
- College of Engineering, Swansea University, Swansea, UK
| | - M R Brown
- College of Engineering, Swansea University, Swansea, UK
| | - M J Lawrence
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| | - A I Campbell
- College of Engineering, Swansea University, Swansea, UK
| | - A Sabra
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| | - P A Evans
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| | - J W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - I N Chernysh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Nagaswami
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - P R Williams
- College of Engineering, Swansea University, Swansea, UK
| | - K Hawkins
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| |
Collapse
|
30
|
Seo HS, Choi SH, Han M, Kim KA, Cho CH, An SSA, Lim CS, Shin S. Measurement of platelet aggregation functions using whole blood migration ratio in a microfluidic chip. Clin Hemorheol Microcirc 2016; 62:151-63. [PMID: 26444593 DOI: 10.3233/ch-151961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Platelets play a major role in maintaining endothelial integrity and hemostasis. Of the various soluble agonists, ADP is an important in vivo stimulus for inducing platelet aggregation. In this study, a simple, rapid, and affordable method was designed for testing bleeding time (BT) and platelet aggregation with a two-channel microfluidic chip. Whole blood migration ratio (MR) from a microchip system was evaluated in comparison to the closure time (CT) from PFA-100 assays (Siemens, Germany) and CD62P expression on platelets. To induce platelet aggregation, a combination of collagen (1.84 mg/ml) and ADP (37.5 mg/ml) were used as agonists. After adding the agonists to samples, whole blood MR from the microchip system was measured. The outcome of the assessment depended on reaction time and agonist concentration. MR of whole blood from the microchip system was significantly correlated with CT from PFA-100 (r = 0.61, p < 0.05, n = 60). In addition, MR was negatively correlated with CD62P expression (r =-0.95, p < 0.05, n = 60). These results suggest that the measurement of MR using agonists is an easy, simple and efficient method for monitoring platelet aggregation in normal and ADP-receptors defective samples, along with the BT test. Thus, usage of the current microfluidic method could expand to diverse applications, including efficacy assessments in platelet therapy.
Collapse
Affiliation(s)
- Hong Seog Seo
- KU-KIST Graduate School of Converging Science and Technology, Seoul, Korea
| | - Sung Hyuk Choi
- Department of Emergency Medicine, College of Medicine, Korea University, Guro Gu, Seoul, Korea
| | - Miran Han
- Department of Laboratory Medicine, College of Medicine, Korea University, Guro Gu, Seoul, Korea
| | - Kyeong Ah Kim
- Department of Laboratory Medicine, College of Medicine, Korea University, Guro Gu, Seoul, Korea
| | - Chi Hyun Cho
- Department of Laboratory Medicine, College of Medicine, Korea University, Guro Gu, Seoul, Korea
| | - Seong Soo A An
- College of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi Do, Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Guro Gu, Seoul, Korea
| | - Sehyun Shin
- School of Mechanical Engineering, Korea University, Seoul, Korea
| |
Collapse
|
31
|
Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A 2016; 105:927-940. [PMID: 27813288 DOI: 10.1002/jbm.a.35958] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017.
Collapse
Affiliation(s)
- R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, Berlin, 14163, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg, Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
32
|
Stoll H, Steinle H, Stang K, Kunnakattu S, Scheideler L, Neumann B, Kurz J, Degenkolbe I, Perle N, Schlensak C, Wendel HP, Avci-Adali M. Generation of Large-Scale DNA Hydrogels with Excellent Blood and Cell Compatibility. Macromol Biosci 2016; 17. [PMID: 27758025 DOI: 10.1002/mabi.201600252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/14/2016] [Indexed: 12/27/2022]
Abstract
Hemocompatibility and cytocompatibility of biomaterials codetermine the success of tissue engineering applications. DNA, the natural component of our cells, is an auspicious biomaterial for the generation of designable scaffolds with tailorable characteristics. In this study, a combination of rolling circle amplification and multiprimed chain amplification is used to generate hydrogels at centimeter scale consisting solely of DNA. Using an in vitro rotation model and fresh human blood, the reaction of the hemostatic system on DNA hydrogels is analyzed. The measurements of hemolysis, platelets activation, and the activation of the complement, coagulation, and neutrophils using enzyme-linked immunosorbent assays demonstrate excellent hemocompatibility. In addition, the cytocompatibility of the DNA hydrogels is tested by indirect contact (agar diffusion tests) and material extract experiments with L929 murine fibroblasts according to the ISO 10993-5 specifications and no negative impact on the cell viability is detected. These results indicate the promising potential of DNA hydrogels as biomaterials for versatile applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Heidi Stoll
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Katharina Stang
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Silju Kunnakattu
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Lutz Scheideler
- Section "Medical Material Science and Technology", Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Osianderstraße 2-8, 72076, Tuebingen, Germany
| | - Bernd Neumann
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Julia Kurz
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Ilka Degenkolbe
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Nadja Perle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| |
Collapse
|
33
|
Reviakine I, Jung F, Braune S, Brash JL, Latour R, Gorbet M, van Oeveren W. Stirred, shaken, or stagnant: What goes on at the blood-biomaterial interface. Blood Rev 2016; 31:11-21. [PMID: 27478147 DOI: 10.1016/j.blre.2016.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023]
Abstract
There is a widely recognized need to improve the performance of vascular implants and external medical devices that come into contact with blood by reducing adverse reactions they cause, such as thrombosis and inflammation. These reactions lead to major adverse cardiovascular events such as heart attacks and strokes. Currently, they are managed therapeutically. This need remains unmet by the biomaterials research community. Recognized stagnation of the blood-biomaterial interface research translates into waning interest from clinicians, funding agencies, and practitioners of adjacent fields. The purpose of this contribution is to stir things up. It follows the 2014 BloodSurf meeting (74th International IUVSTA Workshop on Blood-Biomaterial Interactions), offers reflections on the situation in the field, and a three-pronged strategy integrating different perspectives on the biological mechanisms underlying blood-biomaterial interactions. The success of this strategy depends on reengaging clinicians and on the renewed cooperation of the funding agencies to support long-term efforts.
Collapse
Affiliation(s)
- Ilya Reviakine
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - John L Brash
- Department of Chemical Engineering, School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Robert Latour
- Rhodes Engineering Research Center, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Maud Gorbet
- Department of Systems Design Engineering, Biomedical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Wim van Oeveren
- HaemoScan, Stavangerweg 23-23, 9723JC Groningen, The Netherlands
| |
Collapse
|
34
|
In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells. PLoS One 2016; 11:e0158289. [PMID: 27348615 PMCID: PMC4922589 DOI: 10.1371/journal.pone.0158289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.
Collapse
|
35
|
A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity. Int J Mol Sci 2016; 17:ijms17060908. [PMID: 27294915 PMCID: PMC4926442 DOI: 10.3390/ijms17060908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT).
Collapse
|
36
|
In vitro screening procedure for characterization of thrombogenic properties of plasma treated surfaces. Biointerphases 2016; 11:029808. [PMID: 27154919 DOI: 10.1116/1.4948808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Estimation of thrombogenic surface properties is an important aspect of hemocompatibility studies. To improve our understanding of interaction between blood and biomaterial surfaces, there is a need to employ standardized methods that are both effective and efficient. This contribution details a systematic approach for the in vitro analysis of plasma modified polymer surfaces and human blood platelet interaction, following the recently introduced ISO 10933-4 guidelines. A holistic multistep process is presented that considers all aspects of testing procedure, including blood collection, platelet function testing, and incubation parameters, right through to a comparison and evaluation of the different methods and analysis available. In terms of detection and analysis, confocal light microscopy is shown to offer many advantages over the widely used scanning electron microscopy technique; this includes simpler, less-invasive sample preparation, and less time-consuming analysis procedure. On the other hand, as an alternative to microscopy techniques, toxicology sulforhodamine B based assay (TOX assay) was also evaluated. It has been shown that the assay could be used for rapid estimation of relative concentration of blood platelets on the surface of plasma treated materials, especially when samples do not allow the implementation of microscopy techniques.
Collapse
|
37
|
Platelets and coronary artery disease: Interactions with the blood vessel wall and cardiovascular devices. Biointerphases 2016; 11:029702. [DOI: 10.1116/1.4953246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
|
39
|
Differences in intracellular calcium dynamics cause differences in α-granule secretion and phosphatidylserine expression in platelets adhering on glass and TiO2. Biointerphases 2016; 11:029807. [DOI: 10.1116/1.4947047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Hu Y, Jin J, Liang H, Ji X, Yin J, Jiang W. pH Dependence of Adsorbed Fibrinogen Conformation and Its Effect on Platelet Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4086-4094. [PMID: 27035056 DOI: 10.1021/acs.langmuir.5b04238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI) were used to investigate fibrinogen (Fib) adsorption behavior on different surfaces by changing the pH value. Moreover, integrin adhesion to the adsorbed Fibs was studied using DPI. Qualitative and quantitative studies of platelet adhesion to the adsorbed Fibs were performed using scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), and released lactate dehydrogenase (LDH) assay. Experimental results indicated that the conformation and orientation of the absorbed Fibs depended on surface property and pH cycling. For the hydrophilic surface, Fibs adsorbed at pH 7.4 and presented a αC-hidden orientation. As a result, no integrin adhesion was observed, and a small number of platelets were adhered because the αC-domains were hidden under the Fib molecule. By changing the rinsing solution pH from 7.4 to 3.2 and then back to 7.4, the adsorbed Fib orientation became αC-exposed via the transformation of Fib conformation during pH cycling. Therefore, integrin adhesion was more likely to occur, and more platelets were adhered and activated. For the hydrophobic surface, the adsorbed Fibs became more spread and stretched due to the strong interaction between the Fibs and surface. αC-exposed orientation remained unchanged when the rinsing solution pH changed from 7.4 to 3.2 and then back to 7.4. Therefore, a large number of integrins and platelets were adhered to the adsorbed Fibs, and almost all of the adhered platelets were activated.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, P. R. China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
41
|
Cherkouk C, Rebohle L, Lenk J, Keller A, Ou X, Laube M, Neuber C, Haase-Kohn C, Skorupa W, Pietzsch J. Controlled immobilization of His-tagged proteins for protein-ligand interaction experiments using Ni2+-NTA layer on glass surfaces. Clin Hemorheol Microcirc 2016; 61:523-39. [DOI: 10.3233/ch-151950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Charaf Cherkouk
- Technische Universität Bergakademie Freiberg, Institute of Experimental Physics, Freiberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Lars Rebohle
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Jens Lenk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Adrian Keller
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Xin Ou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Cathleen Haase-Kohn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Wolfgang Skorupa
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
42
|
Wang W, Huang X, Yin H, Fan W, Zhang T, Li L, Mao C. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement. Biomed Mater 2015; 10:065022. [DOI: 10.1088/1748-6041/10/6/065022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Haubner F, Muschter D, Schuster N, Pohl F, Ahrens N, Prantl L, Gassner H. Platelet-rich plasma stimulates dermal microvascular endothelial cells and adipose derived stem cells after external radiation. Clin Hemorheol Microcirc 2015; 61:279-90. [DOI: 10.3233/ch-151982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- F. Haubner
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, University of Regensburg, Germany
| | - D. Muschter
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, University of Regensburg, Germany
| | - N. Schuster
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, University of Regensburg, Germany
| | - F. Pohl
- Department of Radiotherapy, University of Regensburg, Germany
| | - N. Ahrens
- Department of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - L. Prantl
- Center for Plastic, Aesthetic, Hand & Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - H.G. Gassner
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, University of Regensburg, Germany
| |
Collapse
|
44
|
Blood coagulation and platelet adhesion on polyaniline films. Colloids Surf B Biointerfaces 2015; 133:278-85. [DOI: 10.1016/j.colsurfb.2015.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 11/21/2022]
|
45
|
Toll like receptor 2/1 mediated platelet adhesion and activation on bacterial mimetic surfaces is dependent on src/Syk-signaling and purinergic receptor P2X1 and P2Y12 activation. Biointerphases 2015; 9:041003. [PMID: 25553878 DOI: 10.1116/1.4901135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Platelets are considered to have important functions in inflammatory processes as key players in innate immunity. Toll like receptors (TLRs), expressed on platelets, recognize pathogen associated molecular patterns and trigger immune responses. Pathogens are able to adhere to human tissues and form biofilms which cause a continuous activation of the immune system. The authors aimed to investigate how immobilized Pam3CSK4 (a synthetic TLR2/1 agonist) and IgG, respectively, resembling a bacterial focus, affects adhesion and activation of platelets including release of two cytokines, regulated on activation normal T-cell expressed and secreted (RANTES) and macrophage migration inhibitory factor (MIF). The authors also aim to clarify the signaling downstream of TLR2/1 and FcγRII (IgG receptor) and the role of adenine nucleotides in this process. Biolayers of Pam3CSK4 and IgG, respectively, were confirmed by null-ellipsometry and contact angle measurements. Platelets were preincubated with signaling inhibitors for scr and Syk and antagonists for P2X1 or P2Y1 [adenosine triphosphate (ATP), adenosine diphosphate (ADP) receptors] prior to addition to the surfaces. The authors show that platelets adhere and spread on both Pam3CSK4- and IgG-coated surfaces and that this process is antagonized by scr and Syc inhibitors as well as P2X1 and P2Y antagonists. This suggests that Pam3CSK4 activated platelets utilize the same pathway as FcγRII. Moreover, the authors show that ATP-ligation of P2X1 is of importance for further platelet activation after TLR2/1-activation, and that P2Y12 is the prominent ADP-receptor involved in adhesion and spreading. RANTES and MIF were secreted over time from platelets adhering to the coated surfaces, but no MIF was released upon stimulation with soluble Pam3CSK4. These results clarify the importance of TLR2/1 and FcγRII in platelet adhesion and activation, and strengthen the role of platelets as an active player in sensing bacterial infections.
Collapse
|
46
|
Lendlein A, Neffe AT, Jérôme C. Advanced Functional Polymers in Medicine (AFPM). Clin Hemorheol Microcirc 2015; 60:1-2. [DOI: 10.3233/ch-151941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Germany
| | - Christine Jérôme
- Centre d’Etude et de Recherche sur les Macromolécules (CERM), Université de Liège, Belgium
| |
Collapse
|
47
|
|
48
|
Braune S, Groß M, Walter M, Zhou S, Dietze S, Rutschow S, Lendlein A, Tschöpe C, Jung F. Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials. J Biomed Mater Res B Appl Biomater 2015; 104:210-7. [PMID: 25631281 DOI: 10.1002/jbm.b.33366] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
On the basis of the clinical studies in patients with coronary artery disease (CAD) presenting an increased percentage of activated platelets, we hypothesized that hemocompatibility testing utilizing platelets from healthy individuals may result in an underestimation of the materials' thrombogenicity. Therefore, we investigated the interaction of polymer-based biomaterials with platelets from CAD patients in comparison to platelets from apparently healthy individuals. In vitro static thrombogenicity tests revealed that adherent platelet densities and total platelet covered areas were significantly increased for the low (polydimethylsiloxane, PDMS) and medium (Collagen) thrombogenic surfaces in the CAD group compared to the healthy subjects group. The area per single platelet-indicating the spreading and activation of the platelets-was markedly increased on PDMS treated with PRP from CAD subjects. This could not be observed for collagen or polytetrafluoroethylene (PTFE). For the latter material, platelet adhesion and surface coverage did not differ between the two groups. Irrespective of the substrate, the variability of these parameters was increased for CAD patients compared to healthy subjects. This indicates a higher reactivity of platelets from CAD patients compared to the healthy individuals. Our results revealed, for the first time, that utilizing platelets from apparently healthy donors bears the risk of underestimating the thrombogenicity of polymer-based biomaterials.
Collapse
Affiliation(s)
- S Braune
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - M Groß
- Department of Cardiology and Pneumology, Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - M Walter
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - S Zhou
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - S Dietze
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - S Rutschow
- Department of Cardiology and Pneumology, Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - A Lendlein
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - C Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
- Department of Cardiology, Charitè-Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - F Jung
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Teltow and Berlin, Germany
| |
Collapse
|
49
|
Zheng WJ, Liu ZQ, Xu F, Gao J, Chen YM, Gong JP, Osada Y. In Vitro Platelet Adhesion of PNaAMPS/PAAm and PNaAMPS/PDMAAm Double-Network Hydrogels. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen Jiang Zheng
- School of Science, State Key Laboratory for Mechanical Behavior of Materials; Collaborative Innovation Center of Suzhou Nano Science and Technology; Jiaotong University; Xi'an 710049 P.R. China
| | - Zhen Qi Liu
- School of Science, State Key Laboratory for Mechanical Behavior of Materials; Collaborative Innovation Center of Suzhou Nano Science and Technology; Jiaotong University; Xi'an 710049 P.R. China
| | - Feng Xu
- School of Life Science and Technology; MOE Key Laboratory of Biomedical Information Engineering; Xi'an Jiaotong University; Xi'an 710049 P.R. China
- Bioinspired Engineering and Biomechanics Center; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Jie Gao
- School of Science, State Key Laboratory for Mechanical Behavior of Materials; Collaborative Innovation Center of Suzhou Nano Science and Technology; Jiaotong University; Xi'an 710049 P.R. China
| | - Yong Mei Chen
- School of Science, State Key Laboratory for Mechanical Behavior of Materials; Collaborative Innovation Center of Suzhou Nano Science and Technology; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Jian Ping Gong
- Faculty of Advanced Life Science; Hokkaido University; Sapporo 060-0810 Japan
| | | |
Collapse
|
50
|
Ghobril C, Grinstaff MW. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 2015; 44:1820-35. [DOI: 10.1039/c4cs00332b] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thistutorial reviewhighlights the key features and design requirements for the use of polymeric hydrogel adhesives in the clinic.
Collapse
Affiliation(s)
- C. Ghobril
- Departments of Biomedical Engineering and Chemistry
- Metcalf Center for Science and Engineering
- Boston University
- Boston
- USA
| | - M. W. Grinstaff
- Departments of Biomedical Engineering and Chemistry
- Metcalf Center for Science and Engineering
- Boston University
- Boston
- USA
| |
Collapse
|